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Abstract Stereo imaging methods are used to measure
the positions of solid spherical particles suspended in a
viscous liquid and enclosed in a transparent cubic cavity.
The liquid and particle motions are driven at the top lid
by a conveyor belt operated at constant speed. Based on
sequences of stereo views of the full cavity, the particles
are tracked continuously along their three-dimensional
orbits. The corresponding position histories are treated
as noisy stochastic data and processed using Kalman
filters to fill data gaps and attenuate the effect of mea-
surement errors. The lid-driven viscous flow is charac-
terised by an intricate internal structure which is
mirrored in the particle paths. The tracks of the solid
particles align with long exposure images of laser-illu-
minated micro-particles in selected transverse planes.
Nevertheless, their long time trajectories appear to
cluster along preferential pathways of the internal cir-
culation pattern.

1 Introduction

Fluid motions are often made visible by seeding the flow
with tracer particles. Much information can then be
gained by registering particle displacements over short
time intervals using particle imaging velocimetry (PIV) or
particle tracking velocimetry (PTV). A single camera can
be used to capture two-dimensional (2D) displacements,
or stereo cameras can be used when 3D displacements are
of interest. For fluids seeded with micro-particles,
measurements are commonly facilitated by illuminating

only a thin slice of a flow using a continuous or a pulsed
laser. If the seeding is not too sparse, and if multiple slices
can be acquired, collections of short particle tracks can
then be assembled into detailed Eulerian flow fields
(Adrian 1991, 2005).

An alternative is to adopt a Lagrangian point of view.
Instead of short time displacements, one seeks to capture
the long-term trajectories of the particles as they move
about the domain. Valuable insights into the flow
structure can then be gained from these long time orbits.
For 3D flow fields, however, this approach runs into a
number of difficulties. First, long trajectories cannot be
registered using laser illumination because particles
would move in and out of the light sheet. Next, the
micro-particles which respond only to laser illumination
are no longer appropriate, and one must work instead
with visible solid particles of greater size. This in turn
raises concerns about whether the motions of the solid
particles do indeed closely reflect the motions of the
embedding fluid. These concerns can be minimised by
using sparsely seeded, neutrally buoyant particles. Yet
even under such precautions, deviations may occur be-
cause of finite size effects or inertial migration (Han
et al. 1999; Matas et al. 2004).

An intriguing example of cross-stream particle mo-
tions is provided by inertial migration in non-homoge-
neous laminar shear flows. The simplest case is that of
Poiseuille flow, sparsely seeded with neutrally buoyant
solid particles of finite size. Experimental observations
show that the particles do not distribute themselves
evenly over the cross-section of the circular pipe, instead
they migrate towards ring-shaped regions of preferential
concentration (Segré and Silberberg 1962; Matas et al.
2004). It is currently unclear how such effects play out in
flows exhibiting a fully 3D internal structure.

Acquiring 3D particle trajectories over long time
intervals further requires special imaging methods. Since
a laser sheet cannot be used to sample particle positions
within a known plane, full volume stereo imaging must
be used. To reconstruct the trajectories of individual
particles, furthermore, PTV must be adopted. Special
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procedures are also needed to attenuate measurement
errors and fill gaps due to missed particles.

In the present work, we address these general issues in
the context of a particular case. The flow configuration
chosen is the lid-driven cubic cavity. This is a closed
system, with a well-defined geometry and boundary
motion. Liquid is enclosed between five rigid walls and
driven by a top lid moving at constant speed. Despite its
simplicity, the configuration generates complex flows,
featuring 3D circulation and a rich vortex structure. This
flow structure is now well documented thanks to a
number of computational and experimental studies. An
overall review of the fluid mechanics of driven cavities is
provided by Shankar and Deshpande (2000). In three
dimensions, computational solutions have been obtained
both for Stokes flow (Murugesan et al. 2005), corre-
sponding to vanishing Reynolds numbers, and for the
full Navier–Stokes equations at Reynolds numbers up to
Re=2,000 (Chiang et al. 1997, 1998; Sheu and Tsai
2002; Lo et al. 2005). In the laboratory, both dyes and
passive tracer particles have been used to visualise and
measure the flow field inside lid-driven cavities (Pan and
Acrivos 1967; Koseff and Street 1984; Guermond et al.
2002; Migeon 2002). In most of these experiments, laser
light sheets were used to highlight motions within 2D
slices of the 3D flow.

To capture long time particle trajectories within the
3D cavity, the present work will rely on two main tools:
PTV and Kalman filtering. PTV is now a well-estab-
lished technique of experimental fluid mechanics (for
review, see Adrian 1991). While not yet as mature as
their 2D counterparts, 3D PTV techniques have been
documented in a number of recent works (Maas et al.
1993; Ushijima and Tanaka 1996; Virant and Dracos
1997; Kieft et al. 2002). The stereoscopic PTV technique
implemented in the present work builds on earlier works
by Spinewine et al. (2003) and Douxchamps et al.
(2005). Kalman filtering, on the other hand, is a signal-
processing technique widely used to deal with time series
of noisy data. Introduced by Kalman (Kalman 1960;
Kalman and Bucy 1961), the technique has been used in
fluid mechanics for data assimilation (Ide and Ghil 1997)
and flow control (Högberg et al. 2003; Lauga and
Bewley 2004). In the present work, we apply this tool to
the 3D particle trajectories in order to fill data gaps and
attenuate measurement errors. For 2D PTV, Kalman
filter was used for a similar purpose by Hu (2003). Be-
yond fluid mechanics, the target tracking problem has
been the focus of much applied work in signal treatment
(Shah et al. 1993; Castellari et al. 2001; Ito et al. 2001;
Liao 2002).

The present paper is structured as follows. In the
following section, the laboratory setup used to conduct
the lid-driven cavity flow experiments is first presented.
The methods used to position particles in the 2D image
plane and inside the 3D viewing volume are then doc-
umented, along with corresponding error estimates.
Next, the Kalman filter approach used to reduce the
effect of positioning errors on the particle trajectories is

detailed. Measurements of the trajectories of suspended
particles in the lid-driven cavity are then described and
compared with long exposure images of laser-illumi-
nated micro-particles. Finally, some overall conclusions
are proposed.

2 Experimental setup

Experiments are performed using the apparatus shown
in Fig. 1. The phenomena of interest occur in a small
cubic cavity having side S=10 cm, filled with liquid, in
which a small number of neutrally buoyant solid spheres
are suspended. This inner cavity has transparent rigid
walls on five sides and a moving lid on the top side. The
moving lid is obtained by placing on the open top face of
the cavity an upside down conveyor belt system, driven
by a variable speed motor. The inner cavity is itself
placed inside a larger plane-walled enclosure. This outer
tank is filled with liquid up to a level slightly above the
conveyor belt lid. In this way, the lubrication flow that
inevitably occurs through the small gaps between the
conveyor belt and the top of the cavity side walls does
not lead to liquid loss from the cavity.

The plastic particles used for the experiments have a
diameter of 3 mm and a specific gravity SG=1.21. As in
the experiments of Matas et al. (2004), the liquid chosen
is a mixture of glycerol and water having a density
matched to the density of the particles. Neutral buoy-
ancy is obtained by carefully tuning the composition of
the liquid mixture until the suspended solid particles are
nearly immobile. At the chosen composition, particles
rise within the fluid at a very slow speed of 4 mm/min.
Using Stokes’ law, this implies that the density difference
ratio Dq/q is down to about 6 parts per 10,000. At this
composition, the kinematic viscosity of the liquid is
m=37.2 mm2/s.

Before an experiment, the particles are plunged into
the liquid-filled chamber. The upside down conveyor
belt system is then placed on top of the cavity. Before
starting the flow, sufficient time elapses to let perturba-
tions die down and allow the solid particles to rise up
until they touch the lid. The particles are coloured dark
blue and found easiest to image using back-illumination.
Their motions are filmed under two different viewpoints,
respectively, through the back wall and the side wall of
the inner cavity. This is done using a single camera
supplemented by a system of mirrors. The imaging
sensor used is a TRV950 Sony DV camera operating in
interlaced mode at a frequency of 30 Hz. Images have a
resolution of 480·640 pixels.

The camera selected allows compression-free acqui-
sition of digital images over long durations. This permits
continuous taping of each experiment, spanning both
the sudden start-up of the conveyor belt and the long
time regime established after many cycles. Lines of
known interdistance are marked on the conveyor belt,
allowing the belt speed to be monitored as well on the
video. The belt is smooth and tightly stretched in order
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to avoid waviness. The test case used below to illustrate
the methods was obtained at a belt speed V=17.5 cm/s
(accurate to within 1 mm/s), corresponding to a cavity
Reynolds number Re=VS/m=470. The total recording
duration for this run was 7 min. Further details of the
lid-driven cavity device and imaging configuration are
illustrated in Fig. 1.

3 Particle positioning

3.1 Particle positioning on the 2D images

The image analysis is performed entirely off-line. Once
retrieved, the digital images are de-interlaced. This yields
images of twice the frequency (60 instead of 30 Hz), but
half the vertical resolution (240 instead of 480 pixels).
Image treatment then proceeds in the following steps.
First, the gray scale is inverted to transform the back-
illuminated dark particles into bright spots over a dark
backdrop. Next, a background image is obtained by
averaging over the full image sequence. Difference ima-

ges are then obtained by subtracting the background
from each frame. This makes it easier to distinguish
moving particles from static features of the images.

Standard methods are used to locate particles on
these different images. Each image frame is first convo-
luted with a Laplacian-of-Gaussian mask (Jain et al.
1995) to highlight the bright particles of known pixel
size. Local brightness maxima with peak values beyond
a certain threshold are selected as particle centroids, and
their positions are refined to subpixel accuracy using a
quadratic fit. For more details, the reader is referred to
Capart et al. (2002).

To make these procedures more robust, dynamic
thresholding is used in the present work. Instead of
choosing a constant threshold for particle identification,
the threshold is set anew for each frame based on the
previously observed brightness maxima. Typically the
threshold is scaled down to two-thirds of the brightness
maximum of the least conspicuous particle on the pre-
vious frame. This makes it easier to track particles over
long time, during which they may gradually transit
through regions of uneven illumination. The back-illu-

Fig. 1 Experimental setup:
a overall view; b sketch of the
imaging configuration including
DV camera, mirror system and
back-illumination rig; c side
view of the lid-driven cavity;
d front view
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mination is not perfectly uniform because of light
reflection and refraction, as well as slight variations in
translucency of the plates placed behind the cavity.

Results obtained using the above methods are illus-
trated in Fig. 2. Each panel shows a stereo view of the
trajectories of two suspended solid particles, with the
front view on the left and the side view on the right. For
comparison purposes, panel a of Fig. 2 shows an artifi-
cial long exposure image, obtained simply by recording
the brightest pixel of a sequence at each position. This
highlights trajectories without recourse to any image
analysis. For the same sequence, panel b shows the
marked particle positions acquired using the above
algorithms. Overall, the captured particle positions align

closely with the long exposure tracks. A small propor-
tion of wrongly positioned particles is nevertheless
present and will have to be dealt with at later stages of
the analysis. Such mispositioning occurs when dark
pixels of the images are mistaken for particles.

3.2 Three-dimensional stereo positioning

Once particles have been positioned on images from
both viewpoints, their positions in 3D space can be
found by locating the intersections of stereoscopic rays.
As illustrated in Fig. 3, rays associated with two differ-
ent viewpoints can be written in the parametric form:

Fig. 2 Particle positioning in
the image plane: a artificial long
exposure image obtained from a
sequence of 410 frames;
b particle positions associated
with the front view (+) and side
view (·), corresponding,
respectively, to the left and right
halves of the image. Two solid
particles are present in this
experiment
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xðkÞ ¼ pþ kq; ð1Þ
x0ðk0Þ ¼ p0 þ k0q0; ð2Þ

where vector x=(x, y, z)=(x1, x2, x3) denotes a position
in 3D space, vector p=(p1, p2, p3) denotes the 3D po-
sition of the projection centre (or focal point) of the first
viewpoint, vector q=(q1, q2, q3) gives the ray direction
and scalar k is the free parameter. The same symbols
marked with a prime denote corresponding entities for
the second viewpoint.

The free parameters k and k¢ are due to the depth
ambiguity associated with 2D images: in the absence of
other information, the location of a particle along a gi-
ven ray is not known. This ambiguity must be resolved
by using information from two different viewpoints.
Provided rays from two such viewpoints are associated
with one and the same physical particle, the 3D position
of the particle will lie at the intersection of the rays. In
practice, accuracy limitations prevent rays from per-
fectly intersecting each other. Instead, one seeks an
approximate intersection point, defined as the midpoint
of the shortest line segment linking the two rays (see
Fig. 3). The parameters k, k¢ specifying the endpoints of
this segment on each ray are the solutions of the linear
system

qTq �qTq0
q0Tq �q0Tq0

� �
k
k0

� �
¼ qTðp0 � pÞ

q0Tðp0 � pÞ

� �
; ð3Þ

which states that the shortest line segment must be
perpendicular to both rays. In this equation as well as
other equations below, vectors are taken as column ar-
rays and superscript T denotes the transpose. The mid-

point position and distance of closest encounter are then
given by

y ¼ 1

2
fxðkÞ þ x0ðk0Þg; ð4Þ

e ¼ x0ðk0Þ � xðkÞk k: ð5Þ

Position y provides an approximation of the true posi-
tion of the particle, while the distance e provides an
indication of the closeness of the intersection. When
many particles are present, pairs of rays from the two
viewpoints are selected by minimising the sum of their
inter-ray distances, using the methods detailed in
Spinewine et al. (2003). Once ray pairs have been ob-
tained, their inter-ray distances also provide a measure
of the accuracy of the stereoscopic reconstruction. This
will be exploited below to estimate particle positioning
errors.

3.3 Camera calibration

The parametric ray equations 1 and 2 are related as
follows to the pixel coordinates of particles in each im-
age plane. The image formation process is modelled as a
perspective projection. As illustrated in Fig. 3, direction
vector q can then be decomposed as the sum

q ¼ dþ ccþ qr; ð6Þ

where (c, q) are the (column, row) pixel coordinates of
the particle centroid, depth vector d denotes the position
of the origin of the image plane relative to the projection
centre p and vectors c and r are direction vectors of the
image plane associated, respectively, with column and
row directions of the digital images. Equation 6 can be
read as a parametric plane equation in which the two
free parameters are the pixel coordinates (c, q). The
parametric ray equation 1 can then be rewritten in the
matrix form:

xðkÞ ¼ pþ k

..

. ..
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c r d
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. ..
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c
q
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0
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1
A ¼ pþ kS

c
q
1

0
@

1
A; ð7Þ

where the screen matrix S has vectors c, r, d as columns.
Provided that projection centre p and screen matrix S

are known, relation 7 transforms pixel coordinates on a
2D image into a parametric ray equation in 3D space.
By marking each symbol with a prime, similar equations
can of course be written for the second viewpoint.

The issue that remains to be addressed is the problem
of estimating parameters p, S and p¢, S¢ for the two
viewpoints. This is the camera calibration problem,
which can be solved by first acquiring images of cali-
bration markers of known positions placed in the
viewing volume of interest. The knowledge of at least six
points of known image (2D) and world (3D) coordinates
is sufficient to obtain the three components of vector p

Fig. 3 Three-dimensional vector geometry of the stereo imaging
configuration
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and the nine components of matrix S. For this purpose,
relation 7 is first inverted to obtain

k
c
q
1

0
@

1
A ¼ A

x
y
z

0
@

1
Aþ b; ð8Þ

where A=S�1 and b=� S�1p. This relation can be
observed to be linear in all the unknowns: k, aij and bj. A
stacked system of linear equations can thus be assembled
with coefficients given by the known 2D and 3D coor-
dinates (c, q, x, y, z) of each calibration point. A minor
complication is that the resulting system is homogeneous
and admits a trivial solution in which all unknowns are
zero. This hurdle is easy to overcome by setting one of
the unknowns equal to an arbitrary non-zero value. For
six or more calibration points, the system is over-
determined and can be solved by linear least squares.
The coefficients of p and S can finally be obtained from
the coefficients of A and b using straightforward linear
algebra. In practice, it is advised to choose more than six
points, well distributed in the viewing volume of interest.
In the present experiments, 12 points are used: the 8
corners of the cubic inner cavity supplemented by 4
points in a diagonal plane. For stereo imaging, the
procedure must of course be applied to both viewpoints.
More details about camera calibration can be found in
Spinewine et al. (2003).

Once the two viewpoints have been calibrated, stereo
rays can be used to find 3D particle positions using the
method of Sect. 3.2. Figure 4 shows the corresponding
results for the particles depicted earlier in Fig. 2. Qual-
itatively, the observed 3D trajectories are consistent with
the information that can be visually inferred from the
2D views of Fig. 2. To assess the results quantitatively as

well, positioning errors associated with the stereo pro-
cedure are examined in the next section.

3.4 Error estimation

The errors incurred by the above procedure can be split
into two classes: (1) a small proportion of misidentified
particles and (2) measurement inaccuracies affecting
correctly identified particles. Particles can be misidenti-
fied at both 2D and 3D stages: spurious features can be
wrongly identified as particles on the 2D images (see
Fig. 2) or stereo mismatches can occur when more than
one particle is present in the viewing volume.

In the present work, the number of such mistakes is
kept relatively low (compared for instance with the work
reported by Spinewine et al. 2003 and Douxchamps
et al. 2005), thanks to two features of the present
experiments. First, motions are observed in a cavity with
five transparent sides, allowing good control of the
illumination conditions. Secondly, experiments are per-
formed with only a limited number of particles, going
from one to a maximum of 10 particles. To screen out
misidentified particles from the data set, a simple outlier
filtering procedure is used. For a given particle, positions
which exceed a moving average position by more than
four times a median absolute deviation are excluded
from the set. Outliers screened out in this way are circled
in Fig. 5. For the present experiment, this leads to the
exclusion of less than 3% of the data.

On the other hand, the random position errors
affecting correctly identified particles are estimated as
follows. In the present experiments, the optical axes of
the two viewpoints are nearly orthogonal to each other
and lie in a horizontal plane. This means that 3D

Fig. 4 Three-dimensional positions of the two particles of Fig. 2,
obtained by stereo ray matching. A conspicuous mismatched
outlier is circled near the lower left hand corner

Fig. 5 Three-dimensional motions of a single suspended particle in
the lid-driven cavity flow. The three panels show time series of the
x-, y- and z-coordinates, respectively, as measured by the stereo
methods (before Kalman filtering). Grey boxes outline zones
examined in detail in Figures 7 and 8
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position errors are simple to relate to 2D positioning
errors on the digital images. Due to de-interlacing, the
pixel resolution in the vertical (row) direction is half the
resolution in the horizontal direction (column). Root-
mean-squared (rms) position errors in the row and col-
umn directions are thus expected to follow the ratio

er ¼ 2ec; ð9Þ

where both are expressed in column pixel units. The
corresponding position errors in 3D space are given by

ex ¼ ey ¼ aec; ez ¼
affiffiffi
2
p er; ð10Þ

where a is a scale factor and the
ffiffiffi
2
p

denominator is an
error attenuation produced by the average used to esti-
mate midpoint (Eq. 4), under the assumption that ran-
dom position errors are identically distributed and
uncorrelated. This error attenuation is only operative in
the z-direction, which corresponds to the row direction
of both viewpoints. Likewise, the inter-ray distance
(Eq. 5) is related to the row error through

e ¼ a
ffiffiffi
2
p

er: ð11Þ

Both the scale factor a and the inter-ray distance e can
be measured in the experiments. Based on the calibrated
viewpoints, the scale factor is approximately a�0.3 mm/
(column pixel). Using the full set of ray pairs acquired in
a typical experiment, on the other hand, the rms inter-
ray distance is of the order e=0.6 mm. Using Eqs. 9, 10
and 11, rms errors for the raw stereo measurements of
the 3D particle positions are found to be of the order

ex ¼ ey ¼ 0:2mm; ez ¼ 0:3mm; ð12Þ

and a combined position error can be obtained from

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x þ e2y þ e2z

q
¼ 0:4mm: ð13Þ

The corresponding rms pixel error is ec=0.7 pixel. This
is slightly higher than typical errors reported in 2D PTV
experiments (Veber et al. 1997; Capart et al. 2002).
Note, however, that the error estimate obtained here
includes both 2D image positioning errors and 3D
geometrical effects (limited accuracy of the camera cal-
ibration and possible departures from the assumed
perspective projection). As explained in the next section,
the error level can be reduced further by applying Kal-
man filters to the particle trajectories.

4 Kalman filtering of the particle trajectories

4.1 Measurement and signal models

The stereo methods described above yield sets of 3D
particle positions extracted from sequences of images.
Long time trajectories are then constructed by linking
together successive particle positions. When more than

one particle is present in the cavity, a criterion must be
invoked to decide which particle at one instant corre-
sponds to which particle at the next instant. Since the
present experiments involve small numbers of particles
(maximum 10) embedded in a relatively regular flow,
this particle tracking task is not difficult to carry out. A
simple nearest-neighbour scheme (see, e.g. Guler et al.
1999) is used, subject to the condition that a particle can
participate in only one trajectory (see Capart et al.
2002). The trajectory of each particle yields Lagrangian
time series of raw position measurements. Such time
series are shown in Fig. 5 for the three evolving spatial
coordinates of a single particle.

To fill in data gaps and attenuate the effect of mea-
surement noise, Kalman filtering can now be applied to
the 3D position history of a given particle. The approach
is based on an idealised model of the measurement and
physical processes. The measurement model is simply

yk ¼ xk þmk; ð14Þ

where vector xk denotes the true 3D particle position
(x1(tk), x2(tk), x3(tk)) at time tk, vector yk denotes the
measured particle position at the same instant and mk

represents the corresponding measurement noise. On the
other hand, the physical particle trajectory is assumed to
be governed by the following discrete signal model:

xk

uk

� �
¼ F

xk�1
uk�1

� �
þ 0

nk�1

� �
; ð15Þ

where vector uk-1 denotes the particle velocity averaged
from time tk-1 to time tk. In the above equation, the
matrix F is given by

F ¼ I DtI
0 I

� �
; ð16Þ

where I is the 3·3 identity matrix and Dt=tk � tk-1 is the
time interval between successive observations. Matrix F

represents the kinematic relation linking two successive
states (xk-1; uk-1) and (xk; uk). This deterministic link is
perturbed by adding to the velocity vector u a random
signal noise n.

The signal noise contribution accounts for the phys-
ical particle accelerations, which are not taken into ac-
count by the deterministic component of kinematic
model (Eq. 15). It is conceptually distinct from the
measurement noise m introduced earlier. The two noise
contributions nevertheless share one simplifying feature:
the components of both vectors mk and nk at each time
index k are assumed to be uncorrelated, normally dis-
tributed random variables of zero mean. Note that be-
cause signal noise is added to the velocities, the latter
remain self-correlated for some time.

Upon defining the full state vector

z ¼ x

u

� �
; ð17Þ

relations 14 and 15 can be rewritten more compactly as
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yk ¼ Hzk þmk; ð18Þ
zk ¼ Fzk�1 þ nk�1; ð19Þ

where H=(I | 0). Vectors nk-1 now feature six compo-
nents instead of three, but it is implied that the first three
components are zero. The equations are now in standard
form, facilitating the description of the filtering process.

The filter adopted is the well-known Kalman filter
(Kalman and Bucy 1961; Brown and Hwang 1997;
Welch and Bishop 2001), used to yield an optimal esti-
mate ~xk of the particle position history. In the next two
sections, we first deal with the case in which there are no
missing data, then describe the adjustments necessary
when data gaps are encountered. The ability of the
Kalman filter to deal with both cases constitutes a major
advantage for the processing of particle tracks.

4.2 Forward Kalman filter for data without gaps

Assuming first that no data gaps are encountered, Kal-
man filtering is carried out as follows. The filter proceeds
recursively, through repeated application of two suc-
cessive steps: a time update and a measurement update.
First, a time update is performed using

ẑk ¼ F~zk�1: ð20Þ

This first step uses deterministic matrix F to predict the
state at the next time instant based on the previous fil-
tered state ~zk�1: In the second step, the measurement yk
is used to revise the prediction. The measurement update
is written as

~zk ¼ ẑk þ Kkðyk �HẑkÞ; ð21Þ

where Kk is the Kalman gain matrix. In this second step,
the new filtered state is estimated by making a correction
proportional to the discrepancy between the predicted
state and the actual measurement yk. The weight given
to the measurement relative to the prediction is governed
by the Kalman gain matrix Kk. This matrix is con-
structed to minimise the a posteriori error covariance

~Pk ¼ E½ð~zk � zkÞð~zk � zkÞT�: ð22Þ

The error covariance matrix itself is obtained by
recursion. For each iteration, two successive steps are
associated, respectively, with the time update and the
measurement update:

P̂k ¼ F~Pk�1F
T þQ; ð23Þ

~Pk ¼ ðI� KkHÞP̂k: ð24Þ

The Kalman gain matrix Kk used in statements 21 and
24 is calculated from

Kk ¼ P̂kH
TðHP̂kH

T þ RÞ�1: ð25Þ

In the above formulas, matrices R and Q are the co-
variances of the measurement noise and physical noise,
respectively. They are given by

R ¼ E½mkm
T
k � ¼

e21 0 0
0 e22 0
0 0 e23

0
@

1
A;

Q ¼ E½nkn
T
k � ¼

0 0

0 r2I

� �
:

ð26Þ

For the measurement noise, the variances e1
2, e2

2 and e3
2

characterising position errors in the three space direc-
tions were obtained earlier from an analysis of the stereo
imaging procedure (see Eq. 12). In contrast, the variance
r2 of the physical signal noise is unknown a priori. In the
absence of more information, it is assumed to be the
same for all three velocity components.

4.3 Forward Kalman filter for data with gaps

The above procedure must be modified when missing
data are encountered. Such data gaps occur whenever a
particle position has been missed (typically due to
occlusion effects if many particles are present) or when a
particle position has been rejected as an outlier. In the
present work, such gaps are relatively rare due to the
small number of particles. Over long times, however,
they are bound to be encountered at some points along
the trajectories. The Kalman filter is used in the fol-
lowing way to deal with these gaps.

The time update which constitutes the first step of the
Kalman filter is not modified. As before, statements 20
and 23 are used to forecast the system state ẑk and a
priori error covariance P̂k at time k, based on informa-
tion from the past. The measurement update, however,
cannot be performed if measurement yk is not available.
In that case, the predicted state ẑk and covariance P̂k are
adopted without correction. Statements 21 and 24 are
thus replaced by

~zk ¼ ẑk; ð27Þ
~Pk ¼ P̂k: ð28Þ

In other words, the filter can do no better than rely on
prediction alone. At the next time k+1, the same steps
are repeated if the data gap continues. Alternatively, if
measured data become available again, the second step
of the filter reverts to statements 21 and 24.

Synthetic data are used in Fig. 6 to illustrate the re-
sponse of the Kalman filter with and without gaps. The
synthetic data are produced by Monte Carlo simulations
of Eqs. 14 and 15, for the case of a particle moving in
the x-direction only. The following parameters are used:
time interval Dt=0.02 s; standard deviation of the
measurement noise e1=0.8 mm; standard deviation of
the process noise r=1 mm/s. In Fig. 6a, the bold line
shows the noiseless physical signal, while dots represent
the noisy measurements. The thin dashed line represents
the Kalman filter response in the absence of gaps, while
the thin continuous line represents the response when a
subset of the measured data (circled dots) has been re-
moved.
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Figure 6b shows the a posteriori variance of the po-
sition error ~P11 when gaps are absent (dashed line) and
when gaps are present (continuous line). These values
can be compared with the error variance of the raw data
e1
2=0.64 mm2. After transient initial adjustments have
been made (not shown), the filtered positions have a
constant error variance of ~P11 ¼ 0:13mm2 when there
are no data gaps. In the presence of data gaps, in con-
trast, the variance grows each time a gap is encountered,
then steadily diminishes when measured data become
available again. Obviously, the accuracy of the filtered
signal deteriorates when data gaps are encountered.
Nevertheless, as in this example, the filtered signal ob-
tained by processing gappy data can remain more
accurate than the raw gapless signal. This illustrates how
the Kalman filter can both attenuate errors and deal
with missing data.

4.4 Forward–backward Kalman filter

In practice, results obtained with the above forward
filtering pass are not entirely satisfactory. In addition to
attenuating high-frequency noise, which is the desired
outcome, the filter shifts the signal in time. As illustrated
in Fig. 7, this effect is especially pronounced when a low
signal variance r2 is assumed. A remedy is to apply both
a forward and a backward pass to the signal and to
blend their results (see Brown and Hwang 1997). In this
case, let ~zk�1 denote the filtered state at time tk-1 ob-
tained by starting from t1 and applying the Kalman filter
forward in time. Matrix ~Pk�1 denotes the corresponding
error covariance. Steps 21 and 23 can then be used to
perform the time updates

ẑk ¼ F~zk�1 ð29Þ

and

P̂k ¼ F~Pk�1F
T þQ; ð30Þ

where hats indicate quantities obtained by forward
prediction. If n successive position measurements are
available, a filtered state  zk and error covariance  P k
at time tk can likewise be obtained by starting from tn
and applying the Kalman filter backward in time. A
blended estimate can then be obtained from the weigh-
ted sum

$ zk ¼ P̂�1k þ  P�1k

� ��1
P̂�1k ẑk þ  P�1k  zk
� �

; ð31Þ

which constitutes the result of the forward–backward
filter. Note that by using time updates 29 and 30, the
forward pass does not make use of measurement yk,
which is used only by the backward pass. This is needed
to avoid using the same information twice. Results ob-
tained with this forward–backward version of the Kal-
man filter are also shown in Fig. 7. It is seen that the
time shift has vanished, leaving only the desired signal
attenuation.

4.5 Filter tuning

The degree of attenuation produced by the filter is
governed by the relative strength of the measurement
error and physical noise, gauged by the non-dimensional
ratio b=rDt/e. This ratio depends on both the known
measurement error level e and the unknown physical
noise strength r. The last issue to be addressed is
therefore the choice of physical noise strength r, or
equivalently the choice of ratio b used to tune the filter.

Fig. 6 Kalman filter response for synthetic data with and without
gaps: a time series of position x (thick line true position history;
dots raw position measurements; dashed line filtered signal in the
absence of data gaps; thin line filtered signal when the circled data
points are missing); b variance of the position error (dashed line
variance when no data gaps are present; continuous line variance
when the circled data of a are missing)

Fig. 7 Zoom on portions of the position time series of Fig. 5. Dots
stereo data; thin line signal obtained after a single forward pass of
the Kalman filter, exhibiting an undesirable time shift to the right;
thick line signal resulting from a combination of forward and
backward passes
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As illustrated in Fig. 8, different values of b lead to
contrasted outcomes. High values of b imply that the
observed random jitter of the signal is mainly physical in
origin and should not be attenuated. On the other hand,
low values imply that most of the jitter is due to mea-
surement noise and should be filtered out. The Kalman
filter responds accordingly, attenuating the signal in in-
verse proportion to ratio b.

Since the true physical signal is unknown, it is a priori
unclear how b should be chosen. The approach adopted
is to apply the forward–backward filter to the signal for
various values of ratio b and to monitor the mean-
squared difference between the resulting filtered posi-
tions $ xkðbÞ and the raw measured positions yk. In
contrast to the random measurement noise, the physical
position jitter is expected to be correlated in time. It is
thus less sensitive to attenuation and we can assume that
for the correct choice of b, the filtered positions $ xkðbÞ
provide a reasonable approximation of the true signal
xk. The mean-squared difference between $ xkðbÞ and yk
should then be close to the known measurement noise
variance e2. This motivates the following rule of thumb:
our choice for b is the value which yields a mean-
squared difference between $ xkðbÞ and yk equal to the
known error variance e2. The criterion is illustrated in
Fig. 9, and the resulting filtered signal is plotted as a
thick line in Fig. 8.

5 Results and discussion

5.1 Time series of particle positions

Time series of the three components of the filtered po-
sition $ x of a single particle (noted x, y, z for simplicity

in the legend) are plotted in Fig. 10. Here, the first 3 min
of an overall measured span of 7 min is represented.
Beyond the first minute, the observed motions stay
similar in character for the rest of the sequence, indi-
cating that a steady-state regime has been reached.
Various features of the particle orbits can be observed
on these plots.

Overall, the particle motions feature two main com-
ponents: fast laps in the x–z plane and slow sideways
motions in the y-direction. First, the x- and z-position
histories exhibit fast oscillations of gradually varying
amplitude and period, out of phase with each other by
90�. This implies spiral motions of the particle about a
rotation axis parallel to the y-direction. These motions
directly reflect the rotational flow induced by the lon-
gitudinally driven lid. The outermost excursions of the
particle bring it close to the conveyor belt, located at
plane z=10 cm. As the particle approaches the up-
stream edge of the belt (line x=0, z=10 cm), it makes a
characteristic hairpin turn. Upon reaching the down-
stream edge (line x=10 cm, z=10 cm), it makes a sharp
downward turn.

In addition to these fast laps around the cavity, the y-
position history exhibits slow cycles of lateral motion.
Rather than staying within a single plane, the particle
swerves sideways. These slow lateral motions have large
amplitudes, bringing the particle very near the centre
plane (y=5 cm) and the right lateral wall of the cavity
(y=0 cm). Similar motions (not shown) are observed for
a second particle located to the left of the centre plane.
At this Reynolds number, particles are not observed to
ever cross the centre plane of the cavity. Comparing the
different time histories with each other, it is clear that the
evolution of the amplitude of the rapid x–z cycles is
modulated by the slow lateral motions. This modulation
is not quite periodic. Instead, irregular cycles of variable
duration are observed throughout the sequence.

Fig. 8 Kalman filter results for different values of ratio b=rDt/e
representing the strength of the measurement error noise relative to
the physical signal noise. Dots raw data; thin line b=0.005; dashed
line b=0.025; thick line b=0.2

Fig. 9 Tuning criterion for ratio b: the value selected is the one
yielding a mean-squared difference between $ xkðbÞ and yk equal to
the known noise variance e2
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Nevertheless, a generic feature of these cycles is that the
particle lingers near the centre plane, but makes only
short-lived excursions to the neighbourhood of the
sidewall. Other features of the particle trajectory are
easier to understand based on 3D views, and are dis-
cussed in the next subsection.

5.2 Three-dimensional trajectory of an individual par-
ticle

For clarity, it is convenient to look separately at two
shorter segments of the orbits, shaded in grey in Fig. 10:
the start-up phase, immediately following the sudden
start of the conveyor belt, and a typical cycle of the
steady-state regime. Three-dimensional views of the
corresponding trajectories are plotted in Figs. 11 and 12,
respectively.

At the beginning of the start-up phase, the particle is
located near the centre plane and along the top lid. This
position is marked as a black dot on the four panels of
Fig. 11. After the sudden start of the conveyor belt, the
particle is entrained into circuitous orbits. At first, the
orbit is tightly wound and confined to the downstream
end of the cavity, but then gradually spirals outwards.
Throughout these expanding orbits, the particle stays
near the centre plane. Upon reaching the perimeter of
the cavity, the orbit finally exhibits its first significant
lateral drift, moving outwards towards the side wall
(plane y=0) along the back face (plane x=0). This orbit
corresponds to a transient phase of the liquid flow field.

A more complete orbital cycle is shown in Fig. 12.
The cycle corresponds to a later time, after establish-
ment of a steady-state regime of qualitatively recurrent
behaviour. The specific cycle chosen, somewhat longer
than typical cycles, was selected because it shows the
orbital pattern particularly clearly. Starting from a

position near the side wall of the cavity, the particle
spirals inwards towards the centre plane. The spiral is at
first tightly wound, but gradually expands as the centre
plane is approached. Near the centre plane, the particle
makes a few more laps, while continuing to slowly spiral
outwards towards the perimeter of the cavity. Finally
the particle drifts back towards the side wall along the
back and bottom faces of the cavity (planes x=0 and
z=0, respectively). Compared to the start-up phase, the
axis of the spiral is closer to the centroid of the cavity,
but remains in the upper downstream quadrant. Such
particle trajectories spiralling inwards then outwards
around the centreline of the main eddy have been ob-
tained earlier from numerical computations of the lid-
driven cavity flow by Chiang et al. (1998) and Sheu and
Tsai (2002).

5.3 Comparison with laser-illuminated micro-particle
tracks

In order to further evaluate and interpret the observed
trajectories of the solid particles, experiments at the
same Reynolds number Re=470 were conducted with
laser-illuminated micro-particles instead of full-volume
stereo imaging. In these experiments, the liquid is seeded
with PSP micro-particles having diameter equal to
50 lm. Illumination is then provided by a high-power
laser light sheet having a thickness of approximately
2 mm. For the results reported below, experiments were
conducted with the light sheet oriented parallel to the
side walls of the cavity and placed, respectively, at dis-
tances y=2 cm and y=4 cm from the right sidewall. To
record the flow pattern within the illuminated plane, an
AVT CCD camera was used. This camera has a reso-
lution of 1,024·768 pixels and operates at a frame rate
of 15 fps.

In order to characterise the Eulerian flow pattern at
steady state, the cavity is operated at constant belt speed
for some 20 min before images are acquired. Artificial
long exposure images are constructed from sequences of
images in the same way as before, by registering at each
pixel position the brightest value experienced during the
entire sequence. As they are associated with micro-par-
ticles convected in a steady-state flow field, the bright
pathlines recorded in this way can be regarded as
streamlines of the flow. These illuminated streamlines
are shown in Fig. 13, where they are compared with
partial trajectories of the 3 mm solid particles obtained
using the stereo approach described earlier. For this
purpose, 2D trajectory segments must be extracted from
the complete 3D trajectories. This is done by retaining
only the particle positions comprised within thin slices of
half-thickness equal to 1.25 mm on both sides of the
medial plane of the laser sheet. Black dots are used in
Fig. 13 to represent the resulting subset of tracked par-
ticle positions.

The results of Fig. 13 show a close alignment of the
solid particle paths with the laser-illuminated pathlines

Fig. 10 Time series of the three components of the filtered position
$ x of a single particle. The shaded regions correspond to the start-
up and typical cycle regime segments examined in greater detail in
the next figures
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Fig. 11 Three-dimensional
trajectory of a suspended solid
particle in the lid-driven cavity
flow (Re=470). Segment of 23 s
immediately following the
sudden start-up of the conveyor
belt. a Side view, b front view,
c top view, d 3D plot

Fig. 12 Three-dimensional
trajectory of a suspended solid
particle in the lid-driven cavity
flow (Re=470). Typical orbital
cycle over a span of 43 s. a Side
view, b front view, c top view,
d 3D plot
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of the micro-particles. This indicates that the solid par-
ticle motions reflect rather faithfully the motions of the
embedding fluid. The juxtaposition of these two inde-
pendently produced results can also be used as a quali-
tative check of the methods. Encouragingly, jitter due to
measurement noise is attenuated by the Kalman filters,
without significantly distorting the shapes of the orbits.

5.4 Trajectories of 10 orbiting particles

The experimental run examined until now was a run
conducted with two particles only, and attention
was focused on the motions of only one of them. To

demonstrate the wider applicability of the technique and
highlight certain additional features, this last subsection
presents results for a run involving 10 simultaneously
orbiting particles. The corresponding Reynolds number
is slightly higher at Re=VS/m=1,030. All 10 particles
were initially placed in the right half of the cavity and
stayed there for the entire run. Other runs conducted
with particles on both sides showed a high degree of
symmetry.

Figure 14 shows the orbits of the 10 particles, as
tracked over 500 successive frames (a segment of 17 s in
the steady-state regime after the start-up transient has
died out). Panel a of Fig. 14 shows a stereoscopic long
exposure image, while panels b–d show the corre-

Fig. 13 Solid particle tracks
(black dots) overlaid onto long
exposure images of laser-
illuminated micro-particles at
Re=470: a transverse plane
y=2 cm; b transverse plane
y=4 cm

Fig. 14 Simultaneous orbits of
10 suspended solid particles in
the right half of the lid-driven
cavity (Re=1,030), over a span
of 17 s. a Long exposure image
obtained from a sequence of
500 frames, b 3D plot, c front
view, d side view
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sponding 3D trajectories. Like the image of Fig. 2a, the
long exposure view of Fig. 14a is produced directly from
the video frames and does not rely on the positioning
algorithms. In contrast, the curves plotted in panels b–d
represent stereo measurements, after full processing by
the forward–backward Kalman filters.

The results highlight an intriguing feature of the
experiments. Despite starting from arbitrary positions
and being allowed to wander freely within the cavity,
the neutrally buoyant particles do not explore all regions
of the flow. Instead, they tend to cluster along prefer-
ential pathways of the internal circulation: an inner coil
along which particles spiral inwards from the sidewall
towards the centre plane and an outer coil along which
particles drift back from the centre plane towards the
sidewall. Conversely, there are various zones in which
the particles do not venture: (1) the core of the main
vortex, near the centre of the cavity; (2) the corner eddies
located at the four corners of the bottom face of the
cavity; (3) a toroidal zone located between the inner and
outer coils along which particles spiral inward and
outward.

In contrast, the numerical computations reported by
Chiang and Sheu (1997) indicate that fluid particle paths
do link the central eddy to the upstream and down-
stream corner eddies. Over long time orbits, fluid par-
ticles should thus be able to explore the various
connected regions of the 3D flow. It is currently unclear
why the solid particles of the present experiments do not
appear to behave in this manner. One possibility is that
the observation time remains too short for the particles
to be seen in all the zones that they can actually reach.
Another is that the finite size particles cannot enter the
very near-wall regions of the flow, which certain fluid
pathways must go through. A third possibility is that the
solid particles drift towards preferential orbits because
of inertial migration, following a mechanism similar to
the one observed in Poiseuille flows (Han et al. 1999;
Matas et al. 2004). Further research is definitely needed
to clarify this issue.

6 Conclusions

In the present work, stereo imaging and signal-process-
ing techniques were combined to monitor the 3D orbits
of individual particles in a lid-driven cavity flow. Using a
digital camera, video sequences of long duration were
acquired, continuously recording the particle motions
under two different viewpoints. By tracing calibrated
rays into the viewing volume, the 3D particle positions
and corresponding measurement errors were estimated.
To attenuate the effect of these errors, the position sig-
nals were then processed by Kalman filters, based on a
simple stochastic model of the kinematics. Kalman fil-
ters with forward and backward passes were found to
give good results, attenuating the noise without shifting
the signals in time or significantly distorting the orbital
shapes.

The measured particle trajectories present a number
of interesting characteristics. Overall, the particles are
observed to undergo spiral motions modulated by side-
ways excursions from the centre plane to the side wall
and back. These spiral motions are found to exhibit
slightly different patterns during the start-up phase and
the subsequent regime. At steady state, the particle tra-
jectories within selected longitudinal slices align with the
pathlines of laser-illuminated micro-particles. Never-
theless, the solid particle orbits are observed to cluster
along certain pathways of the internal circulation and
avoid altogether certain regions of the cavity flow. The
origin of this behaviour is currently unclear. Taken to-
gether, these observations carry some practical implica-
tions for PTV studies. Whereas the paths of neutrally
buoyant solid particles may faithfully reflect the local
motions of the fluid, there is no guarantee that these
solid particles will be present in all zones of the flow. In
the present experiments, for instance, the paths of the
solid particles provide no information about the fluid
motions within the secondary eddies of the cavity.

The research suggests various avenues for further
work. The measurement methods could benefit from a
number of improvements. Instead of using the Kalman
filters at the post-processing stage only, they could be
incorporated at the particle tracking stage. This could
make the methods more robust, allowing them to deal
with more difficult illumination conditions or larger
numbers of simultaneously orbiting particles. More
rigorous ways of tuning Kalman filters would also be
desirable. Likewise, further work is needed to enhance
our understanding of the motions of solid particles
suspended in 3D viscous flows. In particular, the possi-
ble migration of the particles towards preferential zones
requires further scrutiny. For the lid-driven cavity, we
are currently engaged in efforts aimed to characterise
particle trajectories over a wider range of Reynolds
numbers and to further probe the relationship between
the Lagrangian particle trajectories and the Eulerian
viscous flow field.
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