Effects of Weakly Nonlinear Water Waves on Soft
Poroelastic Bed with Finite Thickness
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Abstract: Since porous material is usually of a finite thickness in nature, the effects of periodically nonlinear water waves propagating
over a soft poroelastic bed with finite thickness are hence noticed and studied in this work. The water waves are simulated by potentia
theory while the porous bed is governed by Biot’s theory of poroelasticity herein. The conventional Stokes expansion of water waves
based on a one-parameter perturbation expansion fails to solve the soft poroelastic bed problem; therefore, the boundary layer correcti
approach combined with a two-parameter perturbation expansion is proposed, which enables us to solve the problem of soft poroelast
bed with finite thickness. The results are compared to the similar problem with an infinite-thickness porous bed. The boundary effects o
the impervious rock are significant on wave-induced pore water pressure and effective stresses, but are of very little significance on wav
profiles at the free surface and the porous bed surface. However, the rigid boundary is insignificant to the pore water pressure and effecti
stresses when the thickness of porous bed is larger than about one wavelength.
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Introduction Huang and Son@1993 then analytically solved the problem of
periodically linear water waves interacting with a deformable bed
The dynamic response of a propagating water wave acting onby treating the bed as a poroelastic material. Their approach was
coastal constructions is quite emphasized during the design workquite successful in revealing most physical mechanisms by using
especially in the analysis of seabed instability. The wave-induced a potential water wave and Darcy’'s porous medium flow. Chen
variation in pore pressure and effective stresses has been recoget al.(1997) further applied the conventional Stokes expansion of
nized as a major factor for destroying the stability of the seabed a nonlinear deepwater wave basedsgr-kja to investigate the
so that it is very important to correctly estimate the pore pressure dynamic response of a deformable permeable seabed. They found
and effective stresses inside the seabed. that the Stokes expansion is only valid for the hard poroelastic
At the early stage, most researchers only study the linear ormaterial but invalid for the soft one even though the Ursell pa-
nonlinear water waves acting on a seabed that was usually asfameter is small. Finally, Hsieh et al2000 proposed a two-
sumed to be rigid material; yet, it was considered as permeableparameter perturbation method and a boundary layer correction
(Putnam 1949; Reid and Kajiura 1957; Sleath 1970; Moshagenapproach to carry out the analytic solution of nonlinear water
and Torum 1975or impermeabléMei 1983; Fenton 1985; Dean  waves propagating over a soft poroelastic material bed with infi-
and Dalrymple 1991 Actually, fluid within the porous material ~ nite thickness. Note that Huang and Sofi®93, Chen et al.
interacting with a deforming solid skeleton is very obvious and, (1997, and Hsieh et al(2000 all focused on a poroelastic bed
thus, a realistic analysis based on deformable porous seabed iwvith an infinite thickness.
necessary. Based on the fact that the seabed is generally multilayered and
Biot (1956 developed a theory of poroelasticity to discuss the the nonlinear water waves are very likely to happen, the present
elastic wave in a fluid-saturated porous solid. Huang and Chwangstudy will find a way to investigate the complicated finite depth
(1990 investigated Biot's oscillatory equation for an acoustic problem and the interaction between the nonlinear water waves
problem without simplifications and obtained three decoupled and the poroelastic material seabed with a single layer, i.e., the
Helmholtz equations standing for three kinds of wave—two lon- thickness of the porous bed is finite. The present work is aimed at
gitudinal waves and one transverse wave. Following this method, investigating the boundary effect of a soft poroelastic seabed
under periodically nonlinear water waves propagation.
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Fig. 1. Definition sketch

Boundary-Value Problem

Assuming that the homogeneous flow, regidn of Fig. 1, is
potential flow, the velocityu* ) can be represented by velocity

potential®* (1) as

ur D=y p* 1)

The equations of continuity and momentum in terms of velocity

potential hence become

V2p* (=0
aq)*(l) Po 6(13*(1) 2 6(1)*(1) 2
= *(1) =
P T2 Tax | T Ty P 0

where P*(Y)=the wave-induced pressure in regid), and

po=the density of water.

Referring to Huang and Chwari@990, the linear momentum
equations of a solid skeleton and fluid for the porous bed based on

the theory of poroelasticity may be written as

o azg* . aZD* b ag* aD*
¢ TP Tz ot ot
. 82(_j* . 82D* b ad* GD*
R T TC e W TRT

with
Q'* :I* _(l_nO)P*(Z)L

15 =2Ge* +\(V-d*)l

1
e* = 5[Va* +(Vg")]

p11=(1—Ng)pstpa
P12= 7 Pa
p22=NopotpPa

b=pnd/k,

whereg* =the total stress tensor of soliti; =the effective stress
tensor of solid,S* =the normal stress tensor of fluid* and

1)

)

®)

(4)

®)

(6)
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(8)
9)
(10)
(11)
(12)

(13)

D* =the displacements of solid and fluid, respectivély®=the
wave-induced pore water pressurg,=the density of solid,
pa=the mass coupling effedneglected in this study no=the
porosity, w=the viscosity of fluid,k,=the specific permeability,
G and\A=Lame constants of elasticity, ahe-the identity matrix.
Combining the continuity equations of solid and fluid with the

state equation of fluid and after linearization of the porogitr-
ruijt 1969, we can find

* *

ad oD
(1—nO)V-(W)+nOV~( m ” (14)

for waved-induced pore water pressure. In Egl), K=the bulk
modulus of compressibility of fluid inside the porous bed.

There are three boundariesfl) free surface [y=h
+n*(x,t)]; (2) porous-bed interfacdy=£*(x,t)]; and (3)
poroelastic-bed/impervious rock interfaog= — B] in this study,
which, referring to Deresiewicz and Skal&k963, are required
to satisfy the following boundary conditions.

At the free surface, a kinematic boundary condition exists as

ap* 2 K

at  ng

a,n* aq)*(l) aq)*(l) a,n*
————t———= (15)
ax  ox ay at

and a dynamic boundary condition exists as
2 aq)*(l)
ay

At the porous-bed surface, the continuity of pressure for fluid
gives

aq)*(l) 2

aX

ap*D 1
a2

+gn*=0 (16)

p*(D=p*(2) (17)
and the continuity of fluid flux gives
\ od* D" _
N3 | (1=no) o +no——| =n3 - VO* (18)
where
— * *x\ 2
n = :—f’,l / \/1+(afx) (19)

is the unit normal vector at the porous bed surface. Considering
the kinematics of this surface, we have

a&E*
' ( B Wl)
and Eq.(20) will be used to solvet*. And the continuity of
effective stresses of solid gives

aE*  ad*
at ot

(20)

n;-1*=0 (21)

At the interface between the porous bed and the impervious
rock, y=—B, the boundary conditions are no displacement for
porous material

[}
*
Il

o

(22)

and no flux for fluid

(23)

whereu;, =the vertical component of the velocity of fluid within
the porous bed.

If both |n*| and |£*| are much smaller than the relative wave-
lengths, it is more convenient to shift the boundary conditions at

*
l:IZy_O
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the free surfacey=h+n*(x,t), and at the porous bed surface,
y=£&*(x,t), toy=h andy=0 first before solving the boundary-

value problem. Conventionally, Taylor series expansions are ap-

plied to the boundary conditions at the free surfg€gs.(15) and
(16)] and at the porous bed surfafggs. (17), (18), (21), and
(20)] by performing

(n*)™ 9™

m!ay_m

(E*)m am
m aym

E and E
m=0 m=0
respectively, before liquefaction.

As will be indicated by Eq(39), for the present problem, due
to the existence of the second longitudinal wawéh wave num-
berk,) inside the boundary layer of the soft poroelastic bed, the
aforementioned Taylor series expansions at the interfgee0|
are applicable for the first longitudinal wayeith wave number
k,) and the transverse waugvith wave numberks), but not
applicable for the second longitudinal wave because the effect o
the boundary layer will render errors of the partial derivative in
the vertical direction for the second longitudinal wave. That is
why Chen et al(1997) failed to solve the nonlinear problem for

soft porous material by only one length scale. To overcome the

difficulty, another small parametet,=Kk,/k,, other thane;
=koa, needs to be proposed. Thus, the vertical coordigdte
the second longitudinal wave will be enlarged into based on
this small parametes, [see Eq.(43b)].

Referring to Huang and Son@993 for the decoupling pro-
cesses of Biot's equations of poroelasticit956, governing
Egs.(4) and(5) can be rewritten into three decoupled scalar equa-
tions as

VZ@J?c(Z)+ kj2(1)j*(2): 0,

=123 (24)

Also, Eq.(14) of the wave-induced pore water pressure gives

K
P*(2 == [(1=ng+aing)ki®T ¥+ (1= no+azne k53 2]
0

(25)
where wave numbers; and solid/fluid related parametexs are
given as Eqs(8)—(20) in Huang and Son@1993. In Eq. (24),
®{» and ®{?=the displacement potentials of the first and the
second longitudinal waves, respectively; while{?)=the dis-
placement potential of the transverse wave, i.e.

d*=Var@+vaz@+vi(di e, (26)

D*=a, VO] P+ a, Vo3 PragVO@;Pe,)  (27)

In which, VOO ) means taking curl of ).

Note that governing Eq$2) and(24), wave-induced pressure
and effective stresses Ed8), (25), and(7), together with bound-
ary conditiong(15), (16), (17), (18), (21), (22), and(23) form the
complete boundary-value problem of the present stligky. (20)
is used to findk* only, and the vertical component of E@2) is
identical to Eq.(23) in the present studyy.

Nondimensionalization of Variables

Huang and Song@1993 defined the following parameters
m=(2G+\)ny/K (28)

(29)

E= nopow/b
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,_Nopo+(1—Ng)ps w?

T 2G A+ (King) K (30)
i(Mm+1) py w?
==K (31)
Nepo+(1—n ?
g2 oPo (1—no)ps (32)

I
in their solution of linear water waves propagating over a po-
roelastic bed. In whichs=called penetrability parametes=the
frequency,m=the stiffness ratio of solid and fluidk,=the wave
number of water wave and will be found as compl&and¥V are
only functions of water wave speed and matef(falid and solid
skeleton properties, whilell is not only a function of the same
variables forA and ¥ but also depends on the permeability of the

gporous medium.

Referring to Huang and Chwari$990, k; , k,, andk; can be
derived in the following form:

Nopo+ (1—Ng)ps] Y2
- M ©[1+0(s)] (33)
2G+\+(King) |V2
Zz[m"”b [1+0C(e)] (34)
_ 1/2
ko= M} w[1+0(e)] (35)

For low penetrability, i.e.|le[|[<1, Egs.(30)—(32) could be sim-
plified to

A2=(kq 1kg)? (36)
12= (ky /ko)?2 (37)
W2= (kg /Kg)2 (38)

by substitution of Eqs(33)—(35). Moreover, for a soft solid skel-
eton, |[k,||> kol is discovered and th4i1?|=||k3/k3||>1 is used

to define the “soft” material in this study. Sinde\?| is always

smaller thar|¥?|| [see Eqs(30) and(32)], we can obtain

[A2]<[|P?|<1<|TT? (39)

Based on the this discussion, we herewith define
€1~ koa (40)
go=Ko /Ky (41)

for later use wher@a=the amplitude of an incoming water wave.
After the analysis of an order of magnitude for each dependent
variable, the dimensionless variables are selected as

x=kox (42)
y=koy (439)
y'=yle,, for the second longitudinal wave only
(430)
t= gkt (44)
n* =kon* (49)
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Fig. 2. Schematic diagram of vertical length scales inside boundary

layer for second longitudinal wave
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All the symbols of variables on the left-hand side of E@R)—
(53 are dimensionless, but those on the right-hand side are di-5q region(2); —e<x<w, —k,B<y<0

mensional. Note that since vertical length scales need multiple

scales(see Fig. 2, y andy’ are proposed.

Applying the two-parameter perturbation expansisae Fig.
3), the velocity potential of flow and displacement potentials of
the first longitudinal wave and the transverse wave for the whole

domain can be written as

T _ . N 27 2
O* V=g bTote1820T+e7d3T Olesey,...)

linear wave

(54)

Fig. 3. Schematic diagram of two-parameter expansion

OF D=5 01+ o120 1+ 220301+ O(ede,,..), j=13
(55)

Due to Eq.(39), the second longitudinal wave needs to be solved
inside the boundary layer and, thus, its displacement potential is
nondimensionalized especially as E49) and expanded as

&)5(2): 81(”\)1((%2]4‘8182(”\)’3\:{21+8%(’1\)3(}[2]+ O(s%sz,...) (56)

if ||, and|e,|| are smaller than unity. Also, the water wave
profile at the free surface becomes

Sk A ~ 22 2
n*=emipteremitemnitOletes,...) (57)

and the wave profile of the porous-bed surface becomes

E* =g &gt e1e26Tt s%&’z‘o-i- O(sisz,...) (58)

For a periodic motion with frequenacy, the aforementioned
variable§ ]*(R,t) can be written a§ ](R)e™'“!, whereR=the
position vector. Let the given incoming-wave amplitude of the
leading order term before being disturbed by the porous beal be
(i.e.,m10=€"), the Stokes expansion basedonande, will be
carried out only to the first three terms for the present nonlinear
water wave problem to avoid the occurrence of secular terms.
Thus, after the Taylor series expansions at the free surface and at
the porous-bed surface, respectively, are applied, the boundary-
value problem of each order without the time factor is obtained in
the following.

Boundary-Value Problem Without Boundary Layer

Since the first longitudinal wave and the transverse wave propa-
gate throughout the whole domain, i.e., both inside and outside
the boundary layer, there is no need to make any corrections of
these two waves. Hence, the boundary-value problem without the
boundary layer is formulated as follows.

ForO(e,), the governing equations are as follows: regibn
—o<X<oo, 0<y<keh

%2(,’\) 10— 0 (59)

V2oly+A2el=0 (60)
V23 +w2lE=0 (61)
the Boundary conditions are as follows; at the free surfgce:
=koh, —oe<x<e, (1) kinematic free surface boundary condi-
tion
¢10,§/:_i‘5ﬁlo (62)
and(2) dynamic free surface boundary condition
idd10=T10 (63)
at the porous-bed surfacg=0, —oo<X<c, (1) continuity of
pressure

- koKAZ . 1]
iddb1o— m%%o =0 (64)
(2) continuity of flux
ia’%d)[l%],g,_ i&’%d)[l?é];ﬁ ekoh‘blo&zo (65)

(3) continuity of effective stresgonly 753;=0)
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(1]
10xy

20 s+ Ok~

at the porous material/impervious rock interfaoje.: —kqB,
—w<X<o, (1) no horizontal displacement for porous material

(31

lex (66)

Plgh+ 3, =0 (67)
(2) no flux for fluid
bl — s or=0 (68)
where
gj=1-ng+tajng, j=13 (69)

Note that only one component of the aforementioned boundary
conditions of continuity of effective stresses is needed, i.e.,
75;=0, otherwise, it will become overdetermingénother con-
dition, 753=0, includes the effect of the second longitudinal wave
and which will be adopted by the boundary layer correction for
the second longitudinal wave lateAnd, since for the low pen-
etrability of the porous material, both, anda 5 are very close to
unity, the boundary condition of no flux for fluid is equivalent to
that of no vertical displacement of the soft porous material, there-
fore, only one is needed. Herein, the former is selected.

For O(e,¢5), the governing equations are as follows: region
(1): —e<x<w, 0<y<kgh

%26911:0 (70)

region (2): —e<x<w, —kB<y<0
V2bLT+A2pL=0 (71)
V2O weli=0 (72)

The boundary conditions are the following at the free surfgce:

=koh, —oe<Xx< (1) kinematic free surface boundary condition
4)11,37: _i&ﬁ 11 (73)
(2) dynamic free surface boundary condition
i&)&n: ﬁn (74)

at the porous-bed surfacg=0, —<X<w, (1) continuity of
pressure

o1 gé%m[” (75)
(2) continuity of flux
ibe (gL —asdTh) +d11g=0 (76)
(3) continuity of effective streséonly 73;=0)
26}y 15— k=0 (77)

at the porous material/impervious rock interface= — kB,
—oo<Xx<% (1) no horizontal displacement for porous material

(1]
11x

H31 —
11y~

oL+ (78)

(2) no flux for fluid

a 1&>[111]y_ azd (79)

Again, only one component of the boundary condition of con-
tinuity of effective stresses is needed, i.’ek9'=. 0, for the same

31 =
11X~
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reason mentioned herein, and the vanishing vertical solid dis-
placement is equivalent to vanishing fluid flux at impervious

boundary.
For O(&%), the governing equations are as follows: regibh
—o<X<ow, 0<y<kgh

V20=0 (80)
region (2): —eo<x<w, —k,B<y<0
R
VaoLy+ EA%[Z}}:o (81)
L2
v 2431 K3 27031
v ‘bzo"‘k_gq' $55=0 (82)

The boundary conditions are as follows: at the free surfgce:

=koh, —e<x<, (1) kinematic free surface boundary condi-
tion
$205+ 2idM20=N105P 105~ N10P 1055 (83)
(2) dynamic free surface boundary condition
2iodyg 7120—2(4)10,}4'4)10,9) ion0b10y (84)

at the porous-bed surfacg=0, —x<x<w, (1) continuity of
pressure

KoK A?

eEOnpg

dW2 g~
2i(1)¢20 glO

%J’zo 2 (¢1OX+ ¢10y) _k_h_(b

W2koK A% 1

+
eZhnopog A1

NES)
10y

(85)
(2) continuity of flux

[3],)

ekohJ)ZO +2|m(ql¢ 20y q3¢20><

=W2E 1053105~ q’2§10¢10&9+ ioWZe

+ Q3¢10y) —ioWw?e k°h§10(Q1¢1oyy azd

(3) continuity of effective stresgonly 754;=0)

_kohﬁloi(%d)[l%];(
1 [3] )

10y% (86)

[1]
2059

KIS
20yy

(3]
20xx)
[1]
10 XX

G(2bhghg+ by~ b

=W2e kg 105 26 (dlghs + Y]

+ 10y
+ &35y~ Hidsg)

10yyy
at the porous material/impervious rock interfaces= — kB,
—oo<X<%, (1) no horizontal displacement for porous material

)= MAZGi]

(1
10xyy

(3]

_Glpze—kohélo(Zd) 105 (87)

(1 4
20x

dhok+ dloy=0 (88)
(2) no flux for fluid

N
a1¢[20]y—a3¢

WhereT<]- and&j (i=1,3) in nonlinear ordet? are given as Egs.
(8)—(20) in Huang and Song1993, and

[3] —

(89)

ajzl_n0+ajno, J:1,3 (90)



Table 1. Selection of Wave Condition and Property of Soft Porous The boundary conditionsy’ =0, —oe<X<o, (1) continuity of

Bed vertical effective stresgonly 7y;=0)
Item Value Unit ~ro A A ~r1 ~r3
2GAZLT —NAZHEI=NAZSL - 26 (T~ blTh)
Water (95)
Density 1,000 kg/h )
Bulk modulus 2 %10° N/m2 (2) outside the boundary layer
Viscosity 0.001 N s/rh ~2]_
Depth 2.0 m ¢11=0 (96)
Wave amplitude 0.05 m For O(s2), the governing equations are:
Period 2.0 S
»[2] 21—
Skeleton booyry 056 =0 (97)
Density 2,650 kg/f’] The boundary conditionsy’ =0, —oe<X<<o, (1) continuity of
Lame’s constant 1010° N/m vertical effective streséonly 74;%=0)
Lame’s constant 1010 N/m?
- - —12 2 27 12] 24 [2
Specnjc permeability 1810 m 2GA (bZOy’y’ —\A ¢[20]
Porosity 0.4
~[1 13 i PR
= ZG(d)[zo]&?_ d’[zo]&i/) + ALY — W2 ek
Boundary Layer Correction Inside Boundary Layer XLZG(¢[1%)],99§/+ A2¢[121],y,y,y, - d>[1%];(g,g,)
The second longitudinal wave disappears outside the boundar 1] 4 (2
. PP y ~ M (loy T 3] (98)

layer but it does exist inside the boundary layer near the water/

porous-bed interface, so the complete solution needs to be cor<(2) outside the boundary layer

rected by further consideration of the second longitudinal wave .

inside the porous material. Besides, due to the fact that this sec- ok3l=0 (99)

ond longitudinal wave is trapped inside the boundary layer near

the water/porous-bed interface, it could not transmit throughout

the porous material bed to the interface between the porous ma-gg|,tion

terial and the impervious rock. In other words, there exists no

boundary Iayer near the porous material/i.mpt.arvious rock interface pfar omitting the time factoe

due to the deficiency of the second longitudinal wave and where

only the first longitudinal wave and the transverse wave exist.
Since a thin boundary layer exists within the porous bed near No(X)=adkx  (0<x<x) (100)

the water/porous-bed interface, multiple scales are needed to

solve the nonlinear boundary-value problem for the second lon- With the input of the leading order incoming water wave, each

gitudinal wave(see Fig. 2. We, therefore, ley’ =¥/, to change order of the aforementioned boundary-value problems can be

the scale frony to the magnified scalg’ in (43b). The difficulty solved in sequence. Thus, the dimensional solutions of the first

that Chen et al(1997) encountered, the error due to the first longitudinal wave and the transverse wave throughout the entire

partial derivative based oy of the displacement potential of the ~domain are obtained as follows f@¥(e )

second longitudinal wave, is now overcome by proposing two

“iot the given the leading order
incoming water wave profile with magnitueis

Iength.scales in the vertical direction. After the coordinqte trans- b= — '_ gcoshko(h,y), ﬁsinhko(h—y) aikox
formation of (43b), the boundary-value problem of the displace- kol o ko
ment potential of the second longitudinal wave inside the bound- (101)
ary layer become®(e,). 1
The governing equations are: d’[l%]:ekohkz (a,6%1K0Y + a0~ K1koy) gikox (102)
0
Py +01F=0 (91)
. (’)[SJZL(&? eKakoy - age” Kskoy)eikox (103)
The boundary conditionsy’ =0, —<x<, (1) continuity of 10 ghohyea V31
vertical effective streséonly 7::=0
g) yTyy ) FOI’ 0(8182)
2GA2HLG,, — A2l =NA2PLE - 2G(d 5L~ 13k ok w? |
(92) ¢11=?E5 coshko(h—y)— %sinhko(h—y) gfkox
0
(2) outside the boundary layer (104)
- 1 .
big=0 (93) b= ez (Cue" iV + ey ko) elhox (109)
0
For O(e4¢5), the governing equations are: 1
~ ~ [81—_— CareKaKoY 4 ., e~ Kakoy)gikox 106
¢E_2]_],y’yf+¢g_21]:o (94) d)]_]_ ekohk(z)( 31 32€ ) ( )
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Fig. 4. Distribution of wave-induced pore water pressufies)/P,|
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The dimensional solutions of the second longitudinal wave
obtained by the boundary layer correction approachCibs,) is

2
1 s Sy
0=z 12 (8 Fage Ve (112)
10 ekohk0 k2
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Fig. 5. Distribution of wave-induced horizontal effective strespgsg/P|

for O(eqe,) is MATHEMATICA After solving the displacement potentials, all
1K the other variables can be obtained. The wave profile of the
1 i’ v A -
¢[121]:W p(czle'y + e Y )eikox (113) porous-bed surface can be found from E@S) and (58).
0 %2

2 .
and forO(e1) is Results and Comments

2
1 iy’ —iy'\ai . I . :
d)[Z%)]:iekoth 12 (218 + bV )elkox (114) Since the second longitudinal wave decays very quickly in the
02 vertical direction inside the boundary layer as shown in Fig. 2, a
Since the solutions of the coefficients suchaas, a;,, ay;, stretched coordinate is needed to better estimate the partial de-

Ay, b11, b1o, byy, byy, €y, Eg,..., etc. are in a very long and  rivative of the second longitudinal wave. Herein, the present so-
complicated form, they are omitted herein. However, the lutions are valid under the constraint|pf;]|¥>>||e,|>|e4||? be-
solutions could be obtained by mathematical tools, e.g., fore liquefaction when referring to Fig. 3.
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Fig. 6. Distribution of wave-induced vertical effective stresgeg, /P

Table 1 gives the wave condition and the material property of of lines tell that the boundary effect is significant, which feeds
a soft bed. The present results are compared with those of thepore pressures back into the poroelastic bed very obviously espe-
similar problem with infinite thickness provided by Hsieh et al. cially when the thicknes$B) is less than the half wavelength
(2000 to confirm the validity. The two small parameters (L/2). The pore pressures become very large at the top and the
(leall.lle2l) are found to be0.052,0.064 by Egs.(40) and (41) bottom of the porous bed in Figs(atand B. P, in Fig. 4 is the
with complexk,=(0.16197ZE+02,0.161978+ 02), which sat- wave-induced water pressure on the mean bed surfped],
isfy the constrainfe ,||¥?>||e,|>|/e,]|?. The complex wave num-  and the nondimensional bag® for infinite-thickness case is
ber k, is found to be(0.103848E-01,0.184387E06) and thus adopted as the same as in finite-thickness case.
the wavelength. is 6.05 m. In Fig. 5, the wave-induced horizontal effective stresses of
Fig. 4 shows the distribution of wave-induced pore water pres- finite-thickness case are larger than those of infinite-thickness
sures under four different thickness. The solid lines in Fig. 4 case when the thickness is less than the three-fourth wavelength.
denote the present case of finite thick porous bed while the dashedesides, this effective stress is influenced obviously by the rigid
ones denote the case of infinite thick porous bed. These two setdoundary especially near the top of the porous bed for the case of
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Fig. 7. Distribution of wave-induced shear stres$eg, /P,

Fig. 5@). The vertical effective stresses in Fig. 6 are similar to rous layer. This can be referred to the work of Hsieh et2000.
those of Fig. 5. In their work, we can find that the solution, E®7), of the wave

In Fig. 7, the shear stresses are very much affected by the rigidprofile at the porous bed indicates the first term on the right-hand
boundary when the thickness is less than the half wavelength.side of Eq.(97) contributed by the first longitudinal wave and the
This indicates that the characteristic of shear stresses is totallythird transverse wave canceling each other for a soft porous bed.
different from that of normal stresses. In Figga&nd b, the Fig. 9 shows that the distribution of the pore water pressure varies
water wave profiles at the free surface change very little becausewith the depth under different thicknesses. The locations of oc-
this study is confined to a deepwater wave problem and the givencurrence of the wave-induced maximum pore water pressures are
small-amplitude incident waves. However, in Fig& 8nd d, the also found to be at the toyE0) or the bottom y= —B) of the
wave profiles at the porous bed change very little for different porous bed depending on the thickness of the porous bed. The
thickness since they are dominated by the second longitudinaloptimal thickness B/L) and the maximum pore pressure
wave which is confined inside the boundary layer for a soft po- (P)/P,) for the present example af@.193,1.42 at the surface
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Fig. 8. Wave profilesi(a) and(b) water and(c) and(d) porous bed versus horizontal dista{eeave period=2.0 9

or (0.145,1.13 at the bottom as shown in Fig. 9. If the maximum Conclusions

pore water pressure is large enough to render the occurrence of

zero-vertical effective stress by overloadifg.g., the external ~ The conventional Stokes expansion of higher-order water waves
force due to an earthquakethe porous material is said to be based on one-parametef=Kkya is invalid for a soft bed(.e.,
fluidized or liquefied. This surface liquefaction is different from |12 =||k3/k3|>1) with finite thickness because a boundary
the internal liquefaction of Fodd 987. Although the two sets of  layer exists inside the porous bed from the second longitudinal
contour lines in Fig. 9 are very different in appearance, their wave. Therefore, the boundary layer correction by adopting a
values, however, are actually very close when the pore pressureswo-parameter perturbation expansion based pnky,a ande,
decay under the cases BfL close to and larger than unity. Itis  =ky/k, is proposed and makes the complicated problem possible
noticeable that for infinite-thickness case the nondimensional baseto be solved by an analytical method other than by a numerical
B, which is different from case to case, is chosen as the same onenethod. Since the porous material bed in nature is usually multi-
for finite-thickness for each case. layered, the present study, which makes the complicated analysis
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Fig. 9. (a) Three-dimensional variation aid) contour lines of wave-induced pore water pressures

of the finite-thickness problem possible, is necessary and can beness of the porous bed is larger than about one waveldsgth
regarded as the first step to further investigations. Fig. 9. Furthermore, the peak value of the pore pressure, which is

The boundary effects of the impervious rock are significant on important in analyzing soil liquefaction, could be found if the
wave-induced pore water pressure and effective stresses, but noivave condition and the porous material are given. For example,
very significant on wave profiles at the free surface and the the locations of maximum pore pressures in the present study
porous-bed surface. However, the rigid boundary is insignificant occur at either the top or the bottom of the porous bed depending
to the pore water pressure and effective stresses when the thicken the thickness of the porous material.
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Notation

The following symbols are used in this paper:
a = amplitude of incoming water wave;
D* = displacement of fluid in porous medium;
d* = displacement of solid skeleton;
N = Lame constants of elasticity;
h = mean water depth of the channel,
i = J-1;
K = bulk modulus of compressiblity of fluid;
k; = wave numbers in porous mediuf1, 2, 3;
kp = specific permeability;
ko = wave number of incoming water wave;
Ny = porosity;
P*() = perturbed pressure in channel;
P*(2) = perturbed pressure in porous medium;
Py = perturbed pressure on bed;
S* = normal stress tensor of fluid;
g, = first expansion parameters of Stokes

wave=Kkga;

e, = the second expansion parameters of Stokes
wave=Kkg/K,;

n* = displacement of wave deviated from mean-free
surface;

AJILW = Mach numbers of two longitudinal and one
transverse waves;
i = dynamic viscosity of fluid;
& = displacement of wave deviated from mean channel
bed interface;
po = density of water;
ps = density of solid;
g* = solid stress tensor;
7* = effective solid stress tensor;
o+ = velocity potential of channel flow;
@3 = jth kind of displacement potentials of porous
medium,j=1, 2, 3; and
o = angular frequency of water wave.
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