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Abstract

This research extends Haberman and Sung’s [Insurance: Mathematics and Economics 15 (1994) 151] and Chang’s [In-
surance: Mathematics and Economics 24 (1999) 187] works to study optimal funding strategies through the control mech-
anism. The paper further generalizes the previous research in three ways. First, downside risks, under-funding risk and
over-contributing risk, are included additionally in the risk minimization criterion to obtain the optimal solutions. Second, we
allow the weighting factors in the performance criterion to belong to a broader parametric family. Third, the rates of investment
returns are assumed to follow the auto-regressive process. The above three generalization indeed include traditional model
as special cases. Furthermore, an actual case is employed to investigate their financial impacts on funding and contribution
due to our generalization. The results show that neglecting to recognize the under-funding risk and the over-contribution risk
will lead to a significant difference in optimal funding schedule. The weighting factors and the returns of investment also play
critical roles in obtaining the optimal strategy.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A defined-benefit pension fund confronts uncertainties from both demographic and economic shifts, such as wage
structure, turnover rate, inflation rate and interest rate. It is well known that these demographic and financial variables
may be guided by stochastic processes rather than given as a deterministic assumption. Hence, a control mechanism
has been proposed to link together stochastic simulations and equation-type optimal solutions, thus providing an
efficient way for evaluating the risk effects caused by the specific plan strategies. The stochastic modeling of the
fund dynamics could provide helpful guidance for proper assessment of the trade-off between various risks along the
investment time horizon. Hence, the future fund dynamics could be measured properly by this approach. Studies on
pension funding in recent decades can be found inBowers et al. (1982), McKenna (1982), Dufresne (1988, 1989),
Haberman (1992–1994), Mandl and Mazurova (1996), Gerrard and Haberman (1996), Haberman and Wong (1997),
Cairns and Parker (1997)andOwadally and Haberman (1999, 2000). To capture the stochastic nature of pension
funds, many researchers (Benjamin, 1984, 1989; O’Brian, 1986, 1987; Vanderbroek, 1990; Haberman, 1993, 1994;
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Haberman and Sung, 1994; Chang, 1999) proposed using the control theory when analyzing the funding strategy
of a pension under stochastic environments.

Daykin et al. (1994, Chapter 16)outlined a practical simulation procedure in modeling the pension dynamics. They
discussed the valuation assumptions on age and time scaling, aging and renewing cohort, pay in pension, benefits,
and contributions. They also discussed both deterministic and stochastic methods of pension funding. When further
characterizing the objective of a pension fund,Haberman and Sung (1994)and Chang (1999)recognized two
major risks, contribution rate risk and solvency risk. Our paper is an extension of their work and intends to provide
additional contributions in three ways.

First, because previous researchers used square of deviation in their performance criterion function, they weighted
implicitly under-funding as over-funding and over-contribution as under-contribution. InHaberman and Sung
(1994), the contribution risk is measured by the square of deviation between the employer’s contribution and
target contribution rate, while the solvency risk is measured by the square of deviation between pension fund’s
assets and target liabilities. Instead of using the square of amount deviation,Chang (1999)proposed measuring the
contribution risk and solvency risk by the square of ratio deviation. However, a pension fund manager may care
more about under-funding than over-funding, and over-contribution than under-contribution. This study intends to
overcome this problem by revising the performance criterion function of pension funds. In addition to the contribu-
tion risk and solvency risk, we add two additional components of risks, under-funding risk and over-contribution
risk.

Second, we rearrange the performance criterion function by allowing various weighting factors that can be
adjusted by the decision-maker’s preference on time and risk. To reflect the time preference of the decision
maker, bothHaberman and Sung (1994)andChang (1999)aggregate the components at different time periods
by 1/(1 + interest rate)time period, which is commonly used to aggregate cash flows at different periods. However,
the components in their performance criterion function are indeed square of deviation rather than cash flow. A
legitimate question can be raised is whether we still employ 1/(1+ interest rate)time periodas discount factors when
the components in the performance criterion function are indeed square of deviation rather than cash flow. In fact,
the performance criterion plays a role like dis-utility of the decision maker. Generally, as in most economy research,
the discount factor can be expressed as 1/(1 + discount rate)time periodto reflect decision-maker’s time preference,
and, moreover, discount rate may not be always equal to interest rate. On the other hand, the weighting factors
may not only represent decision-maker’s preference on time but could also reflect decision-maker’s preference on
risk. For example, if the government prohibits under-funding, then we may need to assign a relatively high value
on solvency risk. This paper proposes that the decision maker should determine weighting factors and it is not
necessary to use interest rates as discount rates. Moreover, we demonstrate that the general model can be reduced
to that ofHaberman and Sung (1994)andChang (1999)simply by assigning specific weighting factors.

Third, rate of investment return at each period following independent identical distribution is assumed in previous
works. However, many papers show that investment return may exhibit auto-correlation pattern over time. Our paper
adopts Haberman’s approach by assuming auto-regressive rates of investment return. Because the performance
criterion function, the weighting factors, and return process used in our paper can be regarded as a generalization
of the model proposed inHaberman and Sung (1994)andChang (1999), our model include theirs as special cases.

Furthermore, we use an actual case to investigate the impact of these risk components on the contribution of a
pension fund. Stochastic procedures using time as the operational parameter are employed to obtain the best estimates
of the projected workforce, while the cash flows characterizing the plan liability are scrutinized through dynamic
simulations.1 We find that neglecting to recognize under-funding risk and over-contribution risk in pension fund
may have a significant impact on funding strategy. The assumptions of the weighting factors and rates of investment
return play critical roles in management of pension funding.

In the next section, we outline the proposed model and the optimal solutions. InSection 3, our model is applied
to an actual case and the results are discussed. The conclusions follow in the last section.

1 For details on these, seeBacinello (1988)andChang (1999).
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2. Model

2.1. Optimal contribution

As in Chang (2000), we assume thatCs , NCs , Fs , and ALs are contribution, normal cost, fund asset, and accrued
liability of a pension fund at times, respectively.Haberman and Sung (1994)andChang (1999)recognized two main
risks in a pension fund, contribution risk and solvency risk. Letα1,s(Cs/NCs −1)2 andα2,s+1(1−Fs+1/ηAL s+1)

2

denote the contribution risk and solvency risk, whereη is target fund ratio, andα1,s andα2,s are weighting factors
for the contribution risk and solvency risk at times, respectively.

However, these quadratic terms,α1,s(Cs/NCs −1)2 andα2,s+1(1−Fs+1/ηAL s+1)
2, do not differentiate between

under-funding and over-funding, nor do between over-contribution and under-contribution. Indeed, under-funding
and/or over-contribution may be the main concern of a pension fund manager. To measure these types of asym-
metry risks, we propose usingα3,s(Cs/NCs − 1) andα4,s+1(1 − Fs+1/ηAL s+1) to evaluate the over-contribution
risk and under-funding risk, whereα3,s and α4,s are weighting factors for the over-contribution rate risk and
under-funding risk at times, respectively. Thus, performance criteriaJ of a pension fund can be expressed
as

J =
T −1∑
s=t

α1,s

(
Cs

NCs

− 1

)2

+ α2,s+1

(
1 − Fs+1

ηAL s+1

)2

+ α3,s

(
Cs

NCs

− 1

)
+ α4,s+1

(
1 − Fs+1

ηAL s+1

)
. (1)

To demonstrate thatEq. (1)includes the models of bothHaberman and Sung (1994)andChang (1999)as special
case, letνs (or νs) andβs denote discount factor and risk weighted ratio at times, respectively, asHaberman and
Sung (1994)andChang (1999). The discount factor and risk weighted ratio are components of weighting factors
in our paper. The performance criterion function inHaberman and Sung (1994)is Eq. (1) with α1,s = vsNC2

s ,
α2,s+1 = vs+1βs+1η

2AL 2
t+1, α3,s = 0, andα4,s = 0, while that inChang (1999)is the case withα1,s = vs ,

α2,s+1 = vs+1βs+1, α3,s = 0, andα4,s = 0.
On the other hand, assume thatFs+1 = (Fs + Cs − Bs)(1+ rs+1), whereBs is benefit outgo for times andrs+1

is the gross rate of investment return of the pension fund at times + 1. Haberman and Sung (1994)andChang
(1999)regarded the investment returns as independent through time, but AR(1) models have been considered by
Haberman (1994), Mandl and Mazurova (1996), Cairns and Parker (1997). For generality, we assume that the
return rate of pension fund follows a auto-regressive process:rs+1 = θ + κ(rs − θ) + εs , whereθ andκ are
constants andεs follows Normal(0, σ 2rs). The assumption of independent identical distribution is the special case
whenκ = 0. Of course, whether the auto-regressive process is a better assumption than the independent process
depends on the situation pension managers cope with and should be evaluated by empirical evidences. Our paper
focuses on showing the stochastic method of pension funding can be extended to the case under auto-regressive
process.

Following the proposed algorithm (see alsoHaberman and Sung, 1994, p. 158;Chang, 1999, p. 193), we can
formulate the optimization of our model as

min
Ct ,... ,CT −1

E[J |Ft , rt ] s.t.




Ft+1 = (Ft + Ct − Bt)(1 + rt+1),

rt+1 = θ + κ(rt − θ) + εt ,

εt ∼ N(0, σ 2rt ).

(2)

To proceed by induction, we defineVt (Ft , rt ) as

Vt (Ft , rt ) = min
Ct ,... ,CT −1

E[J |Ft , rt ]. (3)
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For the principle of optimality, we have the Bellman equation:2

Vt (Ft , rt ) = min
Ct

E

{
α1,t

(
Ct

NCt

− 1

)2

+ α2,t+1

(
1 − Ft+1

ηAL t+1

)2

+ α3,t

(
Ct

NCt

− 1

)

+ α4,t+1

(
1 − Ft+1

ηAL t+1

)
+ Vt+1(Ft+1, rt+1)|Ft , rt

}
. (4)

We setVT (FT , rT ) = 0 as a boundary condition for there is no expected loss associated with the terminal state.
Since we add in a linear component in the performance criterion, we still try the solution ofEq. (4)by quadratic
form3 which includes linear function as a special case. LetVt (Ft , rt ) = a1,t (rt )F

2
t + a2,t (rt )Ft + a3,t (rt ) for all

t, t ∈ [0, T ]. It should be noticed thata1,t (rt ), a2,t (rt ) anda3,t (rt ) are coefficients.4 Hence, the Bellman equation
can be rewritten as

Vt (Ft , rt ) = min
Ct

{(
α1,t

NC2
t

+ α2,t+1Kt+1

η2AL 2
t+1

+ a1,t+1(rt+1)Kt+1

)
C2

t + o(·)
}

, (5)

o(·) is the other terms which are not correlated withC2
t . In order to have a unique solution toCt , the sufficient

condition forVt (Ft , rt ) is strictly convex function toCt is

a1,t+1(rt+1) > −
(

α1,t

Kt+1NC2
t

+ α2,t+1

η2AL 2
t+1

)
, (6)

whereHt+1 = (1 + θ) + κ(θ − rt ), Kt+1 = σ 2rt + H 2
t+1 are in the AR(1) process.

Then contribution can be estimated by induction. The optimal contributionC∗
t is

C∗
t = Dt + EtFt

Gt

, (7)

where

Dt = 2α1,t

NCt

+ 2α2,t+1Ht+1

ηAL t+1
+ 2α2,t+1BtKt+1

η2AL 2
t+1

− α3,t

NCt

+α4,t+1Ht+1

ηAL t+1
+ 2a1,t+1(rt+1)BtKt+1 − a2,t+1(rt+1)Ht+1, (8)

Et = −2α2,t+1Kt+1

η2AL 2
t+1

− a1,t+1(rt+1)Kt+1, (9)

Gt = 2α1,t

NC2
t

+ 2α2,t+1Kt+1

η2AL 2
t+1

+ 2a1,t+1(rt+1)Kt+1. (10)

The recursive relationships fora1,t (rt ) anda2,t (rt ) are solved by the following equations, respectively:

a1,t (rt ) = α1,tE
2
t

G2
t NC2

t

+ α2,t+1(Gt + Et)
2Kt+1

G2
t η

2AL 2
t+1

+ a1,t+1(rt+1)(Gt + Et)
2Kt+1

G2
t

, (11)

2 Our main interest is in discussing the optimal contributions, so to avoid further technicalities we assume there exists a unique control
satisfying the Bellman equation. Please refer the explanations inCox et al. (1985, p. 370).

3 Since we add in two linear components as additional risks, these terms only make the optimal solution paths shift but preserve the form of
the optimal solution.

4 The notations ofa1,t (rt ), a2,t (rt ) anda3,t (rt ) denote coefficients rather than the product of two values.
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a2,t (rt ) = −2α1,tEt

GtNCt

(
1 − Dt

GtNCt

)
− 2α2,t+1Ht+1(Gt + Et)

ηAL t+1Gt

+ 2α2,t+1Kt+1(Gt + Et)(Dt − BtGt)

η2AL 2
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t
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. (12)

Since the boundary condition isVT (FT , rT ) = 0,

a1,T (rT ) = 0, and a2,T (rT ) = 0. (13)

The optimal solution is similar to those derived byHaberman and Sung (1994)andChang (1999), except for the
additional terms for downside risks. On the other hand, sinceHaberman and Sung (1994)andChang (1999)assume
that the rate of investment return follows independent identical distribution, thenHt+1 = 1+θ andKt+1 = σ 2+H 2

t+1
in their models, which is a special case whenκ = 0.

2.2. Decomposition of contribution

FromEqs. (8)–(12), we can find thatα3,s andα4,s exist only in the equations fora2,t (rt ) andDt , and have no
influence on equations fora1,t (rt ), Et or Gt . Thus, we can conclude that the additional terms for downside risks
affect the optimal contribution throughEqs. (8) and (12). Substituting (8) into (7), we can get the following equation:

C∗
t =

{
2α1,t

GtNCt

+ 2α2,t+1Ht+1

GtηAL t+1
+ 2α2,t+1BtKt+1

Gtη2AL 2
t+1
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Gt
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Gt
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}

+
{
−a2,t+1(rt+1)Ht+1

Gt

}
+
{
− α3,t

GtNCt

+ α4,t+1Ht+1

GtηAL t+1

}
= {fixed component} + {long-term effect} + {short-term effect}. (14)

Ct can be decomposed into three components with respect to the impact ofα3,t andα4,t . The first part ofCt is the
fixed component that is not affected byα3,t or α4,t . The second part ofCt is the long-term effect ofα3,t or α4,t

affected througha2,t (rt ) which is a recursive term fromT to t. If we haveα3,s > 0 or α4,s > 0 for anys > t ,
a2,t (rt ) will have α3,s or α4,s term. It means the contribution at timet should do some adjustment for minimizing
future risks. The third part ofCt is the short-term effect affected byα3,t andα4,t . It is obvious that the short-term
effect of downside risks always increases (decreases) optimal contributions whenα4,t (α3,t ) is positive. However,
the result of the net effect has to be determined by further simulation.

3. Results and analysis

We use the data inChang (1999)5 to illustrate these results. The estimated actuarial accrued liabilities, normal
costs and benefit payments are generated under the following assumptions:

• Population: Tai-PERS service table based on 1995–1996; 1989 TSO for the retiree’s annuity table.
• Number of employees in the sample: 3823.
• Actuarial cost method: individual entry age normal cost method.

5 The data is publicly available and can be directly retrieved fromChang (1999). For more demographic characteristics of the sample, please
referChang (1999, 2000)andChang and Chen (2002). Please also find the data description of Tai-PERS, the basic actuarial assumptions and
the demographic information inSection 3[Taiwan’s Public Employees Retirement System] andSection 4[Application of the Methodology to
Tai-PERS] inChang (2000)and also the discussions in the “Numerical Experiments” inChang and Cheng (2002).
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Table 1
Contribution ratios andβ (for initial fund ratios of 0.8, 1.0, 1.2)a

Time β3 = 0; β4 = 0 β3 = 0; β4 = 0.5 β3 = 0; β4 = 1.0

0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

1 1.330 1.261 1.198 1.577 1.509 1.446 1.826 1.760 1.693
2 1.302 1.261 1.224 1.509 1.468 1.424 1.715 1.670 1.634
3 1.303 1.275 1.246 1.482 1.454 1.428 1.661 1.636 1.601
4 1.292 1.270 1.248 1.449 1.429 1.405 1.607 1.584 1.564
5 1.276 1.259 1.244 1.419 1.399 1.383 1.557 1.542 1.524
6 1.266 1.250 1.237 1.386 1.375 1.361 1.512 1.499 1.485
7 1.250 1.239 1.228 1.362 1.349 1.338 1.471 1.459 1.449
8 1.236 1.226 1.219 1.334 1.324 1.317 1.433 1.423 1.412
9 1.220 1.212 1.204 1.306 1.298 1.289 1.391 1.383 1.377

10 1.199 1.192 1.186 1.275 1.267 1.261 1.352 1.345 1.337
11 1.176 1.169 1.165 1.241 1.236 1.229 1.306 1.300 1.295
12 1.155 1.150 1.145 1.211 1.205 1.201 1.267 1.261 1.257
13 1.132 1.128 1.125 1.180 1.176 1.172 1.228 1.223 1.219
14 1.113 1.109 1.106 1.152 1.149 1.145 1.192 1.188 1.184
15 1.092 1.089 1.088 1.125 1.122 1.119 1.157 1.154 1.151
16 1.074 1.071 1.069 1.099 1.097 1.095 1.125 1.122 1.120
17 1.056 1.054 1.052 1.076 1.074 1.071 1.095 1.093 1.090
18 1.038 1.036 1.035 1.051 1.050 1.049 1.065 1.063 1.062
19 1.021 1.019 1.019 1.029 1.028 1.026 1.037 1.036 1.034
20 1.004 1.004 1.003 1.008 1.007 1.006 1.011 1.010 1.009

β3 = 0.5; β4 = 0 β3 = 0.5; β4 = 0.5 β3 = 0.5; β4 = 1.0

0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

1 1.242 1.179 1.109 1.494 1.427 1.358 1.740 1.674 1.611
2 1.195 1.154 1.115 1.399 1.359 1.320 1.607 1.567 1.525
3 1.181 1.152 1.122 1.362 1.332 1.304 1.538 1.509 1.481
4 1.154 1.134 1.112 1.311 1.289 1.268 1.467 1.448 1.426
5 1.124 1.108 1.090 1.266 1.248 1.231 1.407 1.389 1.374
6 1.100 1.087 1.073 1.224 1.210 1.198 1.349 1.334 1.322
7 1.076 1.065 1.053 1.187 1.175 1.164 1.296 1.288 1.276
8 1.052 1.043 1.033 1.151 1.141 1.132 1.247 1.238 1.229
9 1.027 1.019 1.011 1.113 1.104 1.098 1.201 1.193 1.183

10 1.000 0.993 0.986 1.075 1.067 1.061 1.150 1.144 1.138
11 0.969 0.964 0.958 1.035 1.029 1.023 1.100 1.095 1.088
12 0.941 0.936 0.931 0.998 0.993 0.989 1.053 1.049 1.044
13 0.914 0.911 0.906 0.962 0.957 0.952 1.010 1.006 1.001
14 0.889 0.886 0.882 0.929 0.925 0.922 0.968 0.965 0.961
15 0.864 0.862 0.859 0.897 0.894 0.891 0.929 0.927 0.924
16 0.842 0.840 0.837 0.868 0.865 0.863 0.894 0.892 0.888
17 0.820 0.819 0.817 0.840 0.838 0.836 0.859 0.857 0.856
18 0.799 0.798 0.796 0.813 0.811 0.810 0.827 0.825 0.823
19 0.779 0.778 0.777 0.787 0.786 0.785 0.795 0.794 0.793
20 0.760 0.759 0.758 0.763 0.762 0.761 0.766 0.765 0.764
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Table 1 (Continued)

Time β3 = 1.0; β4 = 0 β3 = 1.0; β4 = 0.5 β3 = 1.0; β4 = 1.0

0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

1 1.155 1.091 1.024 1.407 1.342 1.273 1.656 1.588 1.521
2 1.089 1.047 1.008 1.293 1.250 1.212 1.497 1.458 1.422
3 1.058 1.029 1.000 1.236 1.209 1.179 1.416 1.387 1.355
4 1.018 0.995 0.971 1.175 1.153 1.132 1.334 1.311 1.289
5 0.971 0.957 0.940 1.111 1.097 1.078 1.253 1.235 1.220
6 0.938 0.922 0.909 1.062 1.046 1.033 1.186 1.171 1.157
7 0.901 0.890 0.879 1.012 1.001 0.991 1.124 1.111 1.101
8 0.869 0.860 0.849 0.966 0.957 0.946 1.065 1.055 1.042
9 0.834 0.825 0.819 0.920 0.913 0.905 1.006 0.998 0.991

10 0.798 0.792 0.786 0.875 0.868 0.861 0.951 0.944 0.935
11 0.763 0.755 0.751 0.827 0.821 0.815 0.894 0.890 0.882
12 0.729 0.723 0.718 0.785 0.780 0.775 0.840 0.835 0.829
13 0.695 0.691 0.687 0.742 0.739 0.734 0.790 0.788 0.782
14 0.666 0.662 0.658 0.705 0.702 0.698 0.744 0.741 0.736
15 0.637 0.634 0.631 0.669 0.666 0.663 0.701 0.700 0.695
16 0.610 0.607 0.605 0.636 0.634 0.631 0.662 0.659 0.656
17 0.585 0.583 0.581 0.604 0.602 0.600 0.623 0.622 0.620
18 0.560 0.559 0.557 0.574 0.573 0.571 0.588 0.586 0.585
19 0.537 0.536 0.535 0.545 0.544 0.543 0.553 0.552 0.551
20 0.515 0.514 0.514 0.518 0.517 0.517 0.521 0.521 0.520

a Contribution ratio= contribution/normal cost; initial fund ratio= initial fund asset/accrual liability.

• Salary scale and inflation rate: 3.5% for annual salary increase and 3% for annual inflation rate.
• Discount rate: 6%.

In our model, we assume thatα1,t = (1.06)−t , α2,t+1 = (1.06)−t β2,t+1, α3,t = (1.06)−t β3,t , andα4,t+1 =
(1.06)−t β4,t+1.6 β ’s are the relative importance among risks to a fund manager. All of them are positive number or
zero.

In order to simulate the optimal contribution, we need other assumptions as follows:

• Target fund ratio:η = 100% for every year.
• Risk measurement weight:β2,t = 1 for every year.β3,t andβ4,t are parameters in our simulation, and they are

set to be 0, 0.5 and 1. If there is no corresponding risk termβ3,t andβ4,t are both zero.β3,t = 0.5, 1 andβ4,t = 0
are for the case of over-contributing risk.β3,t = 0 andβ4,t = 0.5, 1 are for the case of under-funding risk.

• Annual investment return process:rt+1 = θ + κ(rt − θ) + εt , whereεt ∼ N(0, σ 2rt ). We assumeθ = 5.946%,
σ = 2.855% andκ = 0.57447 in weekly data. We assume that the fund manager set up their investment plan
each year.

• Initial fund ratio: 0.8, 1.0 and 1.2.
• Simulations: 1000.8

We can find that managers who are more concerned with over-contributing risk will make smaller contributions
in every period (Table 1). For example, in the case ofβ4 = 0.5 in Table 1, we find that contribution ratios decrease
asβ3 increases no matter what the initial fund ratio is. On the other hand, those who care more about under-funding
risk will make larger contributions on every period (Table 1). First part ofTable 1is an example to illustrate this

6 For the purpose of comparison,vt is measured by the inverse of one plus discount rate to the power of time as did inChang (1999).
7 These parameters are referred fromYeh and Lin (1998). They estimate the term structure of interest rates in Taiwan’s bond market by the

state space model.
8 The main findings also hold under 500 times of simulation.
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Table 2
Decomposition of contributions when initial fund ratio= 1.0a

Time β3 = 0; β4 = 0 β3 = 0; β4 = 0.5 β3 = 0; β4 = 1.0

Long-term
effect

Short-term
effect

Net effect Long-term
effect

Short-term
effect

Net effect Long-term
effect

Short-term
effect

Net effect

1 1.27E+08 0 1.27E+08 1.77E+08 16047528 1.93E+08 2.27E+08 32052505 2.59E+08
2 1.35E+08 0 1.35E+08 1.82E+08 11881634 1.94E+08 2.28E+08 23772652 2.52E+08
3 1.36E+08 0 1.36E+08 1.8E+08 9514021 1.89E+08 2.25E+08 19003689 2.44E+08
4 1.32E+08 0 1.32E+08 1.73E+08 7838673 1.81E+08 2.14E+08 15691885 2.29E+08
5 1.27E+08 0 1.27E+08 1.64E+08 6566336 1.7E+08 2.02E+08 13120676 2.15E+08
6 1.2E+08 0 1.2E+08 1.53E+08 5547097 1.59E+08 1.87E+08 11088440 1.98E+08
7 1.13E+08 0 1.13E+08 1.43E+08 4812458 1.48E+08 1.74E+08 9626688 1.84E+08
8 1.04E+08 0 1.04E+08 1.31E+08 4207395 1.35E+08 1.59E+08 8409704 1.67E+08
9 94265423 0 94265423 1.18E+08 3677592 1.22E+08 1.42E+08 7379374 1.49E+08

10 83233219 0 83233219 1.04E+08 3297004 1.07E+08 1.25E+08 6588479 1.32E+08
11 72467832 0 72467832 90280188 2927378 93207566 1.08E+08 5865415 1.14E+08
12 62011077 0 62011077 76818510 2647597 79466107 91986624 5302581 97289205
13 51970788 0 51970788 64494524 2362281 66856805 76998565 4727924 81726489
14 43014672 0 43014672 53247543 2145587 55393130 63488554 4289050 67777604
15 34434668 0 34434668 42663794 1950974 44614768 50777079 3899340 54676419
16 26467464 0 26467464 32788173 1772818 34560991 38953668 3547350 42501018
17 19055459 0 19055459 23609521 1642952 25252473 28104839 3284270 31389109
18 12060181 0 12060181 15007798 1517286 16525084 17836148 3037287 20873435
19 5733114 0 5733114 7114743 1430109 8544852 8499979 2852979 11352957
20 0 0 0 0 1331542 1331542 0 2663345 2663345

β3 = 0.5; β4 = 0 β3 = 0.5; β4 = 0.5 β3 = 0.5; β4 = 1.0

Long-term
effect

Short-term
effect

Net effect Long-term
effect

Short-term
effect

Net effect Long-term
effect

Short-term
effect

Net effect

1 1.57E+08 −5.2E+07 1.05E+08 2.07E+08 −3.6E+07 1.71E+08 2.56E+08 −2E+07 2.36E+08
2 1.59E+08 −5.4E+07 1.05E+08 2.06E+08 −4.2E+07 1.64E+08 2.53E+08 −3E+07 2.23E+08
3 1.56E+08 −5.5E+07 1E+08 2.01E+08 −4.6E+07 1.55E+08 2.45E+08 −3.6E+07 2.08E+08
4 1.49E+08 −5.6E+07 92260098 1.9E+08 −4.8E+07 1.41E+08 2.31E+08 −4.1E+07 1.9E+08
5 1.4E+08 −5.7E+07 83800954 1.78E+08 −5E+07 1.28E+08 2.16E+08 −4.4E+07 1.72E+08
6 1.31E+08 −5.7E+07 74099511 1.65E+08 −5.1E+07 1.13E+08 1.98E+08 −4.6E+07 1.52E+08
7 1.22E+08 −5.7E+07 65499179 1.53E+08 −5.2E+07 1E+08 1.83E+08 −4.7E+07 1.36E+08
8 1.11E+08 −5.7E+07 54701574 1.39E+08 −5.3E+07 85911579 1.65E+08 −4.8E+07 1.17E+08
9 99782009 −5.7E+07 43221273 1.24E+08 −5.3E+07 70618098 1.47E+08 −4.9E+07 98035918

10 87466358 −5.6E+07 31062731 1.08E+08 −5.3E+07 55053184 1.29E+08 −5E+07 79101921
11 75805378 −5.6E+07 19904561 93542093 −5.3E+07 40580118 1.11E+08 −5E+07 61237128
12 64070552 −5.5E+07 8621404 79348605 −5.3E+07 26545428 94154867 −5E+07 44012781
13 53746806 −5.5E+07 −1071918 66098557 −5.2E+07 13643922 78704640 −5E+07 28608925
14 44088045 −5.4E+07 −1E+07 54338125 −5.2E+07 2087157 64515680 −5E+07 14409472
15 35269403 −5.4E+07 −1.9E+07 43328070 −5.2E+07 −8574038 51371060 −5E+07 1423434
16 26939829 −5.3E+07 −2.6E+07 33107939 −5.1E+07 −1.8E+07 39463270 −5E+07 −1E+07
17 19379115 −5.3E+07 −3.3E+07 23791296 −5.1E+07 −2.7E+07 28239573 −5E+07 −2.1E+07
18 12218569 −5.2E+07 −4E+07 15076243 −5.1E+07 −3.6E+07 17969760 −4.9E+07 −3.1E+07
19 5771557 −5.1E+07 −4.6E+07 7130044 −5E+07 −4.3E+07 8519714 −4.9E+07 −4E+07
20 0 −5.1E+07 −5.1E+07 0 −4.9E+07 −4.9E+07 0 −4.8E+07 −4.8E+07
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Table 2 (Continued)

Time β3 = 1.0; β4 = 0 β3 = 1.0; β4 = 0.5 β3 = 1.0; β4 = 1.0

Long-term
effect

Short-term
effect

Net effect Long-term
effect

Short-term
effect

Net effect Long-term
effect

Short-term
effect

Net effect

1 1.85E+08 −1.03E+08 82054949 2.36E+08 −8.7E+07 1.48E+08 2.85E+08 −7.1E+07 2.14E+08
2 1.83E+08 −1.08E+08 75516122 2.3E+08 −9.6E+07 1.34E+08 2.77E+08 −8.4E+07 1.93E+08
3 1.77E+08 −1.11E+08 66050962 2.21E+08 −1.01E+08 1.2E+08 2.66E+08 −9.2E+07 1.74E+08
4 1.66E+08 −1.13E+08 53567124 2.07E+08 −1.05E+08 1.02E+08 2.48E+08 −9.7E+07 1.51E+08
5 1.55E+08 −1.13E+08 41869975 1.92E+08 −1.07E+08 85656600 2.29E+08 −1.00E+08 1.29E+08
6 1.42E+08 −1.13E+08 29032870 1.76E+08 −1.08E+08 68097143 2.09E+08 −1.02E+08 1.07E+08
7 1.32E+08 −1.14E+08 17871859 1.62E+08 −1.09E+08 52990292 1.92E+08 −1.04E+08 87835072
8 1.19E+08 −1.14E+08 5367216 1.46E+08 −1.09E+08 36411768 1.73E+08 −1.05E+08 67456907
9 1.05E+08 −1.13E+08 −7832186 1.29E+08 −1.09E+08 19796037 1.53E+08 −1.06E+08 46985448

10 91853447 −1.13E+08 −2.1E+07 1.13E+08 −1.10E+08 3172811 1.33E+08 −1.06E+08 27101028
11 78794794 −1.12E+08 −3.3E+07 96667696 −1.09E+08 −1.2E+07 1.15E+08 −1.06E+08 8898112
12 66502303 −1.11E+08 −4.4E+07 81589144 −1.08E+08 −2.7E+07 96540764 −1.06E+08 −9051807
13 55206247 −1.10E+08 −5.4E+07 67893911 −1.07E+08 −3.9E+07 80545850 −1.05E+08 −2.4E+07
14 45142915 −1.09E+08 −6.4E+07 55471831 −1.07E+08 −5.1E+07 65617110 −1.04E+08 −3.9E+07
15 35941396 −1.08E+08 −7.2E+07 44063782 −1.06E+08 −6.2E+07 52446101 −1.04E+08 −5.1E+07
16 27320209 −1.06E+08 −7.9E+07 33721663 −1.05E+08 −7.1E+07 39835872 −1.03E+08 −6.3E+07
17 19575261 −1.06E+08 −8.6E+07 24095009 −1.04E+08 −8E+07 28621501 −1.02E+08 −7.4E+07
18 12316560 −1.04E+08 −9.2E+07 15227873 −1.03E+08 −8.8E+07 18086790 −1.01E+08 −8.3E+07
19 5798437 −1.03E+08 −9.7E+07 7193906 −1.02E+08 −9.4E+07 8565288 −1.00E+08 −9.2E+07
20 0 −1.01E+08 −1.01E+08 0 −1E+08 −1E+08 0 −9.9E+07 −9.9E+07

a Initial fund ratio= initial fund asset/accrued liability; net effect= long-term effect+ short-term effect.

finding. In first part ofTable 1, we find that contribution ratios increase asβ4 increases in given initial fund ratio
and given period.

In Table 2, we show the decomposition of contributions under the case of initial fund ratio equal to unit.9 The
long-term effects are the smallest ones inβ3 = β4 = 0 compared with otherβ3 andβ4 fromTable 2. This shows that
whichever kinds of additional risk fund managers care more about in the future. The long-term effect in contribution
will be raised to lower future risks. When we want to get rid of future over-contributing/under-funding risk, we
should make a higher contributing level now. This is the trade-off between now and future. On the other hand, the
short-term effect inβ3 andβ4 are totally different. ThroughTable 2, we find that short-term effects are negative
and decrease asβ3 increases. Lower current contribution can prevent current over-contributing risk. This results in
a negative short-term effect forβ3. In first part ofTable 2, we can find short-term effects increase asβ4 increases.
First and second part ofTable 2indicate the same thing. Higher current contribution can reach a higher fund level
and avoid current under-funding risk, resulting in a positive short-term effect forβ4.

The fund ratios inβ3 
= 0 are smaller than those inβ3 = 0 case (Table 3). A positive β3 will cause lower
contributions. When we contribute less, we get lower fund ratios. InTable 3, we find that fund ratios increase as
β4 increases no matter what the initial fund ratio is. This is because a positiveβ4 leads to a higher
contribution.

In Table 3, we find that the fund ratios are about the same level in the final period given other conditions equal
no matter what the initial fund ratio is. Thus, determining the parameters is very important in pension fund man-
agement. For example, when the investment returns are very low, under-funding risk should be greatly concerned.
In our simulation, the average annual return is 0.05946 and the discount rate is 0.06. This is just the case when fund
managers should care more about under-funding risk. If fund managers do choose a positiveβ4, pension funds can
reach a higher fund ratio and the probability of insolvency can be reduced.

9 Long-term and short-term effect ofβ3 or β4 do not depend onFt . Thus, we just show one case for illustration.
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Table 3
Fund ratios andβ (for initial fund ratios of 0.8, 1.0, 1.2)a

Time β3 = 0; β4 = 0 β3 = 0; β4 = 0.5 β3 = 0; β4 = 1.0

0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

1 0.800 1.000 1.200 0.800 1.000 1.200 0.800 1.000 1.200
2 0.888 1.010 1.137 0.969 1.092 1.217 1.052 1.174 1.299
3 0.954 1.041 1.131 1.067 1.155 1.240 1.181 1.264 1.355
4 0.968 1.038 1.104 1.096 1.165 1.231 1.222 1.290 1.355
5 0.979 1.036 1.089 1.113 1.170 1.222 1.245 1.301 1.356
6 0.999 1.048 1.094 1.138 1.185 1.230 1.271 1.322 1.368
7 1.006 1.048 1.087 1.140 1.185 1.224 1.276 1.320 1.361
8 1.016 1.055 1.090 1.153 1.191 1.228 1.287 1.325 1.363
9 1.013 1.050 1.083 1.150 1.185 1.221 1.284 1.319 1.352

10 1.000 1.034 1.063 1.134 1.167 1.199 1.266 1.299 1.332
11 0.982 1.013 1.041 1.114 1.144 1.176 1.246 1.280 1.309
12 0.973 1.001 1.029 1.103 1.133 1.163 1.234 1.267 1.296
13 0.961 0.990 1.014 1.092 1.118 1.149 1.221 1.254 1.283
14 0.945 0.973 0.996 1.074 1.099 1.131 1.203 1.235 1.262
15 0.931 0.959 0.979 1.058 1.083 1.112 1.186 1.218 1.244
16 0.918 0.946 0.968 1.046 1.070 1.098 1.172 1.203 1.233
17 0.903 0.930 0.950 1.029 1.052 1.082 1.155 1.184 1.215
18 0.883 0.911 0.929 1.009 1.033 1.062 1.135 1.166 1.197
19 0.863 0.892 0.910 0.990 1.016 1.046 1.116 1.150 1.182
20 0.854 0.883 0.902 0.983 1.011 1.043 1.111 1.150 1.181
21 0.831 0.859 0.879 0.963 0.993 1.024 1.093 1.132 1.164

β3 = 0.5; β4 = 0 β3 = 0.5; β4 = 0.5 β3 = 0.5; β4 = 1.0

0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

1 0.800 1.000 1.200 0.800 1.000 1.200 0.800 1.000 1.200
2 0.860 0.984 1.107 0.943 1.067 1.190 1.025 1.148 1.272
3 0.909 0.993 1.083 1.019 1.108 1.196 1.134 1.221 1.305
4 0.910 0.974 1.043 1.034 1.103 1.172 1.161 1.227 1.292
5 0.908 0.960 1.017 1.037 1.095 1.150 1.171 1.226 1.279
6 0.916 0.960 1.010 1.050 1.101 1.146 1.189 1.234 1.281
7 0.912 0.949 0.994 1.046 1.091 1.130 1.184 1.222 1.266
8 0.914 0.948 0.988 1.048 1.090 1.124 1.185 1.221 1.260
9 0.903 0.934 0.972 1.037 1.075 1.106 1.172 1.205 1.241

10 0.882 0.911 0.947 1.014 1.048 1.078 1.149 1.179 1.212
11 0.856 0.884 0.917 0.986 1.018 1.048 1.120 1.149 1.183
12 0.840 0.867 0.899 0.969 1.000 1.029 1.101 1.128 1.161
13 0.822 0.846 0.878 0.950 0.981 1.010 1.081 1.107 1.140
14 0.801 0.824 0.856 0.927 0.956 0.984 1.058 1.083 1.112
15 0.778 0.802 0.834 0.905 0.934 0.960 1.034 1.059 1.086
16 0.758 0.783 0.815 0.886 0.914 0.940 1.013 1.038 1.067
17 0.736 0.759 0.792 0.863 0.890 0.916 0.989 1.015 1.042
18 0.708 0.733 0.767 0.835 0.865 0.889 0.960 0.986 1.017
19 0.682 0.705 0.739 0.810 0.838 0.861 0.936 0.962 0.991
20 0.660 0.685 0.719 0.792 0.819 0.844 0.922 0.948 0.976
21 0.626 0.652 0.686 0.759 0.788 0.813 0.894 0.920 0.949
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Table 3 (Continued)

Time β3 = 1.0; β4 = 0 β3 = 1.0; β4 = 0.5 β3 = 1.0; β4 = 1.0

0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

1 0.800 1.000 1.200 0.800 1.000 1.200 0.800 1.000 1.200
2 0.830 0.956 1.081 0.916 1.039 1.161 0.996 1.119 1.243
3 0.859 0.947 1.037 0.975 1.058 1.146 1.083 1.172 1.261
4 0.844 0.914 0.983 0.974 1.039 1.107 1.097 1.167 1.232
5 0.830 0.887 0.942 0.967 1.020 1.076 1.098 1.154 1.209
6 0.827 0.877 0.926 0.967 1.014 1.061 1.102 1.150 1.201
7 0.817 0.858 0.901 0.955 0.994 1.037 1.089 1.131 1.177
8 0.812 0.849 0.886 0.950 0.984 1.023 1.083 1.120 1.164
9 0.795 0.830 0.861 0.931 0.962 0.997 1.062 1.095 1.135

10 0.766 0.800 0.828 0.901 0.930 0.962 1.031 1.059 1.098
11 0.731 0.764 0.791 0.867 0.894 0.925 0.999 1.023 1.058
12 0.709 0.739 0.768 0.843 0.867 0.898 0.976 0.998 1.032
13 0.682 0.711 0.739 0.816 0.840 0.871 0.948 0.967 1.003
14 0.655 0.683 0.711 0.786 0.812 0.840 0.917 0.937 0.971
15 0.628 0.655 0.680 0.757 0.781 0.810 0.887 0.906 0.937
16 0.603 0.629 0.654 0.732 0.754 0.784 0.861 0.881 0.910
17 0.575 0.599 0.625 0.704 0.725 0.754 0.832 0.849 0.879
18 0.541 0.564 0.590 0.669 0.690 0.717 0.796 0.815 0.844
19 0.504 0.528 0.554 0.635 0.655 0.682 0.764 0.782 0.810
20 0.472 0.496 0.524 0.607 0.627 0.654 0.738 0.757 0.785
21 0.426 0.451 0.479 0.565 0.585 0.611 0.699 0.718 0.746

a Initial fund ratio= initial fund asset/accrual liability; fund ratio= fund asset/accrual liability.

4. Conclusions

The paper considers that pension fund managers care more about under-funding than over-funding, and over-
contribution than under-contribution. We find that managers who care more about over-contribution risk will reduce
the level of contribution and fund ratios. On the other hand, those who care more about under-funding risk will
increase the level of contribution and fund ratios.

We decompose the contribution into three parts to distinguish how these risks affect the contribution. We find
that both over-contribution and under-funding risk will raise the long-term effect. On the other hand, the short-term
effect is negative when the model involves over-contribution risk, but the short-term effect is positive when the
model involves under-funding risk.
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