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On the use and improvement

of Hull and White’s control

variate technique

San-Lin Chunga,* and Mark B. Shackletonb

aDepartment of Finance, National Taiwan University, Taipei, Taiwan, ROC
bDepartment of Accounting and Finance, Lancaster University, UK

A study of the use and improvement of Hull and White’s (1988) control
variate technique in pricing options is provided. It contributes to the lit-
erature in two ways. First it is shown that it is not optimal to use the entire
error of a control variate against its known price (usually a closed-form
solution) to correct and improve the unknown error of the unknown price
of a complex option and a better error correction fraction is derived.
Secondly, while Hull and White only advocated the use of the simplest
European option control variate, it is shown how to choose better controls
to reduce pricing errors more effectively and the role of so called static
hedges as the best theoretical control variates is discussed.

I. Introduction

Many problems in finance must ultimately be solved

through the use of a numerical technique as the only

practical and universally robust solution method. By

numerical technique, we mean that the state space in

question must be partitioned and discretized in some

manner (either using a tree or a grid) before the value

of the asset is evaluated at each and every of the

many resultant points. Moreover these points (tree

nodes or grid points) have to be chosen before the

prices at those points are known.

In the field of options and particularly for

American options1 (where no closed form solution

is generally available), such a numerical brute force

method is necessary because it is the only way to

guarantee that increasing computational effort results

in increased numerical accuracy. Other areas where

numerical techniques are necessary include all

dynamic programming techniques where the value

of a strategy must be evaluated simultaneously with

its optimal action, for instance in optimal portfolio

control under transaction costs and similar problems.

It is important to be able to determine the price of

a financial claim to arbitrary accuracy, first because

a financial intermediary may be concerned about

overpaying or undercharging. Secondly and more

importantly, because the financial intermediary is

often left with the task of replicating the claim over

its life, he must be able to evaluate the comparative

statics (the hedge parameters or so called Greeks of

the option) repeatedly and quickly if he is to respond

to revised hedging needs. For exotic options

(especially path dependent options), this task may

be sensitive to the method chosen and remaining

errors will be a function of the computational time

spent (see Boyle and Lau, 1994; Figlewski and Gao,

1999).

*Corresponding author. E-mail: chungs@management.ntu.edu.tw
1Asian options and other exotics also fall into this category.
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Although several approximations2 are available for
American options (also for Asians), many of which
have the right asymptotic properties and converge to
the true price in the limit of one variable, these do not
allow the price of a general option to be determined
to arbitrary accuracy. Even if a series solution is actu-
ally available for pricing an option to arbitrary accu-
racy (e.g. Geske and Johnson, 1984), it may still be
more efficient3 to employ a numerical method com-
pared to the task of evaluating a complex series. This
is because the required multivariate cumulative
normal function (and other high dimensional numer-
ical integrations on which many compound options
solutions rely) although expressed as an integral and
computer coded very efficiently, is not strictly a
closed form solution in that it requires a numerical
method itself for computation. Arbitrary accuracy is
only achieved through increasing computational
power and so other methods are typically preferred
to the multivariate cumulative normal function.

Furthermore, the numerical methods themselves
are subject to various problems. The rate of
convergence of the estimated price to the true price,
may not be fast and the convergence may not be
monotone in that the sign and magnitude of the
error may oscillate as a finer time grid or tree is
used (see Fig. 1). This is because there are two sources
of discretization error.

First, discretization at the terminal boundary will
yield imperfect prices. Interpolation techniques and
trapezoidal integration rules can minimize these
errors for smooth payoff functions but the first deri-
vative at the final exercise point of an option may
not be smooth so the grid or lattice density here is
critical.4

Secondly, the chosen numerical array must be used
to evaluate the point of optimal action simulta-
neously with the desired prices. This will involve
further forms of discretization error, one in determin-
ing the location of the optimal exercise points itself
and one when subsequently valuing the option earlier
in time, which is dependent on the value at, and posi-
tion of, the optimal exercise boundary (Wilmott et al.
(1995) detail a complimentary condition that can
reduce this boundary error). This will cause problems
particularly if the American exercise boundary is far
from linear or if it is discontinuous at maturity.

This is to say that the critical points in the option
pricing problem (that coincide with an optimal exer-
cise boundary) are as important as the option prices
away from the boundary. Indeed the boundary con-
ditions have equal standing with the asset partial dif-
ferential equation itself in pricing the claim because it
is the boundary conditions alone that distinguish one
type of option claim from another. It is the (prior)
positioning of the nodes in state space relative to
these critical thresholds in the option pricing problem
that cause the second type of pricing error.
Furthermore it is the non-linear way that the state
space grid or tree interacts with a boundary of gen-
eral shape that causes these errors to depend chaoti-
cally5 on the grid size (see Fig. 1). A small error in the

2Approximate solutions for American options include the work of Geske and Johnson (1984), MacMillan (1986), Barone-
Adesi and Whaley (1987), Omberg (1987), and Ju (1998) etc. Although quick to evaluate, none of these methods will allow
accuracy to be increased with more computational effort.
3Here, efficient means that the method takes less computational time for the same accuracy or gives more accurate estimates
for the same computational time.
4 Figlewski and Gao (1999) propose a method termed Adaptive Mesh Model (AMM) to reduce the ‘non-linearity error’ at the
terminal boundary. In their method, one or more small sections of fine high-resolution lattice are added onto a tree with
coarser time and price steps. This will incorporate more accurate fine-mesh values for critical nodes into the coarse tree and
thus reduce the non-linearity error.
5A chaotic variable is one that could be evaluated exactly with sufficient computing power; without such resource it may
appear to be ‘random’ (i.e. there may be no apparent short cut to its determination). Since the emphasis here is to use as little
computational power as possible, these chaotic errors will be treated as if they were truely random (i.e. without deterministic
form).
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Fig. 1. The American put option price with regard to the

number of time steps (binomial method): ( ) no CV,

( ) c*, ( ) HW(cV1), ( ) true value
The parameters are S¼ 40, K¼ 45, T¼ 7 months, r¼ 0.07,
q¼ 0.02, and s¼ 0.2. The coefficient c* is estimated using
binomial trees with 20 to 50 steps. The accurate American
option price is estimated using the BBSR method with
10 000 steps.
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placement of the grid next to a boundary can lead to
a large pricing error. By way of example, Boyle and
Lau (1994) show that convergence is very slow when
using binomial methods to price Barrier options
because of the severe non-linearity present as the
mesh or lattice points oscillate around the boundary
with decreasing mesh size.

One way to reduce these types of errors and hence
improve the computational time required is the so
called ‘control variate’ method proposed by Hull
and White (1988, hereafter HW). They suggested
that a similar claim for which a closed form solution
is available be priced on the same grid and
made subject to the same discretization errors.
Comparison of the resultant price with the analytic
price is instructive for two reasons, first the magni-
tude of the errors against the known price may be
related to the errors on the unknown price, secondly
the sign of the two may be related. In their paper, the
use of a Black–Scholes control spared the use of a
finer grid and thus more computation.

In addition to HW, this paper contributes to the
literature in two directions. First HW used 100% of
the error in this control variate against its known
price to correct and improve the unknown error of
the unknown price. It will be shown that the full use
of the control variable may not be optimal. In some
cases using the entire error to correct the unknown
error will increase rather than decrease the latter.

Secondly it is interesting to note that HW only
advocated the use of a simple control variate, the
corresponding Black and Scholes European option
price. This will help deal with the first type of discre-
tization error at maturity but will not necessarily help
with the second source of error in the location of and
value near the boundary. Other instruments are sug-
gested that may well help in the second area.

The rest of this paper is organized as follows.
Section II discusses the methodology and the sources
of pricing errors when using discrete lattice methods.
Section III presents the numerical results and
suggests how to choose good controls to effectively
correct errors. Section IV concludes.

II. Methodology

Numerical methods based on a finite number of
calculations will always contain error, in particular
for binomial methods only for an arbitrarily large

number of tree nodes will the binomial price converge
to the true continuous price. That is for a given set of
option parameters (e.g. stock, strike, risk free, vola-
tility, maturity) � ¼ S0,X, r, �,Tð Þ and number of
time steps n implemented in the tree, the estimated
option price P̂P �, nð Þ will only converge to the true
price P �ð Þ ¼ lim P̂P �, nð Þ as n!1. As mentioned pre-
viously, even then there is a problem since conver-
gence to the limit may be oscillatory.

An option error " nð Þ can be defined for any given
numerical method or choice of n, the magnitude of
which should decrease as n!1

" nð Þ ¼ P̂P �, nð Þ � P �ð Þ lim
n!1

" nð Þ ¼ 0

The control variate (CV) technique is applicable
when there are two similar6 options, labelled C and
T. The Target option T is the (difficult) option which
needs to be priced while C is a Control option, called
a Control Variate (or CV), which is similar to option
T but has an analytical (or closed-form) solution PC.
To apply the control variate technique, the values
of T and C have to be evaluated using the same
numerical procedure (i.e. with the same value of n if
trees are used). The numerical price estimates of T
and C are denoted as P̂PT and P̂PC, respectively and
they depend on n. The control variate estimate for
the value of T, ePPT, is given byePPT ¼ P̂PT þ cðPC � P̂PCÞ ð1Þ

"C ¼ P̂PC � PC ð2Þ

"T � c"C ð3ÞePPT ¼ P̂PT � c"C ð4Þ

This is to say that the error of the control option "C
can be used to improve the error of the target option
"T because it may be closely linked to it.

Hull and White recommended the use of a corre-
sponding Black–Scholes European option price as a
control variable PC for an American option and they
then used the pricing error of the discretized price
estimate on the European to improve the American,
i.e. the entire error c¼ 1 of the control variate to
correct the unknown error of the price estimate of
the target option.

Without any prior knowledge of the dependency
between the target errors and the control errors, the
c¼ 1 assumption is probably best but examination of
actual error dependency may yield a different error
sensitivity and potentially a better use of the control.
The idea is to always chose the value of that leads to

6 By similar options it is meant that both option prices should follow the same partial differential equation (e.g. European
versus American options), both option payoffs should be highly correlated (geometric average versus arithmetic average Asian
options) or that their boundary conditions should be congruent (continuously versus discretely monitored barrier options).
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the minimum target error, at least over a limited
range of estimations n.

This then leads to the question of how to estimate
the dependency between the control and target errors.
This could be examined across different methods, but
within a particular numerical method such as bino-
mial trees the errors are investigated as a function of
different tree step numbers n indexed by i. This is
always done for the same parameter set � and gener-
ate option price estimates P̂P �, ið Þ for many i. For a
given set of target option inputs, it is not desirable
to include control errors from other parameter input
combinations �0 (since they may not respond/corre-
late in the same manner) so instead other numerical
estimate errors are employed across different i but for
the same �: The idea is to use a relatively small num-
ber of time steps i between two reference levels l,m
to determine the target/control error dependency
quickly and then use this to apply to a much
larger tree of size n that is only evaluated once
l < m� nð Þ.
Option prices for the control and target will be

evaluated for different numbers of time steps between
l,m inclusive (i.e. a total of m� lþ 1) in order to
determine the correlation coefficient and optimal con-
trol ratio. This optimal control ratio will then be
applied to errors from the control and target calcu-
lated from a much larger tree with n� m, l in order
to obtain a more accurate estimate of the limiting
value n!1:

If it is desired to minimize the error variance of ePPT

then the optimal correction to use is

c* l,mð Þ ¼ CovðT,CÞ=VarðCÞ ¼ �ðT,CÞ�T=�C ð5Þ

¼

Xm

i¼l
"C ið Þ"T ið ÞXm

i¼l
"2C ið Þ

ð6Þ

where �ðT,CÞ is the correlation coefficient between
P̂PT and P̂PC, �

2
T (�2C) is the variance of P̂PT (P̂PC), and

c* is the optimal coefficient in which case the variance
of the estimate will be minimized at

VarðP̂PT þ c*ðPC � P̂PCÞÞ ¼ ð1� �ðl,mÞ
2
Þ�2T ð7Þ

a quantity that could be zero if the correlation were
perfect.

Most importantly, it will not generally be the case
that the HW choice of c¼ 1 will yield the best results,
especially not if �ðT,CÞ � 1. In fact if this is the case,
the resulting error may well be greater if c¼ 1 is used,

and clearly a variate with �ðT,CÞ ¼ 0 cannot help

improve pricing. This is the case in Fig. 1 where the

American pricing error is plotted as a function of the

number of grid points used. As can be seen the errors

using c¼ 1 can actually be greater than using c¼ 0

(i.e. no control is used).7 Figure 2 shows a scatter

graph of the American option pricing errors as a

function of the European errors, i.e. a visualisation

of the correlation and slope coefficients used in this

paper, the dependency between the two is clear from

this figure.

There are in fact two attributes of the control vari-

ate error that matter for improving target prices, one

is the magnitude of the its pricing errors and the sec-

ond is the correlation of its errors with those on the

unknown price of the target option.

This paper is concerned with the choice of control

variate, the correlation of target errors and finally the

magnitude of the errors that result from an optimal

use of the CV technique. A range of control variates

are examined, the correlation of their errors and their

ability to enhance pricing.

It is proposed to evaluate the performance of CV

techniques under c¼ 1 and c* l,mð Þ methods in order

to evaluate the performance of the Black–Scholes

(BS) control variate. It is also proposed to evaluate

the performance of other control variates that may

reduce discretization error near an exercise boundary.

For example, the analytical approximations of

Barone-Adesi and Whaley (1987), MacMillan (1986)

(BAWM) and Omberg (1987) (Om) both allow deter-

mination of an approximate (but not optimal) exer-

cise boundary that can be used to correct the

discretization error near the true exercise boundary.

For each and every array location, it is possible to say

7Note that c* can in fact be greater than one if the errors in T exceed the errors in C and the correlation is high, i.e. the
variance of the target option price must be greater than that of the control price, a situation which may be possible for barrier
options controlled with standard European options.
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Fig. 2. American against European option errors for tree

steps between 20 and 100
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if it lies in or outside the boundary as approximated

by each of the formulae. Thus the evaluation of these

methods under grid pricing and closed form may

yield extra information about the nature of the dis-

cretization error near a boundary that is a reasonable

approximation for the true boundary. The perfor-

mance of these new forms compared to existing con-

trol variates will elucidate something of the nature of

the discretization errors that are incurred at different

points of the grid.

For each CV (European, Omberg options etc.) the

optimal c* l,mð Þ is established as follows. The prices

of the control option and the target option are calcu-

lated using one lattice method, e.g. simple binomial

method, for a reasonable number of time steps, say

l¼ 20 to m¼ 50 steps. Then two series of prices are

obtained which allow us to estimate their variance–

covariance and hence c* l,mð Þ. A much larger tree

(n¼ 10 000) is then used and the prices it generates

for both target and control along with the optimal

c* l,mð Þ use of these controls.

III. Numerical Results

The most efficient use of a control variate is not

necessarily c¼ 1, for a given step size estimation

and use of c* will generally improve price estimates.

However it takes time to estimate c*, therefore it is

important that c* can be estimated using only a few

samples (Monte Carlo simulation) or time steps

(binomial method) we estimate c* as follows. The

prices of the target option and the control option

are calculated using binomial trees using different

numbers of time steps, for example, l¼ 20 to

m¼ 100, this generates two series of prices which

allow c* l,mð Þ to be estimated. In Table 1, the target

options are American put options and the control

options are their counterpart European options.

Table 1 shows that the estimates of c* are quite simi-

lar for different ranges of time steps. In other words,

c* can be estimated using only few (e.g. 20–40) time

steps but apply it for trees with more time steps.

Therefore it is beneficial to use c* rather than the

Table 1. Estimated optimal control c*(l, m) values using different sets of time steps

c*(l, m) and �ðl,mÞ

K T (months) � (20, 40) (20, 100) (150, 200) (250, 300)

35 1 0.2 0.96 (0.999) 0.99 (0.999) 0.96 (0.998) 0.95 (0.999)
35 1 0.3 0.95 (0.999) 0.98 (0.999) 0.96 (0.999) 0.95 (0.999)
35 1 0.4 0.95 (0.999) 0.98 (0.999) 0.96 (0.999) 0.95 (0.999)
35 4 0.2 0.90 (0.990) 0.92 (0.989) 0.90 (0.993) 0.87 (0.994)
35 4 0.3 0.88 (0.989) 0.92 (0.990) 0.88 (0.995) 0.90 (0.996)
35 4 0.4 0.88 (0.993) 0.92 (0.992) 0.92 (0.997) 0.90 (0.997)
35 7 0.2 0.83 (0.984) 0.86 (0.983) 0.82 (0.991) 0.81 (0.994)
35 7 0.3 0.82 (0.985) 0.87 (0.985) 0.87 (0.993) 0.84 (0.994)
35 7 0.4 0.87 (0.990) 0.90 (0.990) 0.86 (0.995) 0.88 (0.997)
40 1 0.2 0.81 (0.999) 0.84 (0.995) 0.84 (1.000) 0.84 (1.000)
40 1 0.3 0.86 (0.999) 0.89 (0.997) 0.88 (1.000) 0.88 (1.000)
40 1 0.4 0.88 (1.000) 0.91 (0.998) 0.91 (1.000) 0.91 (1.000)
40 4 0.2 0.70 (0.998) 0.73 (0.991) 0.73 (1.000) 0.73 (1.000)
40 4 0.3 0.77 (0.998) 0.80 (0.993) 0.80 (1.000) 0.80 (1.000)
40 4 0.4 0.81 (0.999) 0.84 (0.995) 0.84 (1.000) 0.84 (1.000)
40 7 0.2 0.64 (0.998) 0.66 (0.991) 0.66 (1.000) 0.66 (1.000)
40 7 0.3 0.72 (0.999) 0.75 (0.992) 0.75 (1.000) 0.75 (1.000)
40 7 0.4 0.77 (0.998) 0.79 (0.994) 0.79 (1.000) 0.79 (1.000)
45 1 0.2 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)
45 1 0.3 0.51 (0.967) 0.51 (0.946) 0.57 (0.994) 0.57 (0.996)
45 1 0.4 0.79 (0.984) 0.81 (0.970) 0.79 (0.996) 0.77 (0.997)
45 4 0.2 0.36 (0.931) 0.37 (0.933) 0.35 (0.977) 0.33 (0.974)
45 4 0.3 0.63 (0.972) 0.68 (0.953) 0.67 (0.987) 0.67 (0.993)
45 4 0.4 0.77 (0.973) 0.82 (0.965) 0.78 (0.993) 0.75 (0.991)
45 7 0.2 0.40 (0.899) 0.41 (0.918) 0.41 (0.976) 0.38 (0.983)
45 7 0.3 0.64 (0.955) 0.68 (0.948) 0.65 (0.987) 0.64 (0.981)
45 7 0.4 0.75 (0.987) 0.79 (0.976) 0.74 (0.995) 0.68 (0.989)

Notes: The options are puts with other parameters: S¼ 40, r¼ 0.0488, q¼ 0.0 (dividend yield). The
bracket (e.g. 20, 40) means that c* and � are estimated using binomial trees with step numbers from
20 to 40. The correlation coefficients (�) are given in parentheses.

Hull and White’s control variate technique 1175

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
i
o
n
a
l
 
T
a
i
w
a
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
2
:
5
4
 
1
1
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



prior of c¼ 1 because it takes little computational
time to estimate it.

To compute the benchmark values of the American
options used in validating the approximation meth-
ods, the accuracy of four lattice approaches is first
investigated; the binomial method of Cox et al.
(1979), the binomial Black and Scholes (BBS) method
and the binomial Black and Scholes method with
Richardson extrapolation (BBSR) of Broadie and
Detemple (1996),8 and the Adaptive Mesh Model
(AMM) of Figlewski and Gao (1999) (see footnote 4).
The procedure in Broadie and Detemple (1996,
1997) is followed to run a comparison. First a large
set of options (35 ¼ 243 options; 3 values of each
of 5 variables) is chosen with parameters of
practical interest (values from other work). Then
for each method the test set of options is priced
and percentage error measures computed. The root-
mean-squared (RMS) relative percentage error is
used as the error measure and is defined by:

RMS ¼
1

T

XT
j¼1

e2j

 !1=2

ð8Þ

where T¼ 243 is the number of options under con-
sideration, ej ¼ ðbPPj �j

� �
� Pj �j

� �
Þ=Pj �j

� �
is the relative

error9 of the jth option, Pj �j
� �

is the true option price

(Black–Scholes), bPPj �j
� �

is the estimated option price.

The results (Table 2) indicate that the BBSR
method produces the most accurate values of these
four methods. Therefore, the BBSR with n¼ 10 000

time steps is used to produce benchmark values

for American options in the following numerical

evaluations.

Optimal c* l,mð Þ is defined as the coefficient of the

target and control option estimated from using the

binomial prices with few time steps, l to m (l < m).

Treating this numerical experiment as a statistical

experiment when evaluating pricing errors for a num-

ber of tree steps between l,m, terminology is borrowed

and c* l,mð Þ labelled as an in sample coefficient. This

coefficient is used as a proxy for the unknown out of

sample coefficient c* l, nð Þ and the errors used in

making this assumption are evaluated.

Table 3 shows that the CV technique can signifi-

cantly reduce the RMS relative errors of price esti-

mates for the binomial method. The CV technique

using c* improves the RMS relative error by about

20 to 25 times for the binomial method. Combining

with the results (their Figs 2 to 8) of Broadie and

Detemple (1996), it can be found that the binomial

method coupled with the CV technique using c*

seems more efficient than other proven (numerically)

efficient methods such as the BBSR method.

Moreover, Table 3 suggests that the CV technique

using c* works well for both in-sample and out-of-

sample tests.10

Another objective of the CV technique is actually

to seek a better instrument (with closed or analytic

form pricing solution) whose numerical errors have

as high a correlation as possible with the target option

prices errors and then to use these as corrections.

8 The BBS method is a modification of the binomial method where the Black–Scholes formula replaces the usual ‘continuation
value’ at the last time step just before option maturity. The BBSR method adds Richardson extrapolation to the BBS method.
In particular, the BBSR method with n steps computes the corresponding BBS price for n=2 steps Pð�, n=2Þ and n steps Pð�, nÞ
and then sets the BBSR approximation to the asymptotic price equal to Pð�,1Þ ¼ 2Pð�, nÞ � Pð�, n=2Þ.
9Note that these percentage errors are calculated using the same number of steps (n¼ 10 000) but across different parameter
sets j i.e. % eð jÞ ¼ ðbPPð�ð jÞ, iÞ � Pð�ð jÞ, iÞÞ=Pð�ð jÞ, iÞ as oppose to the previous absolute errors which were calculated for the
same parameter set � but for different number of tree steps i i.e. �ðiÞ ¼ bPPð�, iÞ � Pð�, iÞ for i ¼ l to m.
10 Because c* is estimated using binomial trees with 20 to 100 time steps, 30, 50, and 80 time steps are called in-sample tests,
and 200, 400, and 600 time steps out-of-sample tests.

Table 2. The root-mean-squared (RMS) relative errors using the following four methods to price European options

Binomial BBS BBSR AMM

4.59E� 05¼ 0.459bp 5.41E� 05¼ 0.541bp 2.46E� 06¼ 0.0246bp 2.98E� 04¼ 2.98bp

Note: The options are European puts. The root-mean-squared relative errors are defined as follows

RMS ¼
1

m

Xm
j¼1

e2j

 !1=2

where ej ¼ ðP
�
j � PÞ=Pj is the relative error, Pj is the accurate option price (Black–Scholes), P�j is the estimated

option price. The number of time steps in each method is n¼ 10 000. There are 243 sets of parameters are used:
�¼ 40, K¼ 35, 40, 45, s¼ 0.2, 0.3, 0.4, T¼ 1, 4, 7 months, r¼ 3, 5, 7%, and q¼ 2, 5, 8%.
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To date the CV technique has used Black–Scholes

(since its errors are positively correlated because a

deep out of the money American, is priced as a

European anyway) but other closed form formulae

or indeed approximating formulae could be used

instead. For instance Omberg (1987) has a closed

form expression for American option prices assuming

an exponential boundary (since this boundary is not

actually optimal the formula will undervalue

options), this boundary can be numerically applied

and a binomial price for Omberg compared to the

theoretical Omberg price. It may not matter that the

Omberg price is not actually an optimal price of an

option,11 what matters is that its errors may correlate

very well with the true American price errors.12 This is

so because its arbitrary boundary does not get too far

from the true one and it will suffer errors in the same

regions as the true American (near the boundary).

To verify the above argument, the performance of

European options were compared to those of

Omberg options. Table 4 shows that the average cor-

relation coefficients between American options and

Omberg options are high (0.974). However, it is a

little surprising that the performance of Omberg

options13 as the controls is only slightly better than

European options. A possible explanation is that the

oscillating binomial prices may be not able to distin-

guish a good control from a bad control.14 Overall,

the results still suggest that an option with wisely15

chosen exercise boundary is a good control

for American options but that the final maturity

boundary errors due to grid point positioning still

matter.

Note that the control can be an option or a port-

folio of options and theoretically the best control

option(s) are those that have the highest correlation

coefficient with the price of the target option.

Recently the static hedge literature16 has been used

to replicate an exotic option using a portfolio of stan-

dard (closed form) options. Since an effective static

hedge portfolio can approximately replicate the

option position, it will also provide an effective con-

trol to reduce the variance of the numerical estimates

of option prices.17

Table 3. The root-mean-squared (RMS) relative errors of price estimates

In-sample test Out-of-sample test

30 50 80 200 400 600

no CV 1.74E� 02
174bp

1.46E� 02
146bp

6.38E� 03
63.8bp

2.38E� 03
23.8bp

1.88E� 03
18.8bp

8.11E� 04
8.11bp

c¼ 1 1.14E� 03
11.4bp (93.4%)

6.86E� 04
6.86bp (95.3%)

5.26E� 04
5.26bp (91.8%)

1.83E� 04
1.83bp (92.3%)

9.98E� 05
0.998bp (94.7%)

6.45E� 05
0.645bp (92.0%)

c* 7.43E� 04
7.43bp (95.7%)

4.36E� 04
4.36bp (97.0%)

3.80E� 04
3.80bp (94.0%)

1.19E� 04
1.19bp (95.0%)

7.82E� 05
0.782bp (95.8%)

4.77E� 05
0.477bp (94.1%)

Note: The options are American puts. The root-mean-squared relative errors are defined as follows:

RMS ¼
1

m

Xm
j¼1

e2j

 !1=2

where ej ¼ ðP
�
j � PjÞ=Pj is the relative error, Pj is the accurate American option price (estimated by the BBSR method with

10 000 steps), P�j is the estimated option price. There are 243 sets of parameters are used: S¼ 40, K¼ 35, 40, 45, �¼ 0.2,
0.3, 0.4, T¼ 1, 4, 7 months, r¼ 3, 5, 7%, and q¼ 2, 5, 8%. The coefficient c* is estimated using trees with 20 to 100 steps.
The numbers in parentheses are the error reduction percentages using the control variate technique with c* and c ¼ 1.

11 Although it corresponds to the price of a claim with an arbitrary, but optimized, boundary shape.
12 The option bias between the actual and binomial Omberg prices should be small.
13 In terms of percentage the absolute values of correlation coefficients of Omberg options are still generally (65.1%) higher
than those of European options.
14 One evaluation criterion to determine a good numerical method may be its ability to distinguish good and bad controls.
From this point of view, the binomial method may fail in some cases.
15Meaning that the arbitrary boundary is very close to the true exercise boundary, for example, Ju (1998) proposes
a multipiece exponential exercise boundary which can approximate the true boundary much better than Omberg (1987).
16 The basic principle behind static hedge method is as follows. If the prices of the target option and the static hedge portfolio
follow the same partial differential equation and they are worth the same on a certain boundary, they are also worth the same
at all interior points of the boundary (see Derman et al., 1995 or Carr et al., 1998 for details).
17However it may be very difficult and complicated to formulate a perfect static hedge portfolio in practice thus reducing the
benefits of the CV method.
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As an example, the performance of three controls
which partially match the boundary conditions of a
barrier option were investigated. The barrier option
considered in this paper is an up-and-out call option
with S¼ 100, K¼ 100, H¼ 120 (barrier), T¼ 1 year,
r ¼ 0:1 (annually compounded risk free rate),
q ¼ 0:05 (annually compounded dividend yield),
and �¼ 0.25 (volatility). The first control (1) is the
counterpart European option which exactly matches

the boundary if the barrier is never crossed before

maturity. The second control (2) matches the bound-

ary of the barrier option at maturity. The third con-

trol (3) replicates the value of the barrier option; (a)

at expiration below the barrier, and (b) exactly on the

120 barrier at one year and 6 months prior to expira-

tion (half way). It is obvious that portfolio (3) should

be a better control than portfolio (1) because it can

match more nodes on the boundary of the barrier

option. Table 5 indicates that the third control is

the best control and can reduce the RMS relative

errors by a factor of about three.

Following Derman et al. (1995), other controls can

easily be found which match as many nodes on the

boundary as desired.18 In other words, theoretically

the static hedge portfolio can be used to find a perfect

control which can correct all the errors although it

will involve an increasing number of terms.

IV. Conclusion

This paper has considered the use and improvement

of Hull and White’s (1988) control variate technique

in option pricing. First the sources of pricing errors

when using discrete lattice method were discussed

and good controls that effectively correct target

errors recommended. Secondly, examples have been

given that showed where Hull and White’s control

variate technique is not optimal and potentially

it may increase rather than decrease the pricing

errors.

To effectively reduce pricing errors, the control

variate technique has to be customized to both the

type of numerical methods and the options in ques-

tion. The benefits of this effort are reduced errors and

a deeper understanding of their origin and control.

It would be interesting to study the possibility

of combining recent advanced numerical methods

with the control variate technique to price complex

options efficiently. For example, Barraquand and

Martineau (1995) and Longstaff and Schwartz

(2001) have proposed a method for pricing multi-

dimensional American options by Monte Carlo simu-

lation. Given the flexibility for pricing exotic options

under complex asset price processes, combining

their methods with control variate technique may

provide a powerful tool for both academics and

practitioners.

Table 4. The absolute value of correlation coefficients

between the American option prices and the control

option prices

European option Omberg option

mean 0.97 246 0.97 405
max 0.99 967 0.99 973
min 0.29 175 0.32 823

Notes: The options are American puts. There are 180 sets
of parameters are used: S¼ 40, K¼ 30 to 50 in increments
of 5, �¼ 0.2, 0.4, 0.6, T¼ 6, 12, 18, 24 months, r¼ 3, 5, 7%,
and q¼ 0. The correlation coefficient is estimated using
binomial trees with 60 to 100 steps. The first control is
the counterpart European option with maturity date T.
The second control is the counterpart Omberg option
which has an exponential exercise boundary.

Table 5. The root-mean-squared (RMS) relative errors for

the barrier option

No control Portfolio 1 Portfolio 2 Portfolio 3

RMS 6.66E� 03
66.6bp

5.79E� 03
57.9bp

4.34E� 03
43.4bp

2.42E� 03
24.2bp

Note: The barrier option is an up-and-out call with S¼ 100,
K¼ 100, H¼ 120, T¼ 1 year, r¼ 0.1 (annually com-
pounded), q¼ 0.05 (annually compounded), and �¼ 0.25.
Portfolio 1 is the counterpart European call option. Port-
folio 2 consists of long one European call option with
K¼ 100, short one European call option with K¼H, and
short one cash-or-nothing (digital) call option with K¼H
and cash Q¼H� 100. Portfolio 3 is a static hedge portfolio
from Derman et al. (1995) (their Portfolio 4). The root-
mean-squared relative errors are defined as follows:

RMS ¼
1

m

Xm
j¼1

e2j

 !1=2

where ej ¼ ðP
�
j � PjÞ=Pj is the relative error, Pj is the accu-

rate barrier option price (closed-form solution), P�j is the
estimated option price using ni steps per half-year, where ni
equals to 250 to 300 steps.

18Derman et al. (1995) have shown that a replicating portfolio using 24 options to match the zero boundary value on the
barrier at half-month intervals can hedge the (continuous) barrier option very well.
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