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Abstract

The influence of strain rate on the buckle folding behavior of an elasto—viscous layer—matrix model is explored by adopting an end-
rotation method, which is capable of excluding the influence of initial geometric perturbation, and by observing the energy variation in the
system. The results indicate that, if the strain rate is relatively slow, the folding behavior is in fact the result of both viscous and elastic
behavior, and not just the viscosity alone.

For two-stage shortening at different strain rates, the final waveform depends on either the earlier strain rate inducing buckling or the later
strain rate applied in the post-buckle stage of deformation. If the later strain rate is relatively fast, the final waveform will be similar to the one
yielded by the fast strain rate alone, as a substantial amount of elastic energy can be accumulated during the subsequent fast deformation. On
the other hand, if the later strain rate is relatively slow, the earlier waveform is retained and further amplified during the slower post-buckle
deformation. This results from the phenomenon that an initial geometric perturbation is amplified into a fold, if the applied strain rate is very

slow. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Folding of rock strata is a fascinating phenomenon that
has attracted geologists to explore the underlying mecha-
nisms that cause fold waveforms. Field observations have
focused on the wavelength and thickness of the competent
layer (Sherwin and Chapple, 1968). The understanding and
interpretation of folds have been discussed in many publi-
cations (e.g. Biot, 1959, 1961; Ramberg, 1963, 1964;
Johnson, 1970, 1977; Price and Cosgrove, 1990; Johnson
and Fletcher, 1994). It has been found that the wavelength of
folds developed during layer shortening is related to the
competence contrast between the embedded rock layer
with the surrounding matrix. The materials concerned
showed either viscous (Biot, 1961; Ramberg, 1963) or
elastic behavior (Karman and Biot, 1940; Biot, 1961; Currie
et al., 1962), or a combination of both, i.e. elasto—viscous
behavior (Hunt et al., 1996; Whiting and Hunt, 1997;
Schmalholz and Podladchikov, 1999, 2000). Table 1
summarizes the material model adopted for the competent
layer and the matrix in relevant publications.

For a single viscous layer embedded in a weaker viscous
matrix, a dominant wavelength of the fold exists and can be
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expressed in terms of the viscous competence contrast as
(Biot, 1961):

(L), = 27h 3/6—:7’0 (1)

where ([;), is the dominant wavelength, 4 is the thickness of
the layer, 7 is the viscosity of the layer and 7, the viscosity
of the matrix.

On the other hand, for perfectly elastic materials, a domi-
nant wavelength also exists but in this case, it is expressed in
terms of the elastic competence contrast as (Currie et al.,
1962):

3’ E
(lcr)e = 2wh, 6—E() (2)

where (I.). is the dominant wavelength, E is the Young’s
modulus of the layer and E; the Young’s modulus of the
matrix.

It is commonly recognized that the deformational
behavior of rock depends on the ambient temperature, the
confining stress and the strain rate and that it shows short-
term elasticity and longer-term viscous creep -effects
(Mancktelow, 1999). If the rock is subject to a high tempera-
ture and high confining stress environment, which makes the
rock analogous to a ‘sticky fluid’, it may deform viscously.
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Table 1
Summary of the material models adopted in relevant references

Material model Reference

Layer Matrix

Elastic Elastic Karman and Biot, 1940;
Currie et al., 1962

Viscous Viscous Biot, 1961; Ramberg, 1963;
Dieterich and Carter, 1969;
Hudleston and Stephansson,
1973; Shimamoto and Hara,
1976; Williams et al., 1977

Elastic Viscous Biot, 1961

Elastic Elasto—viscous Hunt et al., 1996; Whiting and
Hunt, 1997

Schmalholz and
Podladchikov, 1999, 2000
Zhang et al., 1996, 2000;
Mancktelow, 1999; this study

Elasto—viscous Viscous

Elasto—viscous Elasto—viscous

In this case, Eq. (1) is applicable for describing the folding
behavior, especially for long wavelengths where the thin
plate theory is appropriate (Fletcher, 1974, 1977). Alterna-
tively, if deformation takes place in a relatively low
temperature and low confining stress environment, the
behavior of the rock tends to be ‘elastic’ such that the elastic
behavior of the rock can possibly dominate the initial stages
of folding (Price and Cosgrove, 1990).

In between these two extreme conditions, both elastic and
viscous behavior may contribute to the waveform developed
and an elasto—viscous model material has to be considered.
Intrinsically, strain rates may affect the response of the
elasto—viscous material. It has been observed that the
folding behavior of such a material is comparable with
either pure elastic material (Eq. (2)) or to viscous material
(Eq. (1)), depending on whether the strain rate is relatively
fast or slow (Zhang et al., 1996, 2000).

A measure, the dominant wavelength ratio (Ay), indi-
cating the type of response for an elasto—viscous layer
embedded in viscous matrix has been proposed (Schmalholz
and Podladchikov, 1999), in addition to the conventional
Deborah number (D,):

=2 @

where G is the elastic shear modulus of the competent layer
and ¢ the lateral strain rate. Furthermore, it has been found
that the elasto—viscous model tends to have elastic or
viscous folding behavior for A4 <1 and A4 > 1, respec-
tively (Schmalholz and Podladchikov, 2000).

A constant-amplitude sinusoidal waveform is considered
for most of the above mentioned theories. However other
waveforms, for example a sinusoidal wave with amplitude

attenuation, exist in nature (Weiss, 1972) and have been
reproduced in the laboratory (Price, 1975; Blay et al.,
1977), as shown in Fig. 1.

This type of waveform, which results from an isolated
initial perturbation, has been explored through experimental
study and theoretical considerations (Cobbold, 1976;
Abbassi and Mancktelow, 1990, 1992; Mancktelow and
Abbassi, 1992; Mancktelow, 1999). It was found that the
shape of the initial perturbation strongly influences the fold
geometry, especially when the average wavelength compo-
nent of the initial perturbation is larger than the dominant
wavelength and the strain rate is slow (Abbassi and
Mancktelow, 1992).

In addition to theoretical analyses of buckling of elasto—
viscous material, numerical simulation (e.g. finite element
method; FEM) also serves as a versatile tool for exploring
the mechanisms associated with buckle folding (e.g.
Dieterich and Carter, 1969; Hudleston and Stephansson,
1973; Shimamoto and Hara, 1976; Cobbold, 1977;
Mancktelow, 1999; Zhang et al., 1996, 2000). If a perfect
thin layer is laterally compressed, the layer will shorten
without folding. An initial perturbation is required to induce
buckle folding of the layer when subjected to lateral
compression. This initial perturbation may influence the
final geometry of the waveform (Abbassi and Mancktelow,
1990, 1992; Mancktelow, 1999), especially when the strain
rate is fairly slow (Zhang et al., 2000). Therefore, a pertur-
bation method that will not influence the final waveform and
only allow the effects of fundamental factors (including
deformational modulus, viscosity, competence contrast
etc.) to show up is required. This paper presents an
alternative perturbation method, namely the end-rotation
method, which does not involve introducing an initial
geometric ‘imperfection’. Based on this technique, the
influence of the initial perturbation is excluded and the
focus is then on the influence of material properties and
strain rates on the waveform developed for an elasto—
viscous model.

2. Modeling method
2.1. Proposed perturbation method

If a perfectly straight layer without any perturbation is
compressed, the layer is shortened without buckling. A
perturbation is therefore required to induce folding in a
numerical analysis and some initial geometric configuration
different from a perfect-straight layer was generally adopted
for this purpose (Zhang et al., 1996, 2000). However, this
imposed initial geometric perturbation may dominate the
waveform developed (Mancktelow and Abbassi, 1992;
Mancktelow, 1999) and an alternative perturbation method
is thus proposed in this paper.

The proposed perturbation, the end-rotational method,
involves the imposition of a boundary rotation with an
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Fig. 1. Example of fold with attenuated amplitude. (a) Folded vein in foliated gneiss with amplitude attenuation toward the right end (after Weiss 1972, plate

171). (b) Analogue models of serial folding (after Price, 1975, plate 5).

angle 0, small in magnitude, at either one or both ends of
the layer, as illustrated in Fig. 2. By employing this end-
rotation, a moment is applied to the shortened layer, which
accounts for the subsequent buckle folding. The rotation
angle employed is selected to be very small, so as not to
bend the layer too much. A typical range of rotation () is
0.5% 107"~ 0.5x 107, within which range the bending
will not influence the waveform developed and identical
waveforms can be obtained.

2.2. Model configuration

The geometry of the analyzed model and boundary
constraints are identical to those adopted by Zhang et al.
(1996, 2000) and Mancktelow (1999), allowing direct
comparison. The competent layer has a length of 99h,
where £ is the thickness of the layer, as depicted in Fig. 3.
The matrix has a thickness of 337 on both sides of the layer
and a ‘roller’ constraint (free slip in the horizontal direction
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Fig. 2. Schematic illustration of the proposed end-rotation method adopted in numerical simulation. The perturbation is applied at the end of the competent
layer by imposing a boundary displacement, with a rotation angle 6, as shown in STEP 2. An initial compression (8; = 5 m) was applied prior to end-rotation
(STEP 1), which accounts for the lateral compression before perturbation takes place. After end-rotation is applied, further lateral compression is then applied

(STEP 3) to obtain the buckle and post-buckle responses.

and no vertical displacement) is imposed along the peri- The strain rates (indicated as &) selected for studying are
pheral boundary of the model. The material model adopted, from 10 ®to 10" s, that is the same range of strain rates
the Maxwell elasto—viscous model, is also identical to as used by Zhang et al. (1996, 2000) and Mancktelow
Zhang et al. (1996) and Mancktelow (1999), with properties (1999).

of the Maxwell model listed in Table 2. A finite-element-based commercial software (ABAQUS)
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Fig. 3. Schematic setup of the analyzed model. The resultant force on the competent layer () and on the matrix (F,) can be computed for each node. Either a
pure elastic material model or an elasto—viscous material model, for both layer and matrix, can be selected for analyzing.
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Table 2
Input material properties

35,000 (MPa)
350 (MPa)

10'* (MPa s)

10'? (MPa s)

0.25

0.25

1078 ~10"" (s

o < eg:gm

was adopted to conduct numerical analysis of this research.
This code is capable of conducting simulation based on
finite strain method and the updated model configuration
(Hibbit, Karlsson and Sorensen Inc., 1998). Detailed infor-
mation about this software can be found in the website:
www.abaqus.com. Rather than small strain theory, the use
of finite strain theory is more appropriate in simulating the
post-buckle behavior as the magnitude of strain may far
exceed the small strain range.

3. Influence of strain rates based on initial geometric
perturbation

For elasto—viscous material, both Zhang et al. (1996) and
Mancktelow (1999) evaluated the influence of the initial
perturbation. Zhang et al. (1996) concluded that a per-
fectly-sinusoidal small perturbation would not influence
the buckling wavelength developed, which is identical to

Zhang et al (1996), é=1x10" sec’
R=50 €=
S N\NAAAANNN 20%

R=100

\/\/\/\/\/\/ 20%

R=200

NN\ 20%

Mancktelow (1999), ¢ =1x 10" sec’

Inflection point at boundaries

R=50 € =

18%
R=100

18%
R=200

18%
Hinge point at boundaries ¢
R=50 ~ 18%
R=100

18%
R=200

18%

the prediction of the Biot—Ramberg dominant wavelength.
In a later work, Mancktelow (1999) found that the initial
geometric perturbation was amplified into folds during the
compression process. It was found that the difference in
applied strain rates accounts for the discrepancy in the
waveform yielded (Zhang et al., 2000). This result
is confirmed by our numerical analyses. Using the same
numerical method (finite element method) and the
same global shortening strain rate (¢ =10—14s"") as
Mancktelow (1999) did, similar results were obtained as
shown in Fig. 4. On the other hand, for a global shortening
strain rates of 107° and 10757 identical results to
Zhang’s work (shown in Fig. 4) were also obtained.

In summary, at slow strain rates, the initial geometric
perturbation clearly dominates the configuration of the
fold yielded by increasing its amplitude into a folding
geometry. This result reflects an interesting phenomenon:
other things being equal, it is the strain rate that determines
whether the yielded waveform will be influenced by the
initial geometric perturbation. It is therefore interesting to
explore further the effects of strain rate on the folding
behavior of elasto—viscous material.

4. Influence of strain rates based on end-rotational
perturbation

4.1. Layer compressed under constant strain rates

The waveform developed is different for different strain

This Study, é=1x 10°sec™
R=50 €=
NN NN 20%
R=100

NNANNNN 207

R=200

V\/\N\/ 20%

This Study, ¢=1x 10 “sec”

Inflection point at boundaries

R=33 - 18%
R=100

~— _18%
R=200

M 18%
R=50 ° 18%
R=100 18%
R<200 18%

Fig. 4. Comparison of simulation results with previous works by Zhang et al. (1996) and Mancktelow (1999).
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Fig. 5. The waveforms developed from elastic and elasto—viscous models during various stages of lateral compression. The waveforms shown in (a) and (b)
are identical. The waveforms shown in (c) and (d) are characterized by an amplitude attenuation.

rates, as illustrated in Fig. 5. The end-rotation is applied at
an initial shortening distance (§;) equal to 2.5% of the total
length for all strain rates.

At a relatively faster strain rate (¢ = 1079571 or faster;
Fig. 5b), the yielded waveform is identical to that of an
elastic model (Fig. 5a). Therefore, in terms of the waveform
developed, the fast strain rate enables an ‘elastic’ response
as would be expected in an elasto—viscous material.

At a relatively slow strain rate (¢ = 107" s or slower),

Table 3

the waveform exhibits typical amplitude attenuation as
depicted in Fig. 5c and d.

For the strain rates analyzed, the corresponding A4 and D,
are listed in Table 3. According to the numerical simulation,
a response analogous to an elastic material has been
observed for ¢ =10"° and 107" (A4 =431-4.31), which
is consistent with the prediction of Schmalholz and
Podladchikov (2000).

On the other strain  rates

hand, if slower

Relevant parameters of the analyzed cases. Remarks: (/.;), and (/). are the dominant wavelengths obtained from the viscous theory (Biot, 1961) and elastic
theory (Currie et al., 1962), respectively. Iy is the wavelength obtained from numerical simulation under various strain rates. / is the wavelength computed

from Eq. (5). h is the thickness of the layer

Type of material & (1/s) Ad D, (Ie)e/h (I )/h Iepml/h F (106N) I/h
Elastic model - - - 16.1 - 16.5 1939 18.4
Elasto—viscous model 1x107% 431.00 7.14%x10%3 - - 16.5 1939 18.5
1x10710 431 7.14%x 107" - - 16.5 1879 18.6
1x1071 1.36 7.14%x 1072 - - 19.8 1368 20.6
1x10712 0.43 7.14%x107° - - 28.3 483 28.7
1x107" 0.14 7.14%107* - - 28.3 243 28.7
Ix107" 0.04 7.14%x107° - - 28.3 82 30.8
Viscous model - - - - 16.1 - - -
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——F>Fcr (Eqn.A-15)

F<Fcr (Eqn.5)
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Fig. 6. The relationship between the lateral force F and the resultant wavelength /. The dashed line and the solid line indicate the F—I relationship for F = F,
and F < F,, respectively. The results of the numerical simulations are indicated by symbols.

(=10""~10""") were applied (Aq=0.14 ~ 0.04), the
response, a waveform with attenuated amplitude, differs
from the non-attenuated sinusoidal waveforms developed
from the pure elastic model (Currie et al., 1962) and from
the pure viscous model (Biot, 1961). Furthermore, as shown
in Table 3, the dominant wavelength, (/.),/h, for a pure
viscous model is 16.1 (Eq. (1)); yet the wavelength yielded
by numerical simulation, /ggy/h, under stain rates ranging
from 1072 ~10""s7! is 28.3. Therefore, factors other
than the purely viscous behavior (Eq. (1)) may also
influence the resultant waveform.

It has been found that a waveform with amplitude
attenuation is possible for an elastic layer—spring model
as shown in Appendix A. For the layer—spring model, the
waveform with attenuated amplitude will be developed
(Egs. (A11)—(A13)), if a perturbation is applied at any F
less than F,. Comparing a layer—spring with a layer—matrix
model, a comparable F-I relationship for F < F can be
found (Jeng et al., 2001):

16mEl 1 [ 7=
F= 7172 — FV2EIE} (5)

Comparing the F-I relationship predicted by Eq. (5) with
the F-I relationship revealed from numerical simulation
under slow strain rates, Fig. 6 shows a good resemblance
of these two F-[ relationships. This implies that, even at
slow strain rates, the elasticity may still play a role in
determining the final waveform of a Maxwell material. In
terms of the waveform developed, a slowly compressed
elasto—viscous layer—matrix model is comparable with an
elastic layer—spring model folded when F < F,.

To explore what is responsible for the discrepancy in the
waveforms yielded under different strain rates, the variation
in energy in the folded system during the deformation
process was first examined. The energy involved can be

expressed as:
E =E,+E, (6)

where E, is the total external energy input into the deformed
system, E, is the energy consumed due to viscous defor-
mation, and E, is the retained energy, which is stored in
the system in the form of elastic energy.

Results of numerical simulations indicate that an increase
in the total external energy is required to continuously
compress the layer—matrix system (Fig. 7a and b). Com-
paring Fig. 7a and b, strain rate has a more significant
impact on the total energy applied to the competent layer
than to the matrix. The total energy provided to the compe-
tent layer significantly decreases for slower strain rates, as
shown in Fig. 7b. Consequently, the elastic energy stored in
the layer significantly decreases for slower strain rates, as
shown in Fig. 7c. Clearly, for slower strain rates, the viscous
deformation not only reduces the required energy input but
also absorbs a greater portion of the input energy. In this
way, the viscous behavior plays an increasingly important
role in influencing the waveform developed.

The decrease in stored elastic energy at slow strain rates
is reflected in the decrease in the lateral force required to
maintain equilibrium of the folded system, as shown in
Fig. 8, which illustrates the following phenomena:

1. For an elastic system, the lateral force F remains at an
almost constant magnitude in the post-buckle stage of
deformation.

2. For an elasto—viscous system, F drops significantly
during the post-buckle phase. Comparing Fig. 5b
(6=10""s"") with Fig. 5a (¢=10"°s""), the wave-
forms are identical, but the elastic energy stored in the
system during the post-buckle stage is different because
of the drop in F in the slower case.
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Fig. 7. Variation of input energy and elastic energy during the deformation process. The total energy applied to the matrix and the layer are respectively shown
in (a) and (b). The elastic energy stored in the layer during the folding process is shown in (c).

3. If the strain is very slow (&= 107" s_l), the F—¢ Overall, the response of an elasto—viscous layer—
curve does not exhibit a peak. The lateral force matrix system, for slow strain, is indeed the result of
slowly increases upon further shortening of the a combination of elastic and viscous behavior. Under a

layer. given strain rate, the viscous behavior determines the
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Fig. 8. Variation of lateral force during the deformation process. A slower strain rate results in less lateral force before and after buckling, compared with the

results induced by a faster strain rate.

amount of elastic energy and the lateral force can be
stored in the system. In this way, the remnant elastic
response (energy and lateral force) can play a role, at
least to some extent, in determining the final waveform
(Fig. 6).

Also indicated by Fig. 6, the F-I relationship observed
from numerical simulations is not completely identical to
the F—[ relationship of an elastic model (Eq. (5)). This
indicates that the viscosity (e.g. the viscous competence
ratio) may also play a role in determining the final wave-
length. That is, in addition to the absorption of the input
energy, the contribution of viscosity in determining the
final waveform yet needs to be further explored.

4.2. Layer compressed with two strain rates

The folding behavior of an elasto—viscous layer—matrix
system can be further explored by looking into the
folding response under varying strain rates. As the layer is
folded under an intermediate strain rate (&= ll_los_l),
followed by a faster or a slower post-buckle deformation
(=10"""s"" or 10757, the variation of lateral force
with lateral strain is shown in Fig. 9a and b, respectively.
Fig. 9 indicates that the F—¢ curve, starting from a curve of
constant stain rate (& = 101 s_l), converges to the corre-
sponding curves of the newly imposed constant strain rates
(le. &= 1079 Tore=10"" sfl; the dashed lines shown
in Fig. 9a and b).

Nevertheless, the final waveform is not only controlled by
the later strain rate. If the layer is first folded at an inter-
mediate strain rate (¢ =10"""s"") and then subsequently
compressed under a faster one (¢ = 10710 sfl), the wave-

form (shown in Fig. 10a) is first determined by the inter-
mediate strain rate (similar waveform to the case shown in
Fig. 5¢). However it eventually develops a waveform with
constant amplitude, comparable with the waveform yielded
under fast strain rate (shown in Fig. 5b), except that
the wavelength is longer. This phenomenon implies that
the elastic behavior has more influence upon appli-
cation of the faster subsequent strain rate. As indicated
in Fig. 9, the elastic energy stored in this case (¢=
107" — 10757 is less than the case shown in Fig. 5b
(6 =10"""s7"), which possibly accounts for the increase in
wavelength when less elastic behavior is restored.

On the other hand, if the layer is first folded at an inter-
mediate strain rate (¢ =10"""s"") and then subsequently
compressed under a slower one (¢ = 10~'* s "), the original
waveform developed by the intermediate strain rate is
amplified by later slower compression, as shown in Fig.
10b. Remarkably, the waveform developed by a constant
&=10""s"" did not develop (cf. Fig. 5d). This result is
consistent with the behavior observed: at a very slow strain
rate, the fold is produced simply by amplifying the initial
geometry perturbation. In this case, the waveform
developed from the intermediate strain rate (&=

5

107" s7") serves as an ‘initial geometric perturbation’.

5. Discussion

5.1. Behavior of a one-dimensional Maxwell model
subjected to compression

The insight regarding the influence of strain rate on
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at the beginning, and then converges to the curve with
at the beginning, and
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because of viscous behavior under slow strain rates, this
leads to a small lateral force such that F is less than F,.
Consequently, a waveform with attenuated amplitude is
obtained for slow strain rates based on Fig. 6, as long as
the elastic behavior plays a role in determining the final
waveform.

5.2. Competence contrast of natural folds

Observations on natural folds indicates that the arc-length
to thickness ratio ([,/h) of natural strata has a mean magni-
tude ranging from four to 10 (Sherwin and Chapple, 1968;
Shimamoto and Hara, 1976). The maximum range of [,/h
ratio observed varies from two to 30. It has been discussed
that a direct estimation of the viscous competence contrast
(n/m,), based on the observed [,/h ratio and Eq. (1), may
lead to an underestimation of the actual competence
contrast. In particular, the contribution of elastic compe-
tence contrast should be also considered (Price and
Cosgrove, 1990; Schmalholz and Podladchikov, 2000).

Numerical analyses of elasto—viscous models indicate
that, for a particular E/E,, the I/h ratio may increase with
slower applied strain rates. The I/h ratio developed can be
greater than (/,)./h ratio of pure elastic material (Eq. (2)) but
is not greater than a maximum magnitude of Il3/h. This
maximum wavelength /5 is defined in Fig. A3 and can be
expressed as (based on Eq. (5)):

o E
—4mh] = =2
13 h Eo (lcr)e (9)

Therefore, the upper and lower bounds of elastic compe-
tence contrast of natural folded stratum can be estimated
based on Egs. (2) and (9) as:

E ARV ATNAS
(E_())max_ (E z) - (ET) (10)

E 1 L\
(E_)mn: (ETZE> (11)

15 20 25 30

Fig. 12 shows the variation of (E/E,)n.x and (E/E,) i, With
I/h ratio. It follows that the slower the strain rate during the
folding process, the lower the elastic competence contrast a
particular I//h ratio represents.

6. Conclusion

The influence of strain rate on the waveform of folding is
explored in this paper through the adoption of an end-
rotational method, which allows the effect of the initial
geometric perturbation to be excluded. The post-buckle
behavior of the folded system, including the variation of
energy and lateral force, is also examined, especially the
differing responses for varying strain rates.

It is found that the response is analogous to that of elastic
material for fast strain rates, which is consistent with the
conclusion of previous studies. However, if the strain rate is
relatively slow, the folding behavior is in fact a result of
both viscous and elastic behavior. For slow strain rates, the
viscosity plays an important role in reducing the input
energy and the elastic energy stored in the layer. Further-
more, the influence of elasticity can still be observed for
slow strain rates.

If the compression process occurs under two different
strain rates, the waveform depends both on the initial strain
rate inducing buckling and on the final strain rate applied
during the post-buckle phase of deformation. If the final
strain is relatively fast, the final waveform will be similar
to the one developed by a constant fast strain rate, since a
substantial amount of elastic energy can be accumulated
during the subsequent faster deformation (Fig. 9a). The
initial waveform (e.g. attenuated amplitude) will disappear
as the later elastic behavior dominates the final waveform.

On the other hand, if the final strain rate is relatively slow,
the initial waveform will be retained and further amplified
during the slower post-buckle deformation. This results
from the phenomenon that an initial geometric perturbation
will be amplified into a fold if the strain rate is very slow.
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The mean crustal strain rate induced by the convergence
of plates is found to be within the order of 10~"* per second
(Price, 1975; Yu et al., 1997). Therefore, viscous folding
behavior is favored in this situation. However, it cannot be
precluded that, in certain local areas where stress (or strain)
concentration exists, the strain rate can be a few orders of
magnitude greater than this global crustal strain rate and,
thus, more influence of elasticity can be involved in the
folding behavior.
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Appendix A. Theoretical basis
A.l. Layer—spring model

First, considering a layer supported by elastic springs, the
governing equation for buckle folding is (Karman and Biot,
1940):

Y (x) + %Y”(x) + %Y(x) =0 (A1)

where Y, E and [ are the vertical displacement, Young’s
modulus and the moment of inertia of the layer, respec-
tively, K is the stiffness of the spring and F is the horizontal
force required to buckle the competent layer.

If the layer is surrounded by springs on both sides as
shown in Fig. Ala, the contribution of the spring should
be doubled and the governing equation has the following
form:

F 2K
Y@+ =Y"(x) + —Y(x)= A2
W+ Y@+ L Yx)=0 (A2)

Solving Eq. (A2), the characteristic value A can be deter-
mined in terms of F, E, I and K as:

N +\/—Fix/F2—8EIK
T 2El

Based on Eq. (A3), the solution of Eq. (A2) depends on the
relative magnitude of the exerted force F and the rigidity of
the layer and the springs (+/8EIK). Accordingly, a critical
force F., is defined as:

F.. = /8EIK (A4)

For F > F,, the solution of Eq. (A2) is a wave comprised
of two frequencies:

(A3)

Y(x) = a;sinmx + bjcosm;x + ¢ sinn;x + d,cosn;x (AS)

where ay, by, c|, d; are constants determined by boundary

conditions, and m; and n; represent the mechanical charac-
teristics of the system, which can be expressed in terms of F,
E, I and K as:

\/ F + VF? — 8EIK
ml =

A6
2EI (A6a)
F — \F* — 8EIK
ny = \/ (A6b)
2EI

The wavelengths corresponding to m; and n, are:
2

=" (A7a)
n
2

=" (A7b)
my

The waveform described by Eq. (AS) is comprised of two
frequencies with non-attenuated amplitudes. This wave-
form, referred to as the Type A waveform, is shown in
Fig. A2a.

When F = F,, the waveform merges from two frequen-
cies to a single frequency as:

Y (x) = a,sinnyx + bycosnyx (A8)

where a, and b, are constants determined by boundary
condition, and n, can be expressed as:

_[F _ &
"=\ 2Er TV E

This waveform, referred to as the Type B waveform, is a
sinusoidal wave comprised of only one frequency with a
non-attenuated amplitude as illustrated in Fig. A2b.

When F = F, the relationship between the applied force
F and the resultant wavelength (/) can be obtained as
(Karman and Biot, 1940):
P 4 i 2KI

P 41
According to Eq. (A9), an exerted force F leads to buckle
folding with a wavelength [/ as long as F = F.. When
F = F, a corresponding wavelength [, is found to be:

I = 27m] E1 (A10)
cr T 2K

Yet, when F < F,, folding of the layer is still possible.
This needs to be discussed in detail. When F < F,, based on
Eq. (A3), the solution of Eq. (A2) has the following form:

Y(x) = e "™ (azcosnsyx + bssinnsx) (A1)

(A9)

where a; and b; are constants determined by boundary con-
dition, m; and nj are characteristic values determined by the
exerted force F' and the property of materials (E, I and K) as:

_|-F+ \BEIK
s = 4EI

(A12a)
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Fig. Al. Schematic illustrations for the analyzed models. (a) Layer—spring model. (b) Layer—matrix model. (c) Illustration for the corresponding definitions.

F + /8EIK

Al2
4E1 (A12b)

ny =

Based on Eq. (A11), the fold has only one frequency and the
amplitude tends to decay as x (the distance from the
perturbed end as indicated in Fig. Alc) increases. This
type of waveform is referred to as the Type C waveform,
which basically is still a sinusoidal wave, however, with
amplitude attenuation feature as depicted in Fig. A2c. The
amplitude attenuates as the distance from the perturbed end
increases.

When F < F, the relation of F with the yielded wave-

length [ can be expressed as:

F = 167;;2EI — V8EIK (A13)
Fig. A2 illustrates the F—I relationships when F < F, (Eq.
(Al13)) and F = F, (Eq. (A9)). Eq. (A13) indicates that: (1)
folding is possible even when F is less than F; (2) the
smaller the F, the longer the wavelength [/ and the greater
the amplitude attenuation; and (3) when F < F_,, the wave-
length has an upper limit /5 (illustrated in Fig. A2), which
can be expressed as:

_ 477@

= ——— Al4
7 JREIK (Al4)
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(b) Type B waveform (F=F,)

end-rotation
perturbation

(c)Type C waveform (F<F,)

Fig. A2. Schematic illustration of the three types of waveforms obtained from numerical analyses. (a) Type A waveform comprises of two frequencies, which
can be yielded when F > F,. (b) Type B waveform is a single-frequency-wave with a constant amplitude over the full length of the competent layer (when
F=F,). (c) Type C waveform is a single-frequecy-wave characterized with an amplitude attenuation away from the perturbed end (when F < F,).

A.2. Layer—matrix model

As the plate-shaped layer is surrounded by matrix instead
of springs (Fig. Alb), an F-I relationship similar to Eq.
(A8) can be obtained (Currie et al., 1962):

47 E,I
F=—EI+
2 2
where E = E/(1 — V*); E, = E /(1 — 12); E, is the Young’s
modulus of the matrix, and » and v, are the Poisson ratio of
the competent layer and matrix, respectively.

Eq. (A15) describes a F-I curve, which has a similar
geometry to that of the layer—spring system as shown in
Fig. A2 (upper part of the curve). Therefore, a critical
force F. and the corresponding wavelength [, can be

F A

(A15)

1

‘|

\\ //

/
\\ //
Se -’
A
C
O » ]
0 l,

Fig. A3. The F—-[ relationship for a layer embedded in spring (modified
after Karman and Biot, 1940). For F > F,, the developed waveform is
comprised of two frequencies (or wavelengths). For F = F,, the waveform
has a single frequency and constant amplitude. For F < F,, the waveform
also has a single frequency yet with attenuated amplitude.

accordingly determined as:

(A16)

Iy = 27hy| — (A17)

where & is the thickness of the layer.
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