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Effects of Weakly Nonlinear Water Waves on Soft
Poroelastic Bed with Finite Thickness
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Abstract: Since porous material is usually of a finite thickness in nature, the effects of periodically nonlinear water waves propa
over a soft poroelastic bed with finite thickness are hence noticed and studied in this work. The water waves are simulated by p
theory while the porous bed is governed by Biot’s theory of poroelasticity herein. The conventional Stokes expansion of water
based on a one-parameter perturbation expansion fails to solve the soft poroelastic bed problem; therefore, the boundary layer c
approach combined with a two-parameter perturbation expansion is proposed, which enables us to solve the problem of soft po
bed with finite thickness. The results are compared to the similar problem with an infinite-thickness porous bed. The boundary ef
the impervious rock are significant on wave-induced pore water pressure and effective stresses, but are of very little significance o
profiles at the free surface and the porous bed surface. However, the rigid boundary is insignificant to the pore water pressure and
stresses when the thickness of porous bed is larger than about one wavelength.
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Introduction

The dynamic response of a propagating water wave acting
coastal constructions is quite emphasized during the design w
especially in the analysis of seabed instability. The wave-indu
variation in pore pressure and effective stresses has been re
nized as a major factor for destroying the stability of the sea
so that it is very important to correctly estimate the pore press
and effective stresses inside the seabed.

At the early stage, most researchers only study the linea
nonlinear water waves acting on a seabed that was usually
sumed to be rigid material; yet, it was considered as perme
~Putnam 1949; Reid and Kajiura 1957; Sleath 1970; Mosha
and Torum 1975! or impermeable~Mei 1983; Fenton 1985; Dean
and Dalrymple 1991!. Actually, fluid within the porous materia
interacting with a deforming solid skeleton is very obvious an
thus, a realistic analysis based on deformable porous seab
necessary.

Biot ~1956! developed a theory of poroelasticity to discuss t
elastic wave in a fluid-saturated porous solid. Huang and Chw
~1990! investigated Biot’s oscillatory equation for an acous
problem without simplifications and obtained three decoup
Helmholtz equations standing for three kinds of wave—two lo
gitudinal waves and one transverse wave. Following this meth
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Huang and Song~1993! then analytically solved the problem o
periodically linear water waves interacting with a deformable b
by treating the bed as a poroelastic material. Their approach
quite successful in revealing most physical mechanisms by u
a potential water wave and Darcy’s porous medium flow. Ch
et al.~1997! further applied the conventional Stokes expansion
a nonlinear deepwater wave based on«15k0a to investigate the
dynamic response of a deformable permeable seabed. They f
that the Stokes expansion is only valid for the hard poroela
material but invalid for the soft one even though the Ursell p
rameter is small. Finally, Hsieh et al.~2000! proposed a two-
parameter perturbation method and a boundary layer correc
approach to carry out the analytic solution of nonlinear wa
waves propagating over a soft poroelastic material bed with i
nite thickness. Note that Huang and Song~1993!, Chen et al.
~1997!, and Hsieh et al.~2000! all focused on a poroelastic be
with an infinite thickness.

Based on the fact that the seabed is generally multilayered
the nonlinear water waves are very likely to happen, the pres
study will find a way to investigate the complicated finite dep
problem and the interaction between the nonlinear water wa
and the poroelastic material seabed with a single layer, i.e.,
thickness of the porous bed is finite. The present work is aime
investigating the boundary effect of a soft poroelastic sea
under periodically nonlinear water waves propagation.

Mathematical Formulation

The plane water waves, as indicated in Fig. 1, propagating ov
horizontally finite-thickness homogeneous poroelastic bed,
simulated by the potential theory and the porous medium s
rated with water is governed by Biot’s theory of poroelastic
~1956!. Region ~1! ranges fromy5j* (x,t) to y5h1h* (x,t);
and region~2! from y5j* (x,t) to y52B. Symbols h* and
j*5the displacements of waves from the mean-free surfacey
5h) and the mean surface of porous bed (y50), respectively.
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DI * 5the displacements of solid and fluid, respectively,P* (2)5the
wave-induced pore water pressure,rs5the density of solid,
ra5the mass coupling effect~neglected in this study!, n05the
porosity,m5the viscosity of fluid,kp5the specific permeability,
G andl5Lame constants of elasticity, andI=5the identity matrix.

Combining the continuity equations of solid and fluid with th
state equation of fluid and after linearization of the porosity~Ver-
ruijt 1969!, we can find

]P* ~2!

]t
52

K

n0
F ~12n0!¹•S ]dI *

]t D1n0¹•S ]DI *
]t D G (14)

for waved-induced pore water pressure. In Eq.~14!, K5the bulk
modulus of compressibility of fluid inside the porous bed.

There are three boundaries:~1! free surface @y5h
1h* (x,t)#; ~2! porous-bed interface@y5j* (x,t)#; and ~3!
poroelastic-bed/impervious rock interface@y52B# in this study,
which, referring to Deresiewicz and Skalak~1963!, are required
to satisfy the following boundary conditions.

At the free surface, a kinematic boundary condition exists

2
]h*
]x

]F* ~1!

]x
1

]F* ~1!

]y
5

]h*
]t

(15)

and a dynamic boundary condition exists as

]F* ~1!

]t
1

1

2 H F]F* ~1!

]x G2

1F]F* ~1!

]y G2J 1gh* 50 (16)

At the porous-bed surface, the continuity of pressure for flu
gives

P* ~1!5P* ~2! (17)

and the continuity of fluid flux gives

nI 2* •F ~12n0!
]dI *
]t

1n0

]DI *
]t G5nI 2* •¹F* ~1! (18)

where

nI 2* 5S 2]j*
]x

,1D YA11S ]j*
]x D 2

(19)

is the unit normal vector at the porous bed surface. Conside
the kinematics of this surface, we have

]j*
]t

5
]dI *
]t

•S 2
]j*
]x

,1D (20)

and Eq. ~20! will be used to solvej* . And the continuity of
effective stresses of solid gives

nI 2* •t= * 50I (21)

At the interface between the porous bed and the impervi
rock, y52B, the boundary conditions are no displacement
porous material

dI * 50I (22)

and no flux for fluid

uI 2y* 50 (23)

whereuI 2y* 5the vertical component of the velocity of fluid within
the porous bed.

If both uh* u and uj* u are much smaller than the relative wav
lengths, it is more convenient to shift the boundary conditions
Boundary-Value Problem

Assuming that the homogeneous flow, region~1! of Fig. 1, is
potential flow, the velocityuI * (1) can be represented by velocit
potentialF* (1) as

uI * ~1!5¹F* ~1! (1)

The equations of continuity and momentum in terms of veloc
potential hence become

¹2F* ~1!50 (2)

r0

]F* ~1!

]t
1

r0

2 H F]F* ~1!

]x G2

1F]F* ~1!

]y G2J 1P* ~1!50 (3)

where P* (1)5the wave-induced pressure in region~1!, and
r05the density of water.

Referring to Huang and Chwang~1990!, the linear momentum
equations of a solid skeleton and fluid for the porous bed base
the theory of poroelasticity may be written as

¹•s= * 5r11

]2dI *
]t2 1r12

]2DI *
]t2 1bS ]dI *

]t
2

]DI *
]t D (4)

¹•S= * 5r12

]2dI *
]t2 1r22

]2DI *
]t2 2bS ]dI *

]t
2

]DI *
]t D (5)

with

s= * 5t= * 2~12n0!P* ~2!I= (6)

t= * 52Ge= * 1l~¹•dI * !I= (7)

e= * 5
1

2
@¹dI * 1~¹dI * ! t# (8)

S= * 52n0P* ~2!I= (9)

r115~12n0!rs1ra (10)

r1252ra (11)

r225n0r01ra (12)

b5mn0
2/kp (13)

wheres= * 5the total stress tensor of solid,t= * 5the effective stress
tensor of solid,S= * 5the normal stress tensor of fluid,dI * and
JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2003 / 211
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the free surface,y5h1h* (x,t), and at the porous bed surfac
y5j* (x,t), to y5h andy50 first before solving the boundary
value problem. Conventionally, Taylor series expansions are
plied to the boundary conditions at the free surface@Eqs.~15! and
~16!# and at the porous bed surface@Eqs. ~17!, ~18!, ~21!, and
~20!# by performing

(
m50

`
~h* !m

m!

]m

]ym and (
m50

`
~j* !m

m!

]m

]ym

respectively, before liquefaction.
As will be indicated by Eq.~39!, for the present problem, du

to the existence of the second longitudinal wave~with wave num-
ber k2) inside the boundary layer of the soft poroelastic bed,
aforementioned Taylor series expansions at the interface (y50)
are applicable for the first longitudinal wave~with wave number
k1) and the transverse wave~with wave numberk3), but not
applicable for the second longitudinal wave because the effe
the boundary layer will render errors of the partial derivative
the vertical direction for the second longitudinal wave. Tha
why Chen et al.~1997! failed to solve the nonlinear problem fo
soft porous material by only one length scale. To overcome
difficulty, another small parameter«25k0 /k2 , other than«1

5k0a, needs to be proposed. Thus, the vertical coordinatey for
the second longitudinal wave will be enlarged intoy8 based on
this small parameter«2 @see Eq.~43b!#.

Referring to Huang and Song~1993! for the decoupling pro-
cesses of Biot’s equations of poroelasticity~1956!, governing
Eqs.~4! and~5! can be rewritten into three decoupled scalar eq
tions as

¹2F j*
~2!1kj

2F j*
~2!50, j 51,2,3 (24)

Also, Eq. ~14! of the wave-induced pore water pressure gives

P* ~2!5
K

n0
@~12n01a1n0!k1

2F1*
~2!1~12n01a2n0!k2

2F2*
~2!#

(25)

where wave numberskj and solid/fluid related parametersa j are
given as Eqs.~8!–~20! in Huang and Song~1993!. In Eq. ~24!,
F1

(2) and F2
(2)5the displacement potentials of the first and t

second longitudinal waves, respectively; whileF3
(2)5the dis-

placement potential of the transverse wave, i.e.

dI * 5¹F1*
~2!1¹F2*

~2!1¹∧~F3*
~2!eI z! (26)

DI * 5a1¹F1*
~2!1a2¹F2*

~2!1a3¹∧~F3*
~2!eI z! (27)

In which, ¹∧~ ! means taking curl of~ !.
Note that governing Eqs.~2! and~24!, wave-induced pressur

and effective stresses Eqs.~3!, ~25!, and~7!, together with bound-
ary conditions~15!, ~16!, ~17!, ~18!, ~21!, ~22!, and~23! form the
complete boundary-value problem of the present study.@Eq. ~20!
is used to findj* only, and the vertical component of Eq.~22! is
identical to Eq.~23! in the present study.#

Nondimensionalization of Variables

Huang and Song~1993! defined the following parameters

m5~2G1l!n0 /K (28)

«5n0r0v/b (29)
212 / JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2003
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L25
n0r01~12n0!rs

2G1l1~K/n0!

v2

k0
2 (30)

P25
i ~m11!

m«

r0

K

v2

k0
2 (31)

C25
n0r01~12n0!rs

G

v2

k0
2 (32)

in their solution of linear water waves propagating over a
roelastic bed. In which,«5called penetrability parameter,v5the
frequency,m5the stiffness ratio of solid and fluid,k05the wave
number of water wave and will be found as complex,L andC are
only functions of water wave speed and material~fluid and solid
skeleton! properties, whileP is not only a function of the sam
variables forL andC but also depends on the permeability of t
porous medium.

Referring to Huang and Chwang~1990!, k1 , k2 , andk3 can be
derived in the following form:

k15Fn0r01~12n0!rs

2G1l1~K/n0! G1/2

v@11O~«!# (33)

k25F2G1l1~K/n0!

~2G1l!n0K
ivbG1/2

@11O~«!# (34)

k35Fn0r01~12n0!rs

G G1/2

v@11O~«!# (35)

For low penetrability, i.e.,i«i!1, Eqs.~30!–~32! could be sim-
plified to

L26~k1 /k0!2 (36)

P26~k2 /k0!2 (37)

C26~k3 /k0!2 (38)

by substitution of Eqs.~33!–~35!. Moreover, for a soft solid skel
eton,ik2i@ik0i is discovered and thatiP2i6ik2

2/k0
2i@1 is used

to define the ‘‘soft’’ material in this study. SinceiL2i is always
smaller thaniC2i @see Eqs.~30! and ~32!#, we can obtain

iL2i,iC2i!1!iP2i (39)

Based on the this discussion, we herewith define

«15k0a (40)

«25k0 /k2 (41)

for later use wherea5the amplitude of an incoming water wav
After the analysis of an order of magnitude for each depen

variable, the dimensionless variables are selected as

x̂5k0x (42)

ŷ5k0y (43a)

y85 ŷ/«2 , for the second longitudinal wave only
(43b)

t̂5Agk0t (44)

ĥ* 5k0h* (45)
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F̂j*
~2!5«1f̂10*

@ j #1«1«2f̂11*
@ j #1«1

2f̂20*
@ j #1O~«1

2«2 ,...!, j 51,3
(55)

Due to Eq.~39!, the second longitudinal wave needs to be sol
inside the boundary layer and, thus, its displacement potenti
nondimensionalized especially as Eq.~49! and expanded as

F̂2*
~2!5«1f̂10*

@2#1«1«2f̂11*
@2#1«1

2f̂20*
@2#1O~«1

2«2 ,...! (56)

if i«2i and i«1i are smaller than unity. Also, the water wa
profile at the free surface becomes

ĥ* 5«1ĥ10* 1«1«2ĥ11* 1«1
2ĥ20* 1O~«1

2«2 ,...! (57)

and the wave profile of the porous-bed surface becomes

ĵ* 5«1ĵ10* 1«1«2ĵ11* 1«1
2ĵ20* 1O~«1

2«2 ,...! (58)

For a periodic motion with frequencyv, the aforementioned
variables@ #* (RI ,t) can be written as@ #(RI )e2 ivt, whereRI 5the
position vector. Let the given incoming-wave amplitude of
leading order term before being disturbed by the porous beda
~i.e., ĥ105eix̂), the Stokes expansion based on«1 and«2 will be
carried out only to the first three terms for the present nonlin
water wave problem to avoid the occurrence of secular te
Thus, after the Taylor series expansions at the free surface a
the porous-bed surface, respectively, are applied, the boun
value problem of each order without the time factor is obtaine
the following.

Boundary-Value Problem Without Boundary Layer

Since the first longitudinal wave and the transverse wave pr
gate throughout the whole domain, i.e., both inside and out
the boundary layer, there is no need to make any correction
these two waves. Hence, the boundary-value problem withou
boundary layer is formulated as follows.

For O(«1), the governing equations are as follows: region~1!:
2`, x̂,`, 0, ŷ,k0h

¹̂2f̂1050 (59)

and region~2!: 2`, x̂,`, 2k0B, ŷ,0

¹̂2f̂10
@1#1L2f̂10

@1#50 (60)

¹̂2f̂10
@3#1C2f̂10

@3#50 (61)

the Boundary conditions are as follows; at the free surfaceŷ
5k0h, 2`, x̂,`, ~1! kinematic free surface boundary cond
tion

f̂10,ŷ52 i v̂ĥ10 (62)

and ~2! dynamic free surface boundary condition

i v̂f̂105ĥ10 (63)

at the porous-bed surface:ŷ50, 2`, x̂,`, ~1! continuity of
pressure

i v̂f̂102
k0KL2

ek0hn0r0g
q1f̂10

@1#50 (64)

~2! continuity of flux

i v̂q1f̂10,ŷ
@1# 2 i v̂q3f̂10,x̂

@3# 1ek0hf̂10,ŷ50 (65)

~3! continuity of effective stress~only t x̂ŷ60)
v̂5v/Agk0 (46)

F̂* ~1!5
k0

2

Agk0

F* ~1! (47)

F̂1*
~2!5ek0hk0

2F1*
~2! (48)

F̂2*
~2!5ek0hk0

2
k2

2

k1
2 F2*

~2!5
ek0hk0

2

«2
2L2 F2*

~2! (49)

F̂3*
~2!5ek0hk0

2F3*
~2! (50)

ĵ* 5
k0ek0h

C2 j* (51)

P̂* ~1!5
k0

r0g
P* ~1! (52)

P̂* ~2!5
k0

r0g
P* ~2! (53)

All the symbols of variables on the left-hand side of Eqs.~42!–
~53! are dimensionless, but those on the right-hand side are
mensional. Note that since vertical length scales need mult
scales~see Fig. 2!, ŷ andy8 are proposed.

Applying the two-parameter perturbation expansion~see Fig.
3!, the velocity potential of flow and displacement potentials
the first longitudinal wave and the transverse wave for the wh
domain can be written as

F̂* ~1!5«1f̂10* 1«1«2f̂11* 1«1
2f̂20* 1O~«1

2«2 ,...! (54)

Fig. 3. Schematic diagram of two-parameter expansion
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2f̂10,x̂ŷ
@1# 1f̂10,ŷŷ

@3# 2f̂10,x̂x̂
@3# 50 (66)

at the porous material/impervious rock interface:ŷ52k0B,
2`, x̂,`, ~1! no horizontal displacement for porous materia

f̂10,x
@1# 1f̂10,y

@3# 50 (67)

~2! no flux for fluid

a1f̂10,ŷ
@1# 2a3f̂10,x̂

@3# 50 (68)

where

qj512n01a jn0 , j 51,3 (69)

Note that only one component of the aforementioned bound
conditions of continuity of effective stresses is needed,
t x̂ŷ60, otherwise, it will become overdetermined.~Another con-
dition, t ŷŷ60, includes the effect of the second longitudinal wa
and which will be adopted by the boundary layer correction
the second longitudinal wave later.! And, since for the low pen
etrability of the porous material, botha1 anda3 are very close to
unity, the boundary condition of no flux for fluid is equivalent
that of no vertical displacement of the soft porous material, th
fore, only one is needed. Herein, the former is selected.

For O(«1«2), the governing equations are as follows: reg
~1!: 2`, x̂,`, 0, ŷ,k0h

¹̂2f̂1150 (70)

region ~2!: 2`, x̂,`, 2k0B, ŷ,0

¹̂2f̂11
@1#1L2f̂11

@1#50 (71)

¹̂2f̂11
@3#1C2f̂11

@3#50 (72)

The boundary conditions are the following at the free surfaceŷ
5k0h, 2`, x̂,` ~1! kinematic free surface boundary conditio

f̂11,ŷ52 i v̂ĥ11 (73)

~2! dynamic free surface boundary condition

i v̂f̂115ĥ11 (74)

at the porous-bed surface:ŷ50, 2`, x̂,`, ~1! continuity of
pressure

i v̂f̂112
k0KL2

ek0hn0r0g
q1f̂11

@1#50 (75)

~2! continuity of flux

i v̂e2k0h~q1f̂11,ŷ
@1# 2q3f̂11,x̂

@3# !1f̂11,ŷ50 (76)

~3! continuity of effective stress~only t x̂ŷ60)

2f̂11,x̂ŷ
@1# 1f̂11,ŷŷ

@3# 2f̂11,x̂x̂
@3# 50 (77)

at the porous material/impervious rock interface:ŷ52k0B,
2`, x̂,` ~1! no horizontal displacement for porous materia

f̂11,x̂
@1# 1f̂11,ŷ

@3# 50 (78)

~2! no flux for fluid

a1f̂11,ŷ
@1# 2a3f̂11,x̂

@3# 50 (79)

Again, only one component of the boundary condition of c
tinuity of effective stresses is needed, i.e.,t x̂ŷ60, for the same
214 / JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2003
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reason mentioned herein, and the vanishing vertical solid
placement is equivalent to vanishing fluid flux at impervio
boundary.

For O(«1
2), the governing equations are as follows: region~1!:

2`, x̂,`, 0, ŷ,k0h

¹̂2f̂2050 (80)

region ~2!: 2`, x̂,`, 2k0B, ŷ,0

¹̂2f̂20
@1#1

k̃1
2

k1
2 L2f̂20

@1#50 (81)

¹̂2f̂20
@3#1

k̃3
2

k3
2 C2f̂20

@3#50 (82)

The boundary conditions are as follows: at the free surfaceŷ
5k0h, 2`, x̂,`, ~1! kinematic free surface boundary cond
tion

f̂20,ŷ12i v̂ĥ205ĥ10,x̂f̂10,x̂2ĥ10f̂10,ŷŷ (83)

~2! dynamic free surface boundary condition

2i v̂f̂202ĥ205
1

2
~f̂10,x̂

2 1f̂10,ŷ
2 !2 i v̂ĥ10f̂10,ŷ (84)

at the porous-bed surface:ŷ50, 2`, x̂,`, ~1! continuity of
pressure

2i v̂f̂202
k0KL2

ek0hn0r0g
q̃1f̂20

@1#5
1

2
~f̂10,x̂

2 1f̂10,ŷ
2 !2

i v̂C2ĵ10

ek0h f̂10,ŷ

1
C2k0KL2ĵ10

e2k0hn0r0g
q1f̂10,ŷ

@1# (85)

~2! continuity of flux

ek0hf̂20,ŷ12i v̂~ q̃1f̂20,ŷ
@1# 2q̃3f20,x̂

@3# !

5C2ĵ10,x̂f̂10,x̂2C2ĵ10f̂10,ŷŷ1 i v̂C2e2k0hĵ10,x̂~q1f̂10,x̂
@1#

1q3f̂10,ŷ
@3# !2 i v̂C2e2k0hĵ10~q1f̂10,ŷŷ

@1# 2q3f̂10,ŷx̂
@3# ! (86)

~3! continuity of effective stress~only t x̂ŷ60)

G~2f̂20,x̂ŷ
@1# 1f̂20,ŷŷ

@3# 2f̂20,x̂x̂
@3# !

5C2e2k0hĵ10,x̂@2G~f̂10,x̂x̂
@1# 1f̂10,x̂ŷ

@3# !2lL2f̂10
@1##

2GC2e2k0hĵ10~2f̂10,x̂ŷŷ
@1# 1f̂10,ŷŷŷ

@3# 2f̂10,x̂x̂ŷ
@3# ! (87)

at the porous material/impervious rock interface:ŷ52k0B,
2`, x̂,`, ~1! no horizontal displacement for porous materia

f̂20,x̂
@1# 1f̂20,ŷ

@3# 50 (88)

~2! no flux for fluid

a1f̂20,ŷ
@1# 2a3f̂20,x̂

@3# 50 (89)

wherek̃ j and ã j ( j 51,3) in nonlinear order«1
2 are given as Eqs

~8!–~20! in Huang and Song~1993!, and

q̃ j512n01ã jn0 , j 51,3 (90)
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Table 1. Selection of Wave Condition and Property of Soft Por
Bed

Item Value Unit

Water
Density 1,000 kg/m3

Bulk modulus 2.33109 N/m2

Viscosity 0.001 N s/m2

Depth 2.0 m
Wave amplitude 0.05 m
Period 2.0 s

Skeleton
Density 2,650 kg/m3

Lame’s constant 1.03106 N/m2

Lame’s constant 1.03107 N/m2

Specific permeability 1.0310212 m2

Porosity 0.4
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The boundary conditions:y850, 2`, x̂,`, ~1! continuity of
vertical effective stress~only t ŷŷ60)

2GL2f̂11,y8y8
@2# 2lL2f̂11

@2#5lL2f̂11
@1#22G~f̂11,ŷŷ

@1# 2f̂11,x̂ŷ
@3# !

(95)

~2! outside the boundary layer

f̂11
@2#50 (96)

For O(«1
2), the governing equations are:

f̂20,y8y8
@2# 1f̂20

@2#50 (97)

The boundary conditions:y850, 2`, x̂,`, ~1! continuity of
vertical effective stress~only t ŷŷ60)

2GL2f̂20,y8y8
@2# 2lL2f̂20

@2#

522G~f̂20,ŷŷ
@1# 2f̂20,x̂ŷ

@3# !1lL2f̂20
@1#2C2ĵ10e

2k0h

3 b2G~f̂10,ŷŷŷ
@1# 1L2f̂11,y8y8y8

@2# 2f̂10,x̂ŷŷ
@3# !

2lL2~f̂10,ŷ
@1# 1f̂11,y8

@2# !c (98)

~2! outside the boundary layer

f̂20
@2#50 (99)

Solution

After omitting the time factore2 ivt, the given the leading order
incoming water wave profile with magnitudea is

h10~x!5aeik0x ~0,x,`! (100)

With the input of the leading order incoming water wave, ea
order of the aforementioned boundary-value problems can
solved in sequence. Thus, the dimensional solutions of the fi
longitudinal wave and the transverse wave throughout the en
domain are obtained as follows forO(«1)

f1052
i

k0
F g

v
coshk0~h2y!2

v

k0
sinhk0~h2y!Geik0x

(101)

f10
@1#5

1

ek0hk0
2 ~a11e

K1k0y1a12e
2K1k0y!eik0x (102)

f10
@3#5

1

ek0hk0
2 ~a31e

K3k0y1a32e
2K3k0y!eik0x (103)

For O(«1«2)

f115
Agk0

k0
2 E5Fcoshk0~h2y!2

v2

gk0
sinhk0~h2y!Geik0x

(104)

f11
@1#5

1

ek0hk0
2 ~c11e

K1k0y1c12e
2K1k0y!eik0x (105)

f11
@3#5

1

ek0hk0
2 ~c31e

K3k0y1c32e
2K3k0y!eik0x (106)
Boundary Layer Correction Inside Boundary Layer

The second longitudinal wave disappears outside the bou
layer but it does exist inside the boundary layer near the w
porous-bed interface, so the complete solution needs to b
rected by further consideration of the second longitudinal w
inside the porous material. Besides, due to the fact that this
ond longitudinal wave is trapped inside the boundary layer
the water/porous-bed interface, it could not transmit throug
the porous material bed to the interface between the porou
terial and the impervious rock. In other words, there exist
boundary layer near the porous material/impervious rock inte
due to the deficiency of the second longitudinal wave and w
only the first longitudinal wave and the transverse wave exi

Since a thin boundary layer exists within the porous bed
the water/porous-bed interface, multiple scales are need
solve the nonlinear boundary-value problem for the second
gitudinal wave~see Fig. 2!. We, therefore, lety85 ŷ/«2 to chang
the scale fromŷ to the magnified scaley8 in ~43b!. The difficulty
that Chen et al.~1997! encountered, the error due to the
partial derivative based ony of the displacement potential of t
second longitudinal wave, is now overcome by proposing
length scales in the vertical direction. After the coordinate tr
formation of ~43b!, the boundary-value problem of the displa
ment potential of the second longitudinal wave inside the bo
ary layer becomesO(«1).

The governing equations are:

f̂10,y8y8
@2# 1f̂10

@2#50 (91)

The boundary conditions:y850, 2`, x̂,`, ~1! continuity of
vertical effective stress~only t ŷŷ60)

2GL2f̂10,y8y8
@2# 2lL2f̂10

@2#5lL2f̂10
@1#22G~f̂10,ŷŷ

@1# 2f̂10,x̂ŷ
@3# !

(92)

~2! outside the boundary layer

f̂10
@2#50 (93)

For O(«1«2), the governing equations are:

f̂11,y8y8
@2# 1f̂11

@2#50 (94)
JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2003 / 215



Fig. 4. Distribution of wave-induced pore water pressuresuP(2)/P0u
h115
i

k0

v

Agk0

E5eik0x (107)

For O(«1
2)

f205
Agk0

k0
2 @E3 cosh 2k0~h2y!1E4 sinh 2k0~h2y!#e2ik0x

(108)

f20
@1#5

1

ek0hk0
2 ~b11e

M1k0y1b12e
2M1k0y!e2ik0x (109)
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f20
@3#5

1

ek0hk0
2 ~b31e

M3k0y1b32e
2M3k0y!e2ik0x (110)

h205S g

v22
iE4

vk0
Agk0De2ik0x (111)

The dimensional solutions of the second longitudinal wave
obtained by the boundary layer correction approach forO(«1) is

f10
@2#5

1

ek0hk0
2

k1
2

k2
2 ~a21e

iy81a22e
2 iy8!eik0x (112)



for O(«

and for

Since
a22, b11

complic
solution
1«2) is

f11
@2#5

1

ek0hk0
2

k1
2

k2
2 ~c21e

iy81c22e
2 iy8!eik0x (113)

O(«1
2) is

f20
@2#5

1

ek0hk0
2

k1
2

k2
2 ~b21e

iy81b22e
2 iy8!eik0x (114)

the solutions of the coefficients such asa11, a12, a21,
, b12, b21, b22, c21, E3 ,..., etc. are in a very long and
ated form, they are omitted herein. However, the
s could be obtained by mathematical tools, e.g.,

MATHEMATICA. After solving the displacement potentials, all
the other variables can be obtained. The wave profile of the
porous-bed surface can be found from Eqs.~20! and ~58!.

Results and Comments

Since the second longitudinal wave decays very quickly in the
vertical direction inside the boundary layer as shown in Fig. 2, a
stretched coordinate is needed to better estimate the partial de-
rivative of the second longitudinal wave. Herein, the present so-
lutions are valid under the constraint ofi«1i1/2.i«2i.i«1i2 be-
fore liquefaction when referring to Fig. 3.

Fig. 5. Distribution of wave-induced horizontal effective stressesutxx /P0u
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1 gives the wave condition and the material property of
ed. The present results are compared with those of the

problem with infinite thickness provided by Hsieh et al.
to confirm the validity. The two small parameters
2i) are found to be~0.052,0.064! by Eqs.~40! and ~41!
plexk25(0.161972E102,0.161970E102), which sat-

constrainti«1i1/2.i«2i.i«1i2. The complex wave num-
found to be~0.103848E101,0.184387E206! and thus

elengthL is 6.05 m.
shows the distribution of wave-induced pore water pres-

nder four different thickness. The solid lines in Fig. 4
the present case of finite thick porous bed while the dashed
note the case of infinite thick porous bed. These two sets

of lines tell that the boundary effect is significant, which feeds
pore pressures back into the poroelastic bed very obviously espe-
cially when the thickness~B! is less than the half wavelength
(L/2). The pore pressures become very large at the top and the
bottom of the porous bed in Figs. 4~a and b!. P0 in Fig. 4 is the
wave-induced water pressure on the mean bed surface (y50),
and the nondimensional baseB for infinite-thickness case is
adopted as the same as in finite-thickness case.

In Fig. 5, the wave-induced horizontal effective stresses of
finite-thickness case are larger than those of infinite-thickness
case when the thickness is less than the three-fourth wavelength.
Besides, this effective stress is influenced obviously by the rigid
boundary especially near the top of the porous bed for the case of

Fig. 6. Distribution of wave-induced vertical effective stressesutyy /P0u
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Fig. 5~a!
those o

In Fig
bounda
This ind
differen
water w
this stud
small-am
wave p
thicknes
wave w
. The vertical effective stresses in Fig. 6 are similar to
f Fig. 5.
. 7, the shear stresses are very much affected by the rigid

ry when the thickness is less than the half wavelength.
icates that the characteristic of shear stresses is totally

t from that of normal stresses. In Figs. 8~a and b!, the
ave profiles at the free surface change very little because
y is confined to a deepwater wave problem and the given
plitude incident waves. However, in Figs. 8~c and d!, the

rofiles at the porous bed change very little for different
s since they are dominated by the second longitudinal
hich is confined inside the boundary layer for a soft po-

rous layer. This can be referred to the work of Hsieh et al.~2000!.
In their work, we can find that the solution, Eq.~97!, of the wave
profile at the porous bed indicates the first term on the right-hand
side of Eq.~97! contributed by the first longitudinal wave and the
third transverse wave canceling each other for a soft porous bed.
Fig. 9 shows that the distribution of the pore water pressure varies
with the depth under different thicknesses. The locations of oc-
currence of the wave-induced maximum pore water pressures are
also found to be at the top (y50) or the bottom (y52B) of the
porous bed depending on the thickness of the porous bed. The
optimal thickness (B/L) and the maximum pore pressure
(P(2)/P0) for the present example are~0.193,1.42! at the surface

Fig. 7. Distribution of wave-induced shear stressesutxy /P0u

JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2003 / 219



or ~0.14
pore wa
zero-ve
force du
fluidized
the inte
contour
values,
decay u
noticeab
B, which
for finite

220 / JOU
5,1.13! at the bottom as shown in Fig. 9. If the maximum
ter pressure is large enough to render the occurrence of

rtical effective stress by overloading~e.g., the external
e to an earthquake!, the porous material is said to be
or liquefied. This surface liquefaction is different from

rnal liquefaction of Foda~1987!. Although the two sets of
lines in Fig. 9 are very different in appearance, their

however, are actually very close when the pore pressures
nder the cases ofB/L close to and larger than unity. It is
le that for infinite-thickness case the nondimensional base
is different from case to case, is chosen as the same one

-thickness for each case.

Conclusions

The conventional Stokes expansion of higher-order water waves
based on one-parameter«15k0a is invalid for a soft bed~i.e.,
iP2i6ik2

2/k0
2i@1) with finite thickness because a boundary

layer exists inside the porous bed from the second longitudinal
wave. Therefore, the boundary layer correction by adopting a
two-parameter perturbation expansion based on«15k0a and «2

5k0 /k2 is proposed and makes the complicated problem possible
to be solved by an analytical method other than by a numerical
method. Since the porous material bed in nature is usually multi-
layered, the present study, which makes the complicated analysis

Fig. 8. Wave profiles:~a! and ~b! water and~c! and ~d! porous bed versus horizontal distance~wave period52.0 s!
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of the fi
regarde

The
wave-in
very sig
porous-
to the p
nite-thickness problem possible, is necessary and can be
d as the first step to further investigations.
boundary effects of the impervious rock are significant on
duced pore water pressure and effective stresses, but not
nificant on wave profiles at the free surface and the

bed surface. However, the rigid boundary is insignificant
ore water pressure and effective stresses when the thick-

ness of the porous bed is larger than about one wavelength~see
Fig. 9!. Furthermore, the peak value of the pore pressure, which is
important in analyzing soil liquefaction, could be found if the
wave condition and the porous material are given. For example,
the locations of maximum pore pressures in the present study
occur at either the top or the bottom of the porous bed depending
on the thickness of the porous material.

Fig. 9. ~a! Three-dimensional variation and~b! contour lines of wave-induced pore water pressures
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Notation

The following symbols are used in this paper:
a 5

DI * 5
dI * 5

G, l 5
h 5
i 5

K 5
kj 5
kp 5
k0 5
n0 5

P* (1) 5
P* (2) 5

P0 5
S= * 5
«1 5

«2 5

h* 5

L,P,C 5

m 5
j* 5

r0 5
rs 5

s= * 5
t= * 5

F* (1) 5

F j*
(2) 5

v 5
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amplitude of incoming water wave;
displacement of fluid in porous medium;
displacement of solid skeleton;
Lame constants of elasticity;
mean water depth of the channel;
A21;
bulk modulus of compressiblity of fluid;
wave numbers in porous medium,j 51, 2, 3;
specific permeability;
wave number of incoming water wave;
porosity;
perturbed pressure in channel;
perturbed pressure in porous medium;
perturbed pressure on bed;
normal stress tensor of fluid;
first expansion parameters of Stokes
wave5k0a;
the second expansion parameters of Stokes
wave5k0 /k2 ;
displacement of wave deviated from mean-free
surface;
Mach numbers of two longitudinal and one
transverse waves;
dynamic viscosity of fluid;
displacement of wave deviated from mean channel
bed interface;
density of water;
density of solid;
solid stress tensor;
effective solid stress tensor;
velocity potential of channel flow;
jth kind of displacement potentials of porous
medium, j 51, 2, 3; and
angular frequency of water wave.
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