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DYNAMIC RESPONSE OF SOFT POROELASTIC BED TO NONLINEAR

WATER WAVE—BOUNDARY LAYER CORRECTION APPROACH

By P. C. Hsieh,1 L. H. Huang,2 Associate Member, ASCE, and T. W. Wang3

ABSTRACT: When an oscillatory water wave propagates over a soft poroelastic bed, a boundary layer exists
within the porous bed and near the homogeneous water/porous bed interface. Owing to the effect of the boundary
layer, the conventional evaluation of the second kind of longitudinal wave inside the soft poroelastic bed by
one parameter, ε1 = k0a, is very inaccurate so that a boundary layer correction approach for a soft poroelastic
bed is proposed to solve the nonlinear water wave problem. Hence a perturbation expansion for the boundary
layer correction approach based on two small parameters, ε1 and ε2 = k0/k2, is proposed and then solved. The
solutions carried out to the first three terms are valid for the first kind and the third kind of waves throughout
the whole domain. The second kind of wave is solved systematically inside the boundary layer, whereas it
disappears outside the boundary layer. The result is compared with the linear wave solution of Huang and Song
in order to show the nonlinearity effect. The present study is very helpful to formulate a simplified boundary-
value problem in numerical computation for soft poroelastic medium with irregular geometry.
INTRODUCTION

The dynamic action of a propagating water wave on coastal
constructions is emphasized during the design work, especially
in the analysis of seabed instability. The wave-induced varia-
tion in pore pressure and effective stresses has been recognized
as a major factor so that it is very important to correctly es-
timate the stress and strain of the seabed. In general, the sea-
bed is permeable and deforming, and the nonlinear water wave
is very likely to happen. The study of the interaction between
the seabed and the water wave becomes increasingly more
complicated; thus it has been changed from linear water wave
to nonlinear water wave and from rigid seabed material to
poroelastic bed material.

Putnam (1949) began investigation on a linear water wave
interacting with a porous bed. Then, Reid and Kajiura (1957)
studied the porous bed problem by considering a linear wave
in an inviscid, incompressible, irrotational fluid flow satisfying
Darcy’s law interacting with a rigid, isotropic porous skeleton.
Sleath (1970), Liu (1973), and Moshagen and Torum (1975)
improved the studies of Putnam (1949) and Reid and Kajiura
(1957), but all the earlier studies focused only on the rigid bed
material.

In fact, fluid within porous material interacting with a de-
forming solid skeleton becomes a more complicated two-phase
problem for a realistic analysis. Biot (1962) developed a po-
roelasticity theory to discuss an elastic wave in a fluid-satu-
rated porous solid. Yamamoto et al. (1978) obtained governing
equations of a water wave propagating over a porous bed un-
der the assumption of existing double eigenvalues. These
equations are exactly the same as the limiting equation of po-
roelasticity [see discussions in Huang and Song (1993)]. By
neglecting the inertial terms of the poroelasticity theory that
is physically reasonable for rigid bed material, Madsen (1978)
also applied Biot’s theory to investigate the effect of aniso-
tropic permeability in a seabed by a numerical method that is
only valid for a rigid porous bed. On the other hand, Mei and
Foda (1981) proposed a boundary layer correction to simplify
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the analysis; however, their approach was imperfectly assumed
to be restricted to a low-frequency wave only and without
systematic perturbation analysis. For Biot’s equation without
simplifications, Huang and Chwang (1990) investigated Biot’s
oscillatory equation for an acoustic problem and obtained three
decoupled Helmoltz equations to represent each of the three
kinds of wave. Huang and Song (1993) solved the problem of
a linear water wave interacting with a deformable bed by treat-
ing the bed as a poroelastic material and obtained some sat-
isfactory results.

As to the nonlinear water wave problem, Mei (1983), Fen-
ton (1985), and Dean and Dalrymple (1991) studied the non-
linearly deep-water wave on an impermeable rigid bed by the
Stokes expansion. Chen et al. (1997) also applied the conven-
tional Stokes expansion of the deep-water wave based on ε1 =
k0a to investigate the dynamic response of a permeable bed
material. They found that the Stokes expansion used is only
valid for hard poroelastic bed material but invalid for a soft
one even though the Ursell parameter is small.

Based on the foregoing comments and because the wave-
length of the second kind of longitudinal wave (with wave
number k2) inside the porous bed is much shorter than that of
the water wave (with wave number k0) (i.e., ik2i > ik0i for
soft porous bed material), a two-parameter expansion based on
ε1 and ε2 = k0/k2 instead of a one-parameter expansion based
on ε1 is proposed to investigate the problem of a nonlinear
water wave propagating over a soft poroelastic deforming bed.
This approach will be more systematic than the approach of
Mei and Foda (1981). Moreover, solving the interaction be-
tween water and a soft porous bed is very hard even by a
numerical method; thus the present study will propose a basic
concept to formulate a simplified boundary-value problem of
a soft poroelastic medium for numerical computation in the
sequence research, whereas Madsen (1978) only discussed the
problem of a rigid porous bed.

FORMULATION

This study on a nonlinear water wave problem is defined in
Fig. 1, which indicates that the plane wave propagates over a
horizontally infinite thickness and homogeneous poroelastic
bed saturated with water. Region 1 is homogeneous water
processed as potential flow, and region 2 is a semi-infinite
porous medium treated by Biot’s theory of poroelasticity (Biot
1962). The symbols h* and j* in Fig. 1 represent the displace-
ments of waves from the mean free surface (y = h) and mean
bed interface (y = 0), respectively.



FIG. 1. Definition Sketch

Boundary-Value Problem

Assuming that homogeneous channel flow (region 1 of Fig.
1) is potential flow, the equations of continuity and momentum
in terms of velocity potential become(1)F*

2 (1)= F* = 0 (1)
2 2(1) (1) (1)­F* r ­F* ­*0 (1)r 1 1 1 P* = 0 (2)0 HF G F G J

­t 2 ­x ­y

where = perturbed pressure; and r0 = water density.(1)P*
Referring to Huang and Chwang (1990), the linear momen-

tum equations of solid skeleton and fluid for the porous bed
based on the theory of poroelasticity may be written as

2 2­ d* ­ D* ­d* ­D*
=?s* = r 1 r 1 b 2 (3)11 12 S D2 2­t ­t ­t ­t

2 2­ d* ­ D* ­d* ­D*
=?S* = r 1 r 2 b 2 (4)12 22 S D2 2­t ­t ­t ­t

with

(2)s* = t* 2 (1 2 n )P* I (5)0

t* = 2Ge* 1 l(=?d*)I (6)

1 te* = [=d* 1 (=d*) ] (7)
2

(2)S* = 2n P* I (8)0

r = (1 2 n )r 1 r (9)11 0 s a

r = 2r (10)12 a

r = n r 1 r (11)22 0 0 a

2b = mn /k (12)0 p

where s* = solid stress tensor, t* = effective stress tensor of
solid; S* = normal stress tensor of fluid; d* and D* = solid
and fluid displacement vectors, respectively; = perturbed(2)P*
pore pressure inside the porous medium; rs = solid density; ra

= mass coupling effect (neglected in this study); n0 = porosity;
m = fluid viscosity; kp = specific permeability; G and l =
Lame’s constants of elasticity; I = identity matrix.

Combining continuity equations of solid and fluid with state
equation of fluid and after linearization of porosity, one can
find

(2)­P* K ­d* ­D*
= 2 (1 2 n )=? 1 n =? (13)0 0F S D S DG

­t n ­t ­t0

for perturbed pore pressure In (13), K is the bulk mod-(2)P* .
ulus of compressibility of fluid inside the porous bed.

There are three boundaries that require boundary conditions
in this study. They are (1) free surface [y = h 1 h*(x, t)]; (2)
channel-bed interface [y = j*(x, t)]; and (3) deep far field of
the porous bed [ ŷ → 2`].
On the free surface, a kinematic boundary condition exists
as

(1) (1)­h* ­F* ­F* ­h*
2 1 = (14)

­x ­x ­y ­t

and a dynamic boundary condition exists as
2 2(1) (1) (1)­F* 1 ­F* ­F*

1 1 1 gh* = 0 (15)HF G F G J
­t 2 ­x ­y

On the porous bed interface, the continuity of pressure gives

(1) (2)P* = P* (16)

and the conservation of fluid flux gives

­d* ­D* (1)* *n ? (1 2 n ) 1 n = n ?=F* (17)0 02 F G 2
­t ­t

where = unit normal vector of the porous bed interface.*n2

Considering the kinematics of the porous bed interface, one
has

­j* ­d* ­j*
= ? 2 , 1 (18)S D

­t ­t ­x

and (18) will be used to solve j*. The continuity of effective
stresses of solid gives

*n ?t* = 0 (19)2

At the far field of porous bed, y → 2`, the boundary con-
ditions are vanishing displacement vectors; that is

d*, D* → 0 (20)

If uh*u and uj*u are much smaller than the relative wave-
lengths, it is more convenient to shift the boundary conditions
at the free surface, y = h 1 h*(x, t), and the porous bed
interface, y = j*(x, t), to y = h and y = 0 before solving the
boundary-value problem. Conventionally, the Taylor series ex-
pansions are applied to the boundary conditions at the free
surface [(14) and (15)] and at the porous bed interface [(16),
(17), (19), and (18)] by performing, respectively

` `m m m m(h*) ­ (j*) ­
andO Om mm! ­y m! ­ym=0 m=0

As m = 0, the boundary-wave problem is linear, but as m
$ 1, the problem becomes nonlinear. For nonlinear problems,
the above Taylor series expansions at the interface (y = 0) are
applicable for the first and third kinds of wave but are not
applicable for the second kind of wave because there exists a
boundary layer that will render errors of the partial derivative
in the vertical direction for the second longitudinal wave. That
is why Chen et al. (1997) failed to solve the nonlinear problem
for soft porous material by only one length scale. To overcome
the difficulty, another small parameter, ε2 = k0/k2, other than
ε1 = k0a needs to be proposed. Thus, the vertical coordinate y
for the second kind of wave will be enlarged into y9 based on
this small parameter ε2 [see (35b)].

Referring to Huang and Song (1993) for the decoupling
processes of Biot’s equations of poroelasticity (Biot 1962), the
governing equations (3) and (4) can be rewritten into three
decoupled scalar equations as

(2) (2)2 2* *= F 1 k F = 0, j = 1, 2, 3 (21)jj j

Also, the perturbed pressure equation [(13)] gives

K (2) (2)(2) 2 2* *P* = [(1 2 n 1 a n )k F 1 (1 2 n 1 a n )k F ]0 1 0 1 0 2 0 21 2n0

(22)
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where wave numbers kj and solid/fluid related parameters aj

are given as (8)–(20) in Huang and Song (1993). In (21),
and are displacement potentials of the first kind and(2) (2)* *F F1 2

the second kind of longitudinal waves, respectively, and
is the displacement potential of the third kind of trans-(2)*F3

verse wave; that is
(2) (2) (2)* * *d* = =F 1 =F 1 =ˆ(F e ) (23)Z1 2 3

(2) (2) (2)* * *D* = a =F 1 a =F 1 a =ˆ(F e ) (24)1 2 3 Z1 2 3

Note that the governing equations (1) and (21) and the pres-
sure and effective stresses (2), (22), and (6), together with
boundary conditions (14)–(17), (19), and (20), form the com-
plete boundary-value problem of the present study.

Nondimensionalized Governing Equations and
Boundary Conditions

Huang and Song (1993) defined the following parameters
in their solution of a linear water wave propagating over a
poroelastic bed:

m = (2G 1 l)n /K (25)0

ε = n r v/b (26)0 0

2n r 1 (1 2 n )r v0 0 0 s2L = (27)22G 1 l 1 (K/n ) k0 0

2i(m 1 1) r v02P = (28)2mε K k0

2n r 1 (1 2 n )r v0 0 0 s2C = (29)2G k0

in which ε = penetrability parameter; v = frequency; m =
stiffness ratio of solid and fluid; L and C are only functions
of water wave speed and material (fluid and solid skeleton)
properties, whereas P is not only a function of the same var-
iables for L and C but also depends on the permeability of
porous medium.

For low penetrability (i.e., iεi << 1), (27)–(29) could be
simplified to

2 2L 6 (k /k ) (30)1 0

2 2P 6 (k /k ) (31)2 0

2 2C 6 (k /k ) (32)3 0

Moreover, for soft solid skeleton, ik2i >> ik0i and such that
iP2i >> 1. Because iL2i is always smaller than iC2i, one can
obtain

2 2 2iL i < iC i << 1 << iP i (33)

After the analysis of order of magnitude for each dependent
variable, the dimensionless variables are selected as

x̂ = k x (34)0

ŷ = k y (35a)0

y9 = ŷ/ε for the second longitudinal wave only (35b)2

t̂ = gk t (36)Ï 0

ĥ* = k h* (37)0

v̂ = v/ gk (38)Ï 0

2k0(1) (1)F̂* = F* (39)
gkÏ 0

(2) (2)k h 20ˆ * *F = e k F (40)01 1
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2 k h 20k e k2 0(2) (2) (2)k h 20* * *F = e k F = F (41)02 2 22 2 2k ε L1 2

(2) (2)k h 20* *F = e k F (42)03 3

k h0k e0
ĵ* = j* (43)2C

k0(1) (1)ˆ ˆP* = P* (44)
r g0

k0(2) (2)ˆ ˆP* = P* (45)
r g0

All of the symbols of variables on the left-hand side of (34)–
(45) are dimensionless, but those on the right-hand side are
dimensional. Note that because the vertical length scales need
multiple scales, ŷ and y9 are proposed for the boundary layer
correction approach.

Applying the two-parameter perturbation expansion, veloc-
ity potential of channel flow and displacement potentials of
the three kinds of wave for the whole domain can be written

(1) 2 2ˆ ˆ ˆ ˆ* * *F* = ε f 1 ε ε f 1 ε f 1 O(ε ε , . . .) (46)1 1 2 1 1 210 11 20

(2) [ j ] [ j ] [ j ]2 2ˆ ˆ ˆ ˆ* *F = ε f * *1 ε ε f 1 ε f 1 O(ε ε , . . .), j = 1, 31j 1 2 1 1 210 11 20

(47)

Due to (33), the second kind of wave needs to be solved inside
the boundary layer. The displacement potential of the second
kind of wave inside the boundary layer is nondimensionalized
specifically as (41) with a magnified length scale [see (35b)]
and expanded as

(2) [2] [2] [2]2 2ˆ ˆ ˆ ˆ* * * *F = ε f 1 ε ε f 1 ε f 1 O(ε ε , . . .) (48)1 1 2 1 1 22 10 11 20

if iε2i and iε1i are smaller than unity. Also, the water wave at
the free surface becomes

2 2* * *ĥ* = ε ĥ 1 ε ε ĥ 1 ε h 1 O(ε ε , . . .) (49)1 1 2 1 1 210 11 20

and the wave of the channel-bed interface becomes

2 2ˆ ˆ ˆ ˆ* * *j* = ε j 1 ε ε j 1 ε j 1 O(ε ε , . . .) (50)1 1 2 1 1 210 11 20

For a periodic motion with frequency v, the aforementioned
variables [ ]*(R, t) can be written as where R is2ivt[ ](R)e ,
a position vector. Let the given incoming wave amplitude be-
fore being disturbed by the porous bed be a, and if the wave
number of this incoming wave is found to be k0 (it will be
found as complex), the Stokes expansion of two parameters
based on ε1 and ε2 will be carried out only to the first three
terms of the present nonlinear water wave problem to avoid
the occurrence of secular terms. Thus, after the Taylor series
expansions at the free surface and at the channel-bed interface,
respectively, the boundary-value problem of each order, with-
out the time factor, is obtained in the following.

Boundary-Value Problem for the First and Third
Kinds of Wave

O(ε1)

Governing equations

• Region 1: 2` < x̂ < `, 0 < ŷ < k0h

2ˆ ˆ= f = 0 (51)10

• Region 2: 2` < x̂ < `, 2` < ŷ < 0

2 [3] 2 [3]ˆ ˆˆ= f 1 C f = 0 (53)10 10

Boundary conditions



• At the free surface: ŷ = k0h, 2` < x̂ < `
(a) Kinematic free surface boundary condition

f̂ = 2iv̂ĥ (54)10, ŷ 10

(b) Dynamic free surface boundary condition

ˆ2iv̂f 1 ĥ = 0 (55)10 10

• At the porous bed interface: ŷ = 0, 2` < x̂ < `
(a) Continuity of pressure

2k KL0 [1]ˆ ˆ2iv̂f 1 q f = 0 (56)10 1 10k h0e n r g0 0

(b) Continuity of flux

[3] k h0[1] ˆ ˆˆ q f 1 e f = 0ˆ ˆ3 10, x 10, yq f 2 iv̂ˆ1 10, yiv̂ (57)

(c) Continuity of effective stress (only 6 0tˆ ˆxy

[1] [3] [3]ˆ ˆ ˆ2f 1 f 2 f = 0 (58)ˆ ˆ ˆ ˆ ˆ ˆ10, xy 10, yy 10, xx

• At the deep far field: ŷ → 2`,2` < x̂ < `

[ j ]f̂ → 0, j = 1, 3 (59)10

where

q = 1 2 n 1 a n , j = 1, 3 (60)j 0 j 0

Note that only one component of the above boundary condi-
tion of continuity of effective stress is needed (i.e., 6 0),tˆ ˆxy

otherwise it will become overdetermined. (Another condition,
6 0, includes the effect of the second kind of wave andtˆ ˆyy

will be adopted by the boundary layer correction for the sec-
ond kind of wave later.)

O(ε1ε2)

The presentations are identical with those in O(ε1) except
subscripts are changed from 10 to 11.

2O(ε )1

Governing equations

• Region 1: 2` < x̂ < `, 0 < ŷ < k0h

2ˆ ˆ= f = 0 (61)20

• Region 2: 2` < x̂ < `, 2` < ŷ < 0

2k̃12 [1] 2 [1]ˆ ˆ ˆ= f 1 L f = 0 (62)20 202k1

2k̃32 [3] 2 [3]ˆ ˆ ˆ= f 1 C f = 0 (63)20 202k3

Boundary conditions

• At the free surface: ŷ = k0h, 2` < x̂ < `
(a) Kinematic free surface boundary condition

ˆ ˆ ˆf 1 2iv̂ĥ = ĥ f 2 ĥ f (64)ˆ ˆ ˆ ˆ ˆ20, y 20 10, x 10, x 10 10, yy

(b) Dynamic free surface boundary condition

1 2 2ˆ ˆ ˆ ˆ2 2iv̂f 1 ĥ = iv̂ĥ f 2 (f 1 f ) (65)ˆ ˆ ˆ20 20 10 10, y 10, x 10, y2
• At the porous bed interface: ŷ = 0, 2` < x̂ < `
(a) Continuity of pressure

2k KL 10 [1] 2 2ˆ ˆ ˆ ˆ˜2iv̂f 2 q f = (f 1 f )ˆ ˆ20 1 20 10, x 10, yk h0e n r g 20 0

2 2 2ˆ ˆiv̂C j C k KL j10 0 10 [1]ˆ ˆ2 f 1 q fˆ ˆ10, y 1 10, yk h 2k h0 0e e n r g0 0 (66)

(b) Continuity of flux

k h [1] [3] 20 ˆ ˆ ˆ ˆ ˆ˜ ˜e f 1 2iv̂(q f 2 q f ) = C j fˆ ˆ ˆ ˆ ˆ20, y 1 20, y 3 20, x 10, x 10, x

2 2 2k h [1] [3]0ˆ ˆ ˆ ˆ ˆ2 C j f 1 iv̂C e j (q f 1 q f )ˆ ˆ ˆ ˆ10 10, yy 10, x 1 10, ˆ 3 10, yx

2 2k h [1] [3]0 ˆ ˆ ˆ2 iv̂C e j (q f 2 q f )ˆ ˆ ˆ ˆ10 1 10, yy 3 10, yx (67)

(c) Continuity of effective stress (only 6 0tˆ ˆxy

[1] [3] [3]ˆ ˆ ˆG(2f 1 f 2 f )ˆ ˆ ˆ ˆ ˆ ˆ20, xy 20, yy 20, xx

2 2k h [1] [3] 2 [1]0 ˆ ˆ ˆ ˆ= C e j [2G(f 1 f ) 2 lL fˆ ˆ ˆ ˆ ˆ10, x 10, xx 10, xy 10

2 2k h [1] [3] [3]0 ˆ ˆ ˆ ˆ2 GC e j (2f 1 f 2 f )]ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ10 10, xyy 10, yyy 10, xxy (68)

• At the deep far field: ŷ → 2`, 2` < x̂ < `

[ j ]f̂ → 0, j = 1, 3 (69)20

where and ( j = 1, 3) in nonlinear order are given2˜ ˜k a εj j 1

as eqs. (8)–(20) in Huang and Song (1993), and

˜ ˜q = 1 2 n 1 a n , j = 1, 3 (70)j 0 j 0

Boundary Layer Correction for Second Kind of Wave

The second kind of wave disappears outside the boundary
layer, but it does exist inside the boundary layer; thus the
complete solution needs to be corrected by further considering
the second kind of wave inside the porous material bed. Be-
cause a thin boundary layer exists within the porous bed near
the water/porous bed interface, multiple scales are necessary
to solve the nonlinear boundary-value problem for the second
longitudinal wave. One therefore lets y9 = ŷ/ε2 to change the
scale from ŷ to the magnified scale y9 in (35b). The difficulty
(i.e., the error due to the first partial derivative based on y of
the displacement potential of the second longitudinal wave)
that Chen et al. (1997) encountered is now overcome by pro-
posing this double length scale in the vertical direction. After
the coordinate transformation of (35b), the boundary-value
problem of the displacement potential of the second longitu-
dinal wave inside the boundary layer is as follows.

O(ε1)

Governing equations

[2] [2]ˆ ˆf 1 f = 0 (71)10, y9y9 10

Boundary Conditions: y9 = 0, 2` < x̂ < `

(a) Continuity of pressure

[2]f̂ = 0 (72)10

(b) Continuity of effective stress (only 6 0)tˆ ˆyy

2 [2] 2 [2] 2 [1] [1] [3]ˆ ˆ ˆ ˆ ˆ2GL f 2 lL f = lL f 2 2G(f 2 f )ˆ ˆ ˆ ˆ10, y9y9 10 10 10, yy 10, xy

(73)

Note that the boundary condition of continuity of flux is equiv-
alent to (72), and the boundary condition of 6 0 just sat-tˆ ˆxy

isfies = (i.e., = 0). However, = 0 at[2] [2] [2] [2]ˆ ˆ ˆ ˆf 2f f fˆ ˆ ˆ ˆ10, xy9 10, y9x 10, xy9 10, xy9

y9 = 0 is automatically satisfied by referring to (72). Thus only
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one component of the effective stress boundary condition tˆ ˆyy

6 0 is needed to solve [2]f̂ .10

O(ε1ε2)

The presentations are identical with those in O(ε1) except
subscripts are changed from 10 to 11.

2O(ε )1

Governing equations

[2] [2]ˆ ˆf 1 f = 0 (74)20, y9y9 20

Boundary conditions: y9 = 0, 2` < x̂ < `

(a) Continuity of pressure

2k KL 10 [2] [2] [2]ˆ ˆ ˆ ˆq̃ f = 2iv̂f 2 (f 1 f )ˆ ˆ2 20 20 10, x 10, yk h0e n r g 20 0

2k KL0 [2] 2 2k h0ˆ ˆ˜2 q f 2 C j e1 20 10k h0e n r g0 0

2k KL0 [1] [2]ˆ ˆ ˆ? 2iv̂f 1 (q f 1 q f )ˆ ˆ10, y 1 10, y 2 11, y9F Gk h0e n r g0 0 (75)

(b) Continuity of effective stress (only 6 0)tˆ ˆyy

2 [2] 2 [2] [1] [3] 2 [1]ˆ ˆ ˆ ˆ ˆ2GL f 2 lL f = 22G(f 2 f ) 1 lL fˆ ˆ ˆ ˆ20, y9y9 20 20, yy 20, xy 20

2 2k h [1] 2 [2] [3]0ˆ ˆ ˆ ˆ2 C j e [2G(f 1 L f 2 f )ˆ ˆ ˆ ˆ ˆ ˆ10 20, yyy 11, y9y9y9 10, xyy

2 [1] [2]ˆ ˆ2 lL (f 1 f )]ˆ10, y 11, y9 (76)

SOLUTION

After omitting the time factor the given incoming wa-2ivte ,
ter wave profile with magnitude a is

ik x0h (x) = ae , 0 < x < ` (77)10

With the input of the incoming water wave, each order of the
aforementioned boundary-value problem can be solved in se-
quence as shown in Fig. 2. Fig. 2 indicates that one can first
find the solution of order ε1 outside the boundary layer and
can subsequently match it with the inner expansion to com-
plete the solution of order ε1. Then, the solution of order ε1 is
provided to solve the higher orders in sequence as indicated
by the solid arrows as shown in Fig. 2. Note that the problem
of order ε1ε2 is solved simultaneously to find the unique so-
lution. Thus the dimensional solutions of the first kind of lon-
gitudinal wave and the third kind of transverse wave through-
out the entire domain are obtained as follows.

O(ε1)

i g v ik x0f = 2 cosh k (h 2 y) 2 sinh k (h 2 y) e (78)10 0 0F Gk v k0 0

i gk0[1] K k y1ik x1 0 0f̂ = cosh(k h) 2 sinh(k h) e10 0 0F G2 2k (iq K 2 q L ) v0 1 1 3 1

(79)

a3[3] K k y1ik x3 0 0f̂ = e (80)10 k h 20e k0

with the dispersion relation of complex wave number k0 as

2T v gk1 0
T 2 1 = 2 tanh(k h) (81)1 0S D2gk v0

where
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FIG. 2. Relation among Solutions of Each Order

n r g(q K 1 iq L )0 0 1 1 3 1
T = (82)1 2k KL q0 1

O(ε1ε2)

2gk vÏ 0 ik x0f = E cosh(k y) 2 sinh(k y) e (83)11 5 0 0F G2k gk0 0

c1[1] K k y1ik x1 0 0f = e (84)11 k h 20e k0

c3[3] K k y1ik x3 0 0f = e (85)11 k h 20e k0

i v ik x0h = E e (86)11 5
k gk0 Ï 0

2O(ε )1

gkÏ 0 2ik x0f = [E cosh 2k (h 2 y) 1 E sinh 2k (h 2 y)]e (87)20 3 0 4 02k0

b1[1] M k y12ik x1 0 0f = e (88)20 k h 20e k0

b3[3] M k y12ik x3 0 0f = e (89)20 k h 20e k0

g iE4 2ik x0h = 2 gk e (90)Ï20 0S D2v vk0

The dimensional solutions of the second kind of longitudi-
nal wave obtained by the boundary layer correction approach
are as follows.

O(ε1)

2a k y2 1[2]f = exp ik x 2 (91)10 0F S DG2 k h 20k e k ε0 2 2

with

a = (C t 2 q a )/q (92)2 0 1 1 1 2

O(ε1ε2)

2c k y2 1[2]f = exp ik x 2 (93)11 0F S DG2 k h 20k e k ε0 2 2

with

v
c = i C t E 2 q c q (94)2 0 1 5 1 1 2S DY

gkÏ

2O(ε )1

2b k y2 1[2]f = exp ik 2x 2 (95)20 0F S DG2 k h 20k e k ε0 2 2

with



FIG. 3. Schematic Diagram of Two-Parameter Expansion

v C gk0 02k h 21 2k h 2 20 0˜b = e q 2i r C e 2 (t 2 r )2 2 4 0 1 1H 22vgkÏ 0

k h0 ˜1 (K a 2 ia )[C r 2 (q a K 2 iq c )] 2 e q b1 1 3 0 1 1 1 1 2 2 1 1J
(96)

After solving the displacement potentials, all of the other
variables can be obtained. The wave of the porous bed inter-
face from (18) gives

ik x2k h ik x2k h 20 0 0 0j(x) = a(K a 2 ia )e 1 ε ae (c K 2 ia L 2 ic )1 1 3 2 1 1 2 3

a 2ik x22k h 2 20 01 ε e {(K a 2 ia )[(K 1 1)a 2 a L 2 2iK a ]1 1 1 3 1 1 2 3 32

k h k h0 01 2b M e 2 4ib e }1 1 3 (97)

RESULTS AND COMMENTS

Because the conventional higher-order Stokes expansion
based on one parameter, ε1 = k0a, breaks down for the soft
material (Chen et al. 1997), this study proposes a two-param-
eter expansion with ε1 and ε2 = k0/k2 to estimate the second
kind of longitudinal wave for the soft material. In addition,
one finds that when the seabed is soft, the solution of Huang
and Song (1993) is constrained to > iε1i with n $ 1 (i.e.,niε i2

> but the present method is only constrained ton 2iε ε i iε i),2 1 1

iε1i > and iε2i > (referring to Fig. 3 and comparing2 2iε i iε i2 1

layer 2 with layer 3). In other words, the present solutions are
valid when iε1i1/2 > iε2i > iε1i2 before shear failure, which
TABLE 2. Variables of Very Soft Soil

Notation
(1)

Value
(2)

k0 0.245834E1011i0.481295E-04
k1 0.238469E-021i0.237891E-07
k2 0.318363E1021i0.318331E102
k3 0.808703E1001i0.823670E-05
k̃1 0.476939E-021i0.952280E-07
k̃2 0.450257E1021i0.450166E102
k̃3 0.161741E1011i0.329468E-04
a1 0.127676E101-i0.674232E-03
a2 0.386868E-01-i0.221286E102
a3 20.714250E-03-i0.134980E101
b1 0.171970E1011i0.707839E-03
b2 20.118767E-03-i0.341805E100
b3 0.749158E-03-i0.181747E101
c1 0.208305E-04-i0.189383E-04
c2 0.110643E1021i0.284844E-02
c3 20.200597E-04-i0.836553E-08

TABLE 1. Material Properties of Very Soft Soil

Item
(1)

Notation
(2)

Value
(3)

Unit
(4)

(a) Water

Density r0 1,000 kg/m3

Bulk modulus K 2.3 3 109 N/m2

Dynamic viscosity m 0.001 Ns/m2

Depth h 0.35 m
Wave height a 0.0357 m
Period T 1.55 s

(b) Skeleton

Density rs 2,650 kg/m3

Lame’s constant G 5.0 3 104 N/m2

Lame’s constant l 1.0 3 105 N/m2

Specific permeability kp 1.0 3 10211 m2

Porosity n0 0.4 —

indicates that the present solution is more accurate than the
solution of Huang and Song (1993) in the same order of ε2

for soft material. This is indicated clearly in Fig. 3, the sche-
matic diagram of the two-parameter expansion. Because the
second longitudinal wave decays very quickly in the y-direc-
tion near the homogeneous water/porous bed interface, Chen
et al. (1997) failed to estimate accurately the first order of
partial derivative with respect to y for the displacement poten-
tial of the second longitudinal wave inside the boundary layer
FIG. 4. Variation of Pore Pressure for Very Soft Material (i«1i 5 0.0878, i«2i 5 0.0546)
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Therefore, one more length scale is needed to estimate(2)ˆ .*F2

more accurately the first order of partial derivative for (2)ˆ *F2

in the vertical direction by the transformation of y to y9 [see
(35b)]. Because Dy9 is much shorter than Dy, the length scale
adopted by Chen et al. (1997) will overestimate the displace-
ment potential of the second longitudinal wave. That is why
the present method adopts two length scales to reformulate the
boundary-value problem inside the boundary layer.

To confirm the validity of the proposed solution, some soft
material and wave conditions are selected to compute pore
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pressure and effective stresses inside the porous bed as well
as the profiles of the channel bed and free surface. The results
agree very well to the solutions of Huang and Song (1993).
(Because the results are so close to those of Huang and Song’s
solutions, the detailed figures will not be shown here to save
space.) Because there is good agreement between the present
solutions and those of Huang and Song (1993) for the soft
porous bed as discussed, one may simply use the present so-
lution to show the validity of Biot’s theory of poroelasticity
(Biot 1962) in simulating a soft porous bed.
FIG. 5. Variation of Effective Stress for Very Soft Material: (a) xx-component; (b) yy-component; (c) xy-component (i«1i 5 0.0878,
i«2i 5 0.0546)



FIG. 6. (a) Free Surface Profiles; (b) Channel-Bed Interface
Profiles of Wave Period 1.55 s with Respect to Time for Very Soft
Material (i«1i 5 0.0878, i«2i 5 0.0546)

Table 1 shows the material properties of very soft soil, and
Table 2 provides the simulation result. Comparing the present
Table 2 with Table 2 of Chen et al. (1997), one can find that
the unreasonable result—the coefficient of a higher-order term
is much larger than that of the leading term (i.e., ub2u >> ua2u)
—does not exist in the present result.

The very soft soil case is illustrated to show the differences
between the linear solution of Huang and Song (1993) and the
present nonlinear solution, and the simulation results are plot-
ted in Figs. 4–6. In Fig. 4, P0 is the perturbed pressure on bed
at y = 0. In fact, the analytic solution proposed by Huang and
Song (1993) failed in this case due to their constrain, >niε i2

iε1i, but the present method is still applicable. Note that the
Ursell number, Ur = Re(k0a)/[Re(k0h)]3, is 0.138. Moreover,
referring to Fig. 6(a) the water profile is the same as that of
Chen et al. (1997) while referring to Fig. 6(b), the soil profile
is significantly different than that of Chen et al. (1997). This
is because the solution of homogeneous water of Chen et al.
(1997) is correct, but the solution of the second longitudinal
wave inside the porous medium is wrong. Furthermore, refer-
ring to Figs. 7(b–d) of Chen et al. (1997) the experimental
data near the peaks and troughs are lower than their nonlinear
solution, and the present solution in Fig. 6(b) also has the same
tendency as the experimental data [i.e., the present nonlinear
solution is lower than that of Chen et al. (1997) in the peaks
and the troughs]. Thus combining Figs. 4–6, it can be con-
cluded that in simulating a soft porous bed it is proper to adopt
a two-parameter expansion instead of the conventional one-
parameter expansion.

CONCLUSIONS

When the bed material is soft, the higher-order Stokes ex-
pansion of a water wave based on ε1 is invalid [i.e., the one-
parameter perturbation failed (Chen et al. 1997)]. This is be-
cause a boundary layer exists inside the porous bed and near
the homogeneous water/porous bed interface from the second
longitudinal wave. Therefore, considering that the second
length scale based on the second longitudinal wave number
for the boundary-value problem is necessary, a two-parameter
perturbation expansion based on ε1 and ε2 is proposed. Be-
cause the second kind of longitudinal wave vanishes outside
the boundary layer, but exists inside the boundary layer, the
complete solution of the displacement potential needs to be
corrected inside the boundary layer. Hence the complete
boundary-value problem is thus solved by the boundary layer
correction approach in the present study. Referring to Chen et
al. (1997), a nonlinear water wave is very likely to happen
even when iε1i and the Ursell parameter are very small, and
this is proved again in the present study.

Moreover, due to the effect of the second longitudinal wave
inside the soft porous bed, it is very difficult to compute the
pore pressure, effective stresses, and bed form accurately near
the interface by the numerical model. The numerical model
will encounter a problem of convergence even by finding the
meshes near the interface. Thus the concept of the present
study is very helpful in formulating a simplified boundary-
value problem in numerical computation for a soft poroelastic
bed with irregular geometry.

APPENDIX I. COEFFICIENTS OF SOLUTIONS
OUTSIDE BOUNDARY LAYER

O(ε1)

a = 2L a (98)3 1 1

k h0ie gk0
a = cosh(k h) 2 sinh(k h) (99)1 0 0F G2iq K 2 q L v1 1 3 1

2iK1
L = (100)1 21 1 K 3

2k12K = 1 2 (101)1 2k0

2k32K = 1 2 (102)3 2k0

O(ε1ε2)

1 2E = {2(iK q r 1 r q ) 2 q [2iK r 1 r (K 1 1)]}5 1 1 3 2 3 2 1 3 2 3
t2

2L v
? (C t 2 q a )0 1 1 1

q gk2 Ï 0 (103)
2 21 v L2c = i[2q 2 q (K 1 1)]C t 2 2r r (C t 2 q a )1 3 2 3 0 1 1 3 0 1 1 1H Jt gk q2 0 2

(104)
2 222 v L

c = C K t (q 2 q ) 1 r r (C t 2 q a ) (105)3 0 1 1 2 1 1 2 0 1 1 1F Gt gk q2 0 2

2v2 2t = [2K q 2 K q (K 1 1)]C t 1 r [2iK r 1 r (K 1 1)]2 1 3 1 3 3 0 1 1 1 3 2 3
gk0

(106)
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2vk h0t = e cosh(k h) 2 sinh(k h) (107)1 0 0F Ggk0

2vk h0r = e cosh(k h) 2 sinh(k h) (108)1 0 0F Ggk0

2 22GK 2 lL )1
r = q 1 q (109)2 2 12(2G 1 l)L

2iGK3
r = q (110)3 22(2G 1 l)L

n r g0 0
C = (111)0 2k KL0

q = 1 2 n 1 a n (112)2 0 2 0

2O(ε )1

f f f 1 f f f 2 f f f 2 f f f13 22 32 12 23 33 12 24 32 13 23 31
E = (113)3

f f f 2 f f f 2 f f f11 22 32 12 21 32 11 23 31

2 3v 3 gk vÏ 0
E = 2 2 E 1 i 2 (114)4 3F S DGgk 2 v gk gk0 Ï0 0

1
b = ( f 2 f E ) (115)1 13 11 3

f12

1
b = ( f 2 f b ) (116)3 33 31 1

f32

2v v
f = 2i cosh(2k h) 2 2 sinh(2k h) (117)11 0 0F Ggkgk 0Ï 0

2˜k KL q0 1
f = 2 (118)12 k h0e n r g0 0

21 gk v v v0
f = 2 2 (K a 2 ia ) cosh(k h)13 1 1 3 0S D F2 k h02 v gk e gk gk0 Ï Ï0 0

2gk k KLÏ 0 0
2 sinh(k h) 1 (K a 2 ia )q a K0 1 1 3 1 1 1G 2k h0v e n r g0 0

4v
2 3 1 2 sinh(2k h)0S D2 2g k0 (119)

2v
f = 2 cosh(2k h) 2 sinh(2k h) (120)21 0 0

gk0

i v
˜f = q M (121)22 1 1k h0e ghÏ 0

2 v
˜f = q (122)23 3k h0e gkÏ 0

i gk vÏ 0
f = (K a 2 ia ) cosh(k h) 2 sinh(k h)24 1 1 3 0 0F Gk h0e v gkÏ 0

v 22 (K a 2 ia )[ia q (1 1 K ) 1 2a q K ]1 1 3 1 1 1 3 3 32k h02e gkÏ 0

33 gk vÏ 0
2 i 2 cosh(2k h)0S D2 v gk gkÏ0 0 (123)

f = 4GM (124)31 1

2f = 2iG(M 1 4) (125)32 3

2k h 20f = e (K a 2 ia )[2iGa K 2 (2G 1 lL )a ]33 1 1 3 3 3 1

2k h 2 301 e Gi(K a 2 ia )(2ia K 1 a K 1 a K )1 1 3 1 1 3 3 3 3 (126)
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2k̃ 12M = 4 2 (127)1 2k 0

2k̃ 32M = 4 2 (128)3 2k 0
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APPENDIX III. NOTATION

The following symbols are used in this paper:

a = amplitude of incoming water wave;
D* = displacement vector of fluid in porous medium;
d* = displacement vector of solid skeleton;

G, l = Lame’s constants of elasticity;
h = mean water depth of channel;
i = ;21Ï

K = bulk modulus of compressibility of fluid;
kj = wave numbers in porous medium, j = 1, 2, 3;
kp = specific permeability;
k0 = wave number of incoming water wave;
n0 = porosity;
(1)P* = perturbed pressure in channel;
(2)P* = perturbed pressure in porous medium;
P0 = perturbed pressure on bed;
S* = normal tensor of fluid;



ε1 = first expansion parameters of Stokes wave, k0a;
ε2 = second expansion parameters of Stokes wave, k0/k2;

h* = displacement of wave deviated from mean free sur-
face;

L, P, C = Mach numbers of two longitudinal waves and one
transverse wave;

m = dynamic viscosity of fluid;
j* = displacement of wave deviated from mean channel-

bed interface;
rs = density of solid;
r0 = density of water;

s* = solid stress tensor;
t* = effective solid stress tensor;

(1)*F = velocity potential of channel flow;
(2)*Fj = jth kind of displacement potentials of porous me-

dium, j = 1, 2, 3; and
v, V = angular frequencies of water wave, in O(ε1) and

O(ε1ε2), V = v; in V = 2v.2O(ε ),1
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