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Laminar Water Wave and Current Passing Over Porous Bed
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Abstract: The problem of the dynamic interaction of water waves, current, and a hard poroelastic bed is dealt with in this
Finite-depth homogeneous water with harmonic linear water waves passing over a semi-infinite poroelastic bed is investigated
to reveal the importance of viscous effect for different bed forms, viscosity of water is considered herein. In a boundary layer co
approach, the governing equations of the poroelastic material are decoupled without losing physical generality. The contrib
pressure effect and shear effect to the hard poroelastic bed, which is a valuable indication to the mechanism of ripple formation, is
in the present study. This approach will be helpful in saving time and storage capacity when it is applied to numerical computa
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equations derived by Huang and Chwang~1990! to treat the po-
roelastic bed. In their solution, five nondimensional parame
were derived. Chen et al.~1997! also applied Huang an
Chwang’s ~1990! approach of poroelastic media flow togeth
with conventional Stokes expansion of a deepwater wave to
vestigate the dynamic response of a hard permeable bed to
linear water waves.

As for the bed form formation problem, Darwin~1884! con-
ducted experiments on sand-ripple caused by an oscillatory m
ing bed and concluded that the eddies induced by a serie
vortices acting on the sandy bed would probably render an
stable ripple into a stable state. Exner~1925! established a differ
ential erosion equation for two-dimensional flow to show
change in bed elevation due to a longitudinal variation of bot
velocity. Anderson~1953! applied Exner’s~1925! erosion equa-
tion to explain the mechanism of the formation of ripple. Vitto
and Blondeaux~1992! further considered the shear effect to d
cuss the formation of brick-pattern ripple under sea waves. On
other hand, Kennedy~1963! applied an empirical sediment tran
port formula to govern the continuity of the porous bed and u
the instability analysis of potential flow theory to obtain his
mous results of dune and antidune formations in alluvial ch
nels. Unfortunately, owing to the constraint of instability analys
Kennedy ~1963! could only find the dominant wavelength
stable bed forms instead of the whole bed forms. Hsieh e
~2001! proposed a boundary layer correction approach with a
tematic two-parameter perturbation to obtain the bed forms
dune, antidune, and flat bed under nonlinear oscillatory w
waves accompanied with a constant current. Although a cle
hydraulic mechanism of formation of bed forms was found
Hsieh et al.~2001! the potential flow theory was still adopted.

Based on the foregoing comments, we found that most stu
did not consider the viscous effects of homogeneous fluid fl
and porous media flow. We therefore try to solve the interac
problem of laminar water waves and a steady nonuniform cur
acting on a hard poroelastic bed in order to reveal the importa
of fluid viscosity versus pressure gradient in this study.

Formulation

Fig. 1 indicates plane waves propagating over a horizontal,
nitely thick, and homogeneous poroelastic bed accompanied
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Introduction

For a realistic analysis of the problem of the dynamic interactio
of water flow and seabed, the flow over the seabed is gener
accompanied with waves and current. The water is actually v
cous with a boundary layer near the interface between the hom
geneous water and the porous bed. Thus it tends to include
cous flow, instead of potential flow, for water waves and curre
acting simultaneously on a deformable seabed.

The earliest investigations on linear water waves of an inv
cid, incompressible, and irrotational fluid flow interacting with
Darcy’s flow within a rigid, isotropic porous skeleton were foun
in the works of Putnam~1949! and Reid and Kajiura~1957!.
Sleath~1970! and Moshagen and Torum~1975! further studied
the similar problem but took the anisotropic permeability in hor
zontal and vertical directions into account. Liu~1973! proceeded
with the order of magnitude analysis to simplify the bounda
conditions by a boundary layer approach. In fact, fluid within
porous material interacting with a deforming solid skeleton,
Biot ~1956! stated, is a more complicated two-phase problem f
a realistic analysis. Biot~1956! developed the theory of poroelas
ticity to discuss elastic waves in a fluid saturated porous solid. F
the problem of a low frequency wave acting on fluid saturat
poroelastic media, Mei and Foda~1981! proposed a boundary
layer correction to simplify the analysis; however, their approa
was without systematic perturbation analysis. Huang and So
~1993! solved the problem of oscillatory linear water waves inte
acting with a deformable bed by using three decoupled Helmho
OURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003 / 655
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n0sxy
~1!5sxy

~2!

wheresxy is defined as Eqs.~33! and ~35!; the superscripts
~1! and ~2! denote region~1! and region~2!, respectively.
And the above equation could be simplified to

]U

]y
5

]Ḋx

]y
(6)

after considering that they components of homogeneou
water and pore fluid are vanishing.

3. At the far field:

Ḋx→0 (7)

Based on the boundary value problem above,U(y) andḊx can
be solved as follows:

U~y!5
2rg sinu

2m
y21

rgh sinu

m
y1n0S n0An0m

b

rgh sinu

m

1
n0rg sinu

b D for y>0 (8)

Ḋx~y!5n0An0m

b

rgh sinu

m
eA~b/n0m!y1

n0rg sinu

b
(9)

for y<0

with h5depth of homogeneous water.

Governing Equations of Homogeneous Water

Assuming that the homogeneous water in region 1 of Fig. 1
incompressible, and the flow is laminar flow, then the equatio
of continuity and momentum can be expressed, respectively,

¹•VI * ~1!50 (10)

]VI * ~1!

]t
1~VI * ~1!

•¹!VI * ~1!52
1

r
¹P* ~1!1n¹2VI * ~1! (11)

whereVI * (1)5velocity vector of flow;P* (1)5perturbed pressure
andn5kinematic viscosity of fluid. The fluid stress is

s i j*
~1!52P* ~1!d i j 1m~Vi , j* ~1!1Vj ,i* ~1!! (12)

Referring to Mei~1989! or Morse and Feshbach~1978!, any vec-
tor can be taken as the sum of an irrotational and a soleno
vector, so that the velocity can be decomposed as the sum o
steady current, the irrotational part, and the rotational~but sole-
noidal! part, i.e.

VI * ~1!5U~y!eI x1¹F1*
~1!1¹3UI * ~1! (13)

Substituting Eq.~13! into Eqs.~10! and~11! and after simplifica-
tion by linearization, we will have

¹2F1*
~1!50 (14)

]

]t
~¹3UI * ~1!!1U~¹3UI ,x*

~1!!5n¹2~¹3UI * ~1!! (15)
a steady nonuniform current. Region 1 is homogeneous w
governed by laminar flow while region 2 is a semi-infinite poro
medium saturated with water governed by Biot’s~1962! theory of
poroelasticity. The coordinates of region 1 range fromy
5z* (x,t) to y5h1h* (x,t) and region 2 fromy5z* (x,t) to y
→2`. The symbolsh* and z* represent the displacements
waves from the mean free surface (y5h) and mean bed surfac
(y50), respectively. Note that all symbols with an asterisk me
in the periodic motion with the time factore2 ivt.

Steady Nonuniform Current

Considering a fully developed flow (]/]x50) along an inclined
plane with an angleu, i.e., Poiseuille flow, the velocity can b
found from the equation of momentum

m
d2U~y!

dy2 1rg sinu50 (1)

whereU(y)5fluid velocity in thex direction;r5density of fluid;
g5gravitational acceleration; andm5dynamic viscosity of fluid.

Referring to Eq.~21! of the work of Song and Huang~2000!,
we can obtain

n0m
d2Ḋx

dy2 1n0rg sinu5bḊx (2)

as the velocity distribution inside the poroelastic bed. Here,n0

5porosity; Ḋx5x component of pore velocity of fluid; and

b5F~k!mn0
2/kp (3)

of which F(k)5correction factor of frequency, whose value
unity for low frequency andkp5coefficient of specific permeabil
ity.

The boundary conditions are
1. At the free surface:

dU~y!

dy
50 (4)

2. At the poroelastic bed surface: continuity of flux in thex
direction

U~0!5n0Ḋx (5)

continuity of fluid stress in thex direction
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P* ~1!52 ivF1*

~1!1UF1,x* ~1!1
U ,y

ik0
F1,y* ~1!

1
U ,yy

ik0
~F1*

~1!uy5h2F1*
~1!! (16)

whereF1*
(1)5perturbed irrotational velocity potential function. If

the motion is periodical, Eq.~15! could be simplified to

¹2~¹3UI ~1!!1kw
2 ~¹3UI ~1!!5

U

n
~¹3UI ,x

~1!! (17)

with

kw
2 5

iv

n
(18)

Referring to Morse and Feshbach~1978!, UI (1) can be ex-
pressed as

UI ~1!5F2
~1!eI z (19)

then Eq.~17! can be rewritten as

¹2F2
~1!1S kw

2 2
ik0U

n DF2
~1!50 (20)

wherek05wave number of an incoming water wave, which wil
be found as complex.

Governing Equations of Laminar Poroelastic Media
Flow

The poroelastic material in region~2! of Fig. 1 is assumed to be
water saturated. The skeleton density is denoted asrs . Let dİ *
and Dİ * 5the velocity vectors of solid and water in region~2!,
respectively. Then the continuity equations of solid and water a

]

]t
@~12n0!rs#1¹•@~12n0!rsdİ * #50 (21)

]

]t
@n0r#1¹•@n0rDİ * #50 (22)

Referring to the work of Verruijt~1969!, the storage equation can
be obtained as

]P* ~2!

]t
52

K

n0
F ~12n0!¹•S ]dİ *

]t D 1n0¹•S ]Dİ *
]t D G (23)

for perturbed pressureP* (2). In Eq. ~23!, K is the bulk modulus
of compressibility of fluid inside the porous bed. Referring to th
work of Song and Huang~2000!, the linear momentum equations
of solid skeleton and fluid for the porous bed based on the theo
of poroelasticity may be written as

¹•ss*=1~12n0!rsgI 5~12n0!rsd̈* 2F~k!
mn0

2

kp
~Ḋ* 2ḋ* !

(24)

¹•s*=1n0rgI 5n0rD̈* 1F~k!
mn0

2

kp
~Ḋ* 2ḋ* ! (25)

wheress*=5solid stress tensor ands*=5normal stress tensor of
fluid.

If there is a steady streaming flow over the porous media, t
solid displacement and fluid displacement may be separated a

d* ~xI ,t !5d0~xI !1d8~xI ,t ! (26)
JO
D* ~xI ,t !5D0~xI !1D8~xI ,t ! (27)

respectively, withud8u!ud0u, uD8u!uD0u. Then, from Eqs.~24!
and~25!, the equations for stationary deformed solid skeleton a
steady streaming viscous flow are

¹•ss
0
=

1~12n0!rsg52F~k!
mn0

2

kp
Ḋ0 (28)

¹•s0
=1n0rg5n0r~Ḋ0

•¹!Ḋ01F~k!
mn0

2

kp
Ḋ0 (29)

on the other hand, the linear equations of motion of the solid a
fluid for the remaining disturbance are

¹•ss8=5~12n0!rsd̈82F~k!
mn0

2

kp
~Ḋ82ḋ8! (30)

¹•s8=5n0rD̈81F~k!
mn0

2

kp
~Ḋ82ḋ8! (31)

Assuming that the generalized Hooke’s law for the solid sk
eton and Newton’s law for fluids are valid, stress tensors can
separated into a steady part and a perturbed part

ss
0
=

5ts
0
=

2~12n0!P0I=; ss8=5ts8=2~12n0!P8I= (32)

s0
=5n0t0

=2n0P0I=; s8=5n0t8=2n0P8I= (33)

whereP85perturbed pressure andI=5 identity matrix. While the
effective stresses for the solid skeleton and the shear stress o
fluid are separated into a steady part and a perturbed part

ts
0
=

5G@¹d01~¹d0!T#1l~¹•d0!I=;
(34)

ts8=5G@¹d81~¹d8!T#1l~¹•d8!I=

t0
=5m@¹D01~¹D0!T#1m8~¹•D0!I=;

(35)
t8=5m@¹D81~¹D8!T#1m8~¹•D8!I=

with G, l5Lame’s constants of elasticity andm85second fluid
viscosity; superscriptT denotes the transpose of matrix.

The displacement vectors of solid and fluid can be expres
as

dI * 5¹F1*
~2!1¹F2*

~2!1¹3HI 3*
~2!1¹3HI 4*

~2! (36)

DI * 5a1¹F1*
~2!1a2¹F2*

~2!1a3¹3HI 3*
~2!1a4¹3HI 4*

~2!

(37)

In Eq. ~36!, F1*
(2) andF2*

(2)5displacement potentials of the firs
and the second longitudinal waves, respectively; whileHI 3*

(2) and
HI 4*

(2)5displacement vectors of the first and the second transve
waves anda1 and a25dilatational wave-induced coefficients o
displacement between solid and fluid, whilea3 and a4 are in-
duced by transverse waves. Referring to the work of Morse a
Feshbach~1978!, Eqs.~36! and ~37! can be rewritten as

HI j*
~2!5F j*

~2!eI z ; j 53,4. (38)

Song and Huang~2000! used Eqs.~36! to ~38! to simplify Eqs.
~30! and ~31! into four decoupled Helmholtz equations

¹2F j*
~2!1kj

2F j*
~2!50; j 51,2,3,4 (39)

where the wave numberskj are given as Eqs.~40! and ~41! and
~43! and ~44! in the work of Song and Huang~2000!; wherek1

andk25wave numbers of the first and second dilatational wav
andk3 andk45wave numbers of the first and second transve
URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003 / 657
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waves. Moreover, the perturbed pore water pressureP* (2), the
perturbed effective solid stressests*

(2)
=

, and the perturbed effec

tive fluid stressest= * (2) can be, respectively, expressed as

P* ~2!52
K

n0
@~12n01a1n0!k1

2F1*
~2!

1~12n01a2n0!k2
2F2*

~2!# (40)

ts*
~2!
=

5G@2¹¹F1*
~2!12¹¹F2*

~2!1¹~¹3HI 3*
~2!!1$¹~¹

3HI 3*
~2!!%T1¹~¹3HI 4*

~2!!1$¹~¹3HI 4*
~2!!%T# (41)

t= * ~2!5m@2a1¹¹F1*
~2!12a2¹¹F2*

~2!1a3„¹~¹3HI 3*
~2!!

1$¹~¹3HI 3*
~2!!%T

…1a4„¹~¹3HI 4*
~2!!

1$¹~¹3HI 4*
~2!!%T

…# (42)

Compared with Biot’s potential poroelastic theory, the lamin
model possesses one more transverse wave due to the vis
effect.

Boundary Conditions

The following three boundaries:~1! free surface by5h
1h* (x,t) c, ~2! channel bed interfaceby5z* (x,t) c, and~3! deep
far field of porous bed@y→2`# must satisfy boundary condi-
tions.
1. At the free surface

• Dynamic boundary condition

]F1*
~1!

]t
1UrefF1,x* ~1!1gh* 50 (43)

whereU ref , i.e., U(h),5the reference velocity.
• Kinematic boundary condition

]F1*
~1!

]y
5

]h*
]t

1Uref

]h*
]x

(44)

2. At the bed surface
• Continuity of vertical component of flow velocity

n0~Ḋy*2ḋy* !5~Vy*
~1!2ḋy* ! (45)

• Continuity of vertical component of fluid stresses

n0syy*
~1!5syy*

~2! (46)
• Continuity of horizontal component of total stresses

~12n0!sxy*
~1!5ssxy* ~2! (47)

• Continuity of vertical component of total stresses

~12n0!syy*
~1!5ssyy* ~2! (48)

• Continuity of horizontal component of flow velocity

n0~Ḋx*2ḋx* !5~Vx*
~1!2ḋx* ! (49)

• Continuity of horizontal component of fluid stresses

n0sxy*
~1!5sxy*

~2! (50)

3. Far field (y→2`)
As y→2`, no perturbed displacements exist, i.e.

d* , D* →0I (51)

Considering the kinematics of the porous bed interface, we h
658 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003
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e

]z*

]t
5

]d*

]t
•S 2

]z*

]x
,1D (52)

and Eq.~52! will be used to solvez* .
Note that governing equations~14! and ~39!, pressure and ef

fective stresses equations~16!, ~40!, and ~41!, together with
boundary conditions~43!–~51! form the complete boundary valu
problem of the present study.

Nondimensionalizations and Multiparameter
Perturbation Expansion

Chen et al.~1997! found that because the wavelength of the s
ond longitudinal wave in the porous bed is much shorter than
of the water wave when the bed material is soft, i.e.,m!1, ac-
cording to Huang and Song’s~1993! definition of m5(2G
1l)n0 /K, stiffness ratio of solid and fluid, the convention
Stokes expansion based onk0a is invalid for the soft bed materia
problem since there exists a boundary layer inside the soft
material. That is why Hsieh et al.~2001! needed to propose
boundary layer correction approach for a soft bed material p
lem. On the contrary, the wavelength of the second longitud
wave in the porous bed is longer than that of the water wave w
the bed material is hard, i.e.,m@1, and there is no boundary lay
inside the porous bed material. But if the viscosity of wate
considered, the Stokes boundary layer exists in the region o
mogeneous water while a boundary layer exists inside the
bed material. After a tedious but straightforward analysis of or
of magnitude for each dependent variable, we herewith defin

«15k0a; «25k0 /kv ; «45k0 /k4 (53)

as the small-valued parameters for a hard bed material prob
and the dimensionless variables are selected as

x̂5k0x; ŷ5k0y (54)

Ȳ5 ŷ/«2

~only inside the boundary layer of homogeneous wate!

(55)

Y% 5 ŷ/«4 ~only inside the boundary layer of poroelastic be!
(56)

t̂5Agk0t; v̂5v/Agk0 (57)

h10* 5k0h* ; ẑ* 5~K/rga2!z* (58)

f10*
I5~k0

2/Agk0!F1*
~1! (59)

f10*
II5~k0

2/«2Agk0!F2*
~1! (60)

f10*
@1#5Re~ek0h!k0

2F1*
~2! (61)

f10*
@2#5Re~ek0h!k0

2F2*
~2! (62)

f10*
@3#5Re~ek0h!k0

2F3*
~2! (63)

f10*
@4#5@Re~ek0h!k0

2«2 /«4
2#F4*

~2! (64)

P̂* ~1!5~k0 /rg!P* ~1!; P̂* ~2!5~k0 /rg!P* ~2! (65)

Û* 5~k0 /Agk0!U* (66)
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All the symbols of variables on the left-hand side of Eqs.~54!–
~66! are dimensionless, but those on the right-hand side are
mensional. Note that since multiple length scales in vertical
rection are needed~see the discussion in the work of Hsieh et
2001!, ŷ, Ȳ, andY% are proposed for the boundary layer correcti
approach.

Applying the multiparameter perturbation expansion, in or
to grasp the least order of physical characteristics, we can w
all the velocity potentials and the displacement potentials as

F* ~1!5«1f10*
I1¯1«1«2f10*

II (67)

F* ~2!5«1~f10*
@1#1f10*

@2#1f10*
@3#!1¯1~«1«4

2/«2!f10*
@4#

(68)

if i«1i , i«2i , andi«4i are smaller than unity.
For a periodic motion with the frequencyv accompanied with

a steady nonuniform flow, the aforementioned variables@ #* (RI ,t)
can be written as@ #(RI )e2 ivt, whereRI is the position vector. Let
the given incoming-wave amplitude before being distributed
the porous bed bea ~i.e., ĥ105eix̂) with a wave numberk0 . If
both uh* u and uz* u are much smaller than the relative wav
lengths, it is more convenient to shift the boundary condition
free surface, y5h1h* (x,t), and porous bed interface,y
5z* (x,t), to y5h and y50 first before solving the boundar
value problem. Thus after performing Taylor series expansion
the free surface and at the channel bed interface, respectively
boundary value problem of leading order without the time fac
e2 ivt, is obtained in the following.

Without Boundary Layer

The governing equation of homogeneous water is

¹̂2f10
1 50 (69)

The governing equation of poroelastic material is

¹̂2f10
@ j #1

kj
2

k0
2 f10

@ j #50; j 51,2,3 (70)

The boundary conditions are
1. At the mean free surface

• Dynamic boundary condition

2iv̂f10
I 1Û reff10,x̂

I 1h1050 (71)

• Kinematic boundary condition

f10,ŷ
I 52 i v̂h101Û refh10,x̂ (72)

2. At the mean bed surface
• Continuity of vertical component of flow velocity

f10,ŷ
I 52

i v̂

Re~ek0h!
@~12n01a1n0!f10,ŷ

@2#

1~12n01a2n0!f20,ŷ
@2# 2~12n01a3n0!f30,x̂

@2# #

(73)
• Continuity of vertical component of fluid stresses

iv̂f10
I 5

K Re~k0!

n0rgRe~ek0h! F~12n01a1n0!
k1

2

k0
2 f10

@2#

1~12n01a2n0!
k2

2

k0
2 f20

@2#G (74)

• Continuity of horizontal component of total stresses
JO
-

t
e

2f10,x̂ŷ
@2# 12f20,x̂ŷ

@2# 1f30,ŷŷ
@2# 2f30,x̂x̂

@2# 50 (75)

• Continuity of vertical component of total stresses

~f10,ŷŷ
@2# 1f20,ŷŷ

@2# 2f30,x̂ŷ
@2# !2

l

2G S k1
2

k0
2 f10

@2#1
k2

2

k0
2 f20

@2#D 50 (76)

3. Far field (y→2`)

fj
@2#→0; j51,2,3 (77)

Inside Boundary Layer

The governing equations inside the boundary layer are

f
10,ȲȲ

II
1S 12

Û

v̂
Df10

II 50 (78)

f
10,Y% Y%
@4#

1f10
@4#50 (79)

wheref10
II andf10

@4#5nondimensional rotational potential functio
of flow and the displacement function of the second rotatio
inside the poroelastic bed.
The boundary conditions inside the boundary layer are
1. Continuity of horizontal component of flow velocity

f10,x̂
I 1f

10,Ȳ

II
52

i v̂

Re~ek0h!
@~12n01a1n0!f10,x̂

@1# 1~12n0

1a2n0!f10,x̂
@2# 1~12n01a3n0!f10,ŷ

@3# # (80)

2. Continuity of horizontal component of fluid stresses

f
10,ȲȲ

II
'2 i v̂

a4

Re~ek0h!
f

10,Y% Y%
@4#

(81)

General Solutions

After the time factore2 ivt is omitted, the given incoming wate
wave profile with magnitudea is

h10~x!5aeik0x ~0,x,`! (82)

With the input of incoming water wave, the leading order
the aforementioned boundary value problem can be solved by
method of separation of variables. The dimensional solutions
the velocity potentials and the displacement potentials are

F1
~1!5$A0 cosh@k0~h2y!#1B0 sinh@k0~h2y!#%eik0x (83)

F2
~1!5«2

a0

k0
2 eiA12Û/v̂~kw /k0!yeik0x (84)

with kw
2 5 iv/n and Im(A12Û/v̂kw /k0).0;

F j
~2!5

aj

k0
2 eK jyeik0x; j 51,2,3 (85)

with K j
25k0

22kj
2, Re(Kj).0; j51,2,3

F4
~2!5

«4
2

«2

a4

k0
2 e2 i ~k4 /k0!yeik0x (86)

with Im(k4 /k0).0.
Based on Eqs.~83!–~86!, there are seven unknown coeffi

cients. The coefficientsA0 , B0 , a1 , a2 , and a3 can be solved
straightforwardly outside the boundary layer, whilea0 and a4
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Fig. 2. Variation of wave-induced effective stresses and pore water pressures
in-
as
need to be solved by the boundary layer correction approach
side the boundary layer. The results of the coefficients are
follows:

A052 igh0 /c0v (87)

B05~ igh0 /c0v!H f

h
2F ~12n01a1n0!H2S k1

2

k0
2D ~2h sinhj

1 f coshj!2~12n01a2n0!H1S k2
2

k0
2D ~2h sinhj

1 f coshj!G Y ~Dh!J (88)
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a15
H2

D
~2h sinhj1 f coshj!

n0rgh0

c0K
(89)

a252
H1

D
~2h sinhj1 f coshj!

n0rgh0

c0K
(90)

a352L1a12L2a2 (91)

a052
v

A12k0U/v
@ ia1~12n01a1n0!k01 ia2~12n0

1a2n0!k01a3~12n01a3n0!K3#2k0
3@A0 cosh~j!

1B0 sinh~j!# (92)



Fig. 3. Variation of effective stresses and pore water pressures under different currents
a45 i
~12k0U/v!a0

va4
(93)

c0512
k0U ref

v
(94)

f 5 f ~U !5coshj2
Uk0

v
coshj2

U ,y

v
sinhj1

U ,yy

vk0
~12coshj!

(95)

q5q~U !5sinhj2
Uk0

v
sinhj2

U ,y

v
coshj1

U ,yy

vk0
sinhj

(96)

L152i ~K1 /k0!/~11K3
2/k0

2! (97)

L252i ~K2 /k0!/~11K3
2/k0

2! (98)
H15~K1
2/k0

2!22~K1K3 /k0
2!/~11K3

2/k0
2!2

l

2G
~k1

2/k0
2!

(99)

H25~K2
2/k0

2!22~K2K3 /k0
2!/~11K3

2/k0
2!2

l

2G
~k2

2/k0
2!

(100)

D5~12n01a1n0!H2@~k1
2/k0

2!coshj1~n0rv2/Kk0
2!~K1 /k0!h#

2~12n01a2n0!H1@~k2
2/k0

2!coshj1~n0rgv2/Kk0
2!

3~K2 /k0!h#1 i ~12n01a3n0!~L1H22L2H1!

3~n0rv2/Kk0
2!h (101)

j5k0h (102)
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Fig. 4. Distribution of vorticity in homogeneous water~upper part! and pore water~lower part!
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After solving the displacement potentials, all the other va
ables can be obtained.

Results and Comments

Since the present work takes the viscosity of water into accou
there exists a boundary layer of the homogeneous water near
bed surface. And since the second transverse wave inside
poroelastic bed decays very quickly in the vertical direction ne
the interface, a multiparameter expansion based on«25k0 /kw

and«45k0 /k4 needs to be proposed for the boundary layer co
rection.

The present laminar model adopts the values of each par
eter as K52.33109 N/m2, m50.001 N s/m2, h52.0 m, a
50.2 m, T52.0 s, n050.4, r52,650 kg/m3, kp51.0
Fig. 5. Weight of vorticity induced by first transverse wave and all waves inside porous bed
The dispersion relation, which is used to find the complex
wave numberk0 , can be obtained

sinh2 j2q2rT5q~r coshj2 f T!1~cosh2 j2 f coshj!
(103)

where

r 5r ~v,U ref!5
v2

gk0
2

2U ref v

g
1

U ref
2 k0

g
(104)

T5~n0rv2/Kk0
2!/~T1 /T2! (105)

T15~12n01a1n0!H2K1 /k02~12n01a2n0!H1K2 /k0

1 i ~12n01a3n0!~L1H22L2H1! (106)

T25~12n01a1n0!H2k1
2/k0

22~12n01a2n0!H1k2
2/k0

2

(107)
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Since the laminar flow will induce the vorticity inside the po
rous media, denoted as§, due to the unsteady perturbed veloci
we can use the following equation:

§5a3¹3~¹3HI 3
~2!!1a4¹3~¹3HI 4

~2!! (108)

to calculate the vorticity, and its distribution is shown in Fig.
@upper vorticity,§5¹3(¹3VI (1)), is due to unsteady flow within
homogeneous water# with U ref50.2 m/s. Although the vorticity
distributions of homogeneous water and porous material bed
not continuous at the interface, they will fit better if higher ord
perturbation expansion is performed. Note that the vorticity ins
the porous bed is mainly contributed by the first transverse wa
while relatively little by the second transverse wave. This can
found from Fig. 5, which indicates that only 10% of vorticit
contributed from the second transverse wave in this example.
phenomenon is due to the fact that the first transverse wav
arising from the displacement of fluid induced by the tangen
stresses of porous bed, while the second one is due to the vis
ity of pore water and the coupled effect of shear stresses
permeability. The latter effect is significant inside the bound
layer, but it dissipates very quickly outside the boundary laye

In addition, defining a parameterg as the ratio of fluid shear
stress to pore pressure on the bed surface under the water w
and current effects, various flows are simulated to show th
mechanism of bed form formation. Every simulation can be
noted as the Reynolds number and Froude number, i.e., (RN ,Fr).
In the study, Reynolds number is defined asRN5U refh/n, and
Froude number is defined asFr5U ref /Agh. Fig. 6 shows the
contour lines ofg’s under various flows, which indicates that th
values ofg’s are large whenFr ’s are less than 0.5 or greater tha
1.5; otherwise,g’s are small. The results have the same trend
that of the work of Engelund and Hansen~1966! @referring to
Allen John~1968!# as shown in Fig. 7. From Figs. 6 and 7, w
can conclude that the formation mechanism of antidune and p
bed is dominated by Froude number, i.e., pressure gradien
important; while that of ripple is dominated by Reynolds numb
i.e., viscosity and shear effect are important. Since the forma
mechanism of ripple is mainly due to the effects of the flu
viscosity and the shear stress near the fluid/porous bed inter
this bed form, ripple, cannot be produced in the work of Hs
et al. ~2001! which simulated the bed forms caused by wa
waves accompanied with a constant current by potential theo

Conclusions

The present study investigates the interaction of oscillatory la
nar water waves and a steady nonuniform current passing ov
hard poroelastic bed. Since the viscosity of water is involved,
second transverse wave of the porous media is induced and m
the problem more complicated. Based on the fact that there e
two Stokes boundary layers near the porous bed surface, mu
length scales are applied, and thus a multiparameter perturb
expansion is proposed. The boundary layer correction appro
makes the analytical solution of water waves and current pas
over a hard poroelastic bed possible. The complete solutio
composed of solving the problem without boundary layer fir
and then adding the boundary-layer correction. The results of
ferent shear stress/pressure ratios, which reveal a trend simil
Engelund and Hansen~1966! ~Allen John 1968!, indicate the hy-
draulic mechanism of bed form formation under different flow
and will be helpful to realize the cause of ripple formation. F
nally, since the boundary-layer correction can be solved
310212 m2, G55.031010 N/m2, and l51.031011 Ns/m2,
which is constrained toO(«4),O(«2),O(«1) and 2G1l
>O(mv/kp). When the surface velocityU ref50, the present re-
sults obtained by the boundary layer correction approach are c
pared with those of Song and Huang~2000! as shown in Fig. 2. In
Fig. 2,L is the wavelength of water andP0 is the perturbed water
pressure on the mean bed surface. It is clear that the dyna
response is close to that of Song and Huang~2000! near the bed
surface; however, they are slightly different at a deeper locat
This is because the present study is merely the result of lea
order. If higher order perturbation expansion is performed,
results are supposed to fit better.

To show the current effect,U ref50, U ref50.1 m/s, andU ref

50.2 m/s are chosen to add into the simulation. The results du
the interaction of water waves and current are shown in Fig. 3
the figure, it shows the solid stresses and pore water pres
under the three different currents. They are getting larger w
the current effect is getting stronger. The displacements of por
bed also fluctuate more drastically with increasing current effe

Fig. 7. Distribution of various bed forms@after Englund and Hansen
~1966! in Allen John~1968!#
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coupled by this approach, it is expected that it will be very help
in computation for further studies.
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