BRYE N ETHARBBRAAR (D
The Study of The Mechanical Behavior And
The Microscopic Mechanism of Weak Sandstones (II)

¥ &% NSC 89-2211-E-002-152
478 IR 89/8/1-90/7/31
ERAN BTE SMAELAIARSLE K
o BABESEEROERERBRZIBXE

..—\ﬂ_!.

IR S - SRESENE - WOk
A

PR TR R AR R
W RREBIRELRERGR
F R-BELFOHHHRELAY
o MRARRETHTAFER - Kb
HRAFTEROHE  KES2 LR
ME Az EERERE B
AL EFR-HRAARBTTR
FH e

AHRERAMALE - XN EH
e kAL T RAMEN
AW A REBLOMSIAN  RAEE
BAZMT » XL —BAKE -
BEAERAEBRMHZEGH -

RE-_HUEBRTEEARIAR
& AR MAL MEERY
5 5 e 8K R 5 Kbt o W IRAT
- FBATHAZBMERE-GAG
RHEk - £F E BHHAMYE -G AYW
AN GCHERON IR - =18
2EATUHGERE? > FRAAR
TrHEBETRYR BB S
%

R ERMARAEE  AAA
BEAKLHARALRFARABET
257l BAREARATHRARER
W~ ARG FHERSH - RAK

HARALELZ oW LHBM K -

% 3 W #(Keyword: soft sandstone,
shear dilation, constitutive model)

The “Shear dilation” means the dilation
behavior of the geo-materials under the
shear stress state. As everybody knows,
the linear elastic isotropic material will
only change its shape rather than volume
when it is subjected to shear stress.
However, some other geo-materials such
as soft rock and dense sand behave in
different ways and deform a lot when
subjected to shear stress. This important
characteristic of these materials far
affects the
construction. It is necessary for us to

deformation of civil

develop a simple and reasonable
constitutive model to describe the
deformation behavior.

The research intends to characterize the
deformation behavior and proposes a
constitutive model with three parameters
E » G ~ G’. The model is on the basis of
the concept that anisotropy 1s caused by
shear stress, It is assumed that in the
principal stress space the shear stress
weakens the shear modulus G so that
shear dilation may occur. All the
parameters can be got easily from



tri-axial tests. A procedure is also
introduced to show how to get these
parameters.

In order to verify the accuracy of this
model, we compare the laboratory
tri-axial test data with the predicted
values of the model. The results show
this model is reliable. To take better
control of the deformation we concerm,
we use the shear dilation model to
analyze some civil engineering problems
by finite element method.
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Buckle folding of elastic strata

ES.Jeng & N.G.Chang

Department of Civil Engineering, National Taiwan University, Taipei, Taiwan

C.Y.Lu

Deparment of Geology, National Taiwan University, Taipei, Taiwan

ABSTRACT: This paper presents a general solution of an elastic layer embedded in soft material, which has
been partly discussed. This solution is then compared to finite-element simulation using a proposed perturba-
tion method, which can exclude the effect of initial geometry imperfection. The numerical simulation reveals
both of the waveform and the post-buckle behavior of elastic competent strata. It is observed that, waveform
comprised of two frequencies may ocour as the exerted foree F is preater than a critical force, F,,. When £ <
F,,, the amplitude will decay as the distance to the perturbed end increases. Meanwhile, the mechanism of
two-ordered fold and poly-harmonic fold are discussed in this paper,

1 INTRODUCTION

While folding under high confining stress and high
temperature condition, the stratum (e.g. metamor-
phic rocks) exhibits viscous behavior and hence,
the folding behavior is frequently analyzed using
viscous theories (Biot, 1961; Fleicher, 1977; Mihl-
haus ef of.. 1998; Hunt er al., 1996). However,
folding of sedimentary rocks, namely under low
confining stress and temperature condition, can stifl
often be observed. Therefore, analyses based on
the elastic behavior of stratum were accordingly
conducted (Currie ef al, 1962, Hunt ef al., 1993).
Numerical analyses to reveal the mechanism of
nen-viscous folding have also been conducted
{Cobbold, 1977; Lan & Hudleston, 1991).

The simulation of folding using numerical
method involves shortening of the strata, a pertur-
bhation to induce folding and a subsequent shorten-
ing ta further deform the folds. The perturbation is
induced by the “initial geometric imperfection” of
the layer (Zhang et of., 1996), which often is a con-
sequence of natural sedimentary process. However,
this initial imperfection can sometimes influence
the characteristics (e.p. wavelength) of the yielded
fold, which unfortunately interferes the interpreta-
tion of the folding mechanism (Mancktelow, [999},
Therefore, it is wished that the effect of the me-
chanical characteristics of the strata {(e.g. stiffness
and thickness) upon the folding behavior could be
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isolated from the effect of the initial perturbation
geometry.

Another perturbation method, which exciudes
the effect of initial geometry imperfection, is there-
fore proposed in this paper. The layer is first short-
ened, followed by employing a small rotation at the
boundary to apply a moment to the layer to induce
folding. The result indicates that this technique
vields folds corresponding only ta the characteris-
tics of the strata without any influence from the ini-
tial perturbation geometry.

To explore the mechanism associated with fold-
ing of an elastic layer, this paper presents a com-
plete closed form solution of a layer embedded in
soft material, which has been partly discussed
(Karman & Biot, 1940; Currie er al.. 1962). The so-
lution is then compared to the results of finite-
element simulation. The mechanism of poly-
harmonic fold is also discussed in this paper.

2 STRATUM SURROUNDED BY SOFT
MATRIX - ELASTIC THEORY

2.1 Siratum surround by spring

First, considering a stratum embedded in soft ma-
trix comprised of elastic springs, the governing
equation is (Karman & Biot, 1940):

F X
PNX ST = i}
¥ ()()+Er (XD EIY{ =0 {



where: ¥, £ and [ are the vertical displacement,
Young's modulus and moment of inertial of the
stratum, respectively; K is the stiffness of the
spring; and F is the horizontal force required to
buckle the stratum, namely to produce a fold.

Solving Eqn. 1, the characteristic value A can be
determined by the F, E, fand X as:

iot J'_EE__ w @)

The solution of Eqn. 1 depends on the relative
magnitude of the exerted force F and the rigidity of
the stratumn and spring (Ja£7K ). When F2 48K,
the required force F for vielding a fold with wave-
length (/) can be related as:

Fad —K‘l—, (3)

47

Fig. | illustrated the relation of F with ! when
Fza£ix , based on Eqn. 3.

I,
Figure 1 The relation of £ with induced wavelength 7 when
F e JaEix (after Karman & Biot. 1940).

As illustrated by Fig. 1, when F 2 f4EK , a criti-
cal force (F,) exists with a corresponding wave-
length /., , which are:

K, = y4EEI )

/- zxaﬁ (5)
5

For £, the solution of Eqn. 1 is a wave

comprised of twe frequencies:
Y = asin mX+ b cos mX +c sin nX +d cos nX
where m and # are:
_ F o+ F 4EIK
2ES
|- F-F —4EK
2£
The wavelengths corresponding to m and » are (Fig.

1

©)

(7a)

m=

(7b)

;-2 cand ;2% (%)
m M

Yet, when r < £, folding of the stratum is still
passible, which is not well discussed so far. When
F < F, , solution of Eqn. 1 has the following form:

€]

Y =& ™ (acosur + bsin nx)
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a

where m and » are determined by the exerted force
F and the property of material (£, f and K} as:

me J7F+\;'4EIK (10a)
4Ef
(10by

e [F B
AE!

Based on Eqn. 9, the fold has only one frequency
and the amplitude tends to decay as x (the distance
from the perturbed end) increases.

The relation of F with the wavelength f can be
expressed as (Fig. 2):

165 £1 (1)

IJ

Egqn. 11, indicate that: (1) folding is possible
even when the exerted force is close to zero; (2) the
less the F, the greater the wavelength [ and the se-
verer the decay of amplitude as well; and (3) when
F approaches zero, a maximum wavelength {/;) ex-
ists, which can be expressed as:

/= d.rr\"Ef

YT

F i

F= 4EIK

(12}

0 S
Figore 2 Complete solution of & with induced wavelength ¢

2.2 Stratum survound by soft matrix

As the stratum is confined by matrix instead of
spring, an approximate governing equation can be
obtained as (Biot, 1937; Currie er o, 1962);

2xE

] = 13
= Y =0 (13)

__£ ; E = Young’'s modulus
-y

F o

¥ XY+ ﬁ ¥ XY+

where p__E
1-v')

of the matrix; = Poisson ratio.

As Eqn, 13 is similar to Eqgn. 1, the characteris-
tics of its solution is similar to those described in
Section 2.1, except that the term, VaEIX | is now re-

laced by 3,555 instead.
P ¥ zvzuso

The relation of exerted force F and the wave-
length can then be determined as (Currie er ol
1962):

A’ Er  E[f
o out
1 2z
Similarly, F,, and /., can be obtained as:
F, = 14,2?1 E/
2

(14}

(15}
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where k is the thickness of the layer.

(16)

3 NUMERICAL SIMULATION OF BUCKLE
FOLDING

To prevent the initial geometric imperfect affecting
the yielded buckle fold, the hard layer is set to be
flat without initial imperfection. The process (o
produce buckle fold is as follows: the layer together
with the matrix are shottened with an initial short-
ing strain &,, followed by applying moment at one
end of the layer to buckle the stratum.

The initial shorten strain €, can be cxpressed in

terms of initial shorting length (AL} as:
AL

, (17)
L

where: L = Length of the layer; 4 = eross-sectional
area of the layer. A dimensionless measure of lat-
eral stress, o, exerted on the end of strata is defined
as:

E,

F
6=—

(18)
Ed

The o—¢ relationship of a layer before and after
folding is illustrated by Fig. 3. If the layer is purely
shortened without buckling, the o—& curve follow a
lincar segment AB. If the stratum is buckled at C,
then it will follow segment CD for the subsequent
shortening. This indicates that the buckled stratum
fsegment ACD} accumulated less strain energy
compared to the pure shortening case {segment
ALCB).

ATE
i €
Figure 3 Schematic illustration of the o-z relationship of the
stratum

When F < F_, the yield fold exhibits decaying

nature of its amplitude (Fig. 4) as indicated by Eqn.

¥ =*}-.: ;:55:’ " -
e gy O ki

Figure 4 Geometry of fold yielded when F < £

As F » F_, the fold exhibits a “bi-frequency™ na-

ture. As shown in Fig. 5, at the commencement of
buckling (Fig. 5a), the fold comprises wave of twa
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frequencies. Upon the subsequent shortening of the
stratum, the waveform with greater wavelength (1)
has much greater amplitude than another waveform
() (Fig. 5b), and [; hence becomes a dominant
wavelength.
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Figure 5 Deformation of stratum when F > £,

The geometry of the fold shown in Fig. 5a is
similar to the two-ordered fold observed by geolo-
gists. According to Price & Cosgrove (1990}, an
earlier buckling (with shorter wavelength; second-
order fold} increases the effective thickness of the
stratum (from a, to @, shown in Fig.6) and forms a
longer wavelength (first-order fold) at a later stage
of buckling.
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Figure 6 Interpretation to the development of two-ordered fold
by Price & Cosgrove (1990)

If the “bi-frequency” nature of fold do exist for
F > F_ this simulation result provides anocther pos-
sible mechanism for the underlain mechanism of
two-ordered fold, However, the layer may possess
viscous behavior, especially under high temperature
and high pressure condition; therefore, the impact
of viscosity should be accessed before any further
interpretation of bi-frequency phenomenaon.

The buckle of a mulii-layer strata system may
induce a poly-harmonic fold. Based on results of



numerical analyses, the development of poly-
harmonic fold is as follows:

1 When the stratom is compressed, the middle
layer is first buckled with a wavelength as indi-
cated in Fig. 7a;

Upon subsequent compression, the adjacent lay-
ers, hereafier referred as “boundary layer”, are
then buckled, which possesses a longer wave-
length than that of the middle layer (Fig. 7b);

As the ampiitude of the folded boundary layers
is great enough to affect the middle laver, the
middle laver is forced to deflect again according
to the waveform of the boundary layers.

This process is identical the interpretation by
Ramberg (1964},

( The boundary layers are then buckled with a loer wae-
length

Figure 7 Development of poly-harmonic fold of multi-layer
strata indicated by numerical analysis.

4 CONMNCLUSIVE REMARKS

An alternative perturbation method is proposed
to achieve numerical simulation of folding without
introducing the effect of “initial geometry perturba-
tion”. The simulation technique allows studying
the underlain folding mechanism related o the
characteristics of the layer and matrix only, instead
of geometry impetfection.

Meanwhile, a complete general solution for a
singe, elastic layer embedded in soft matrix is pro-
vided such that the solution and the simulation re-
sults can be compared and justified. The solution
indicates that folding is possible for both F: £,

and F < F, . When r> £, the waveform will may
comprises of two frequencies. When F < F, decay
of wave amplitude accurs.

1312

The mechanism associated with the formation of
multi-order fold of a single layer as well as the
poly-harmonic fold of a multi-layer system is also
explored. For a single layer, the “bi-frequency™ na-
ture of the waveform, when £ §_, can be a possi-

bile cause for multi-order fold.

As revealed by the numerical analysis, the
underlain mechanism of poly-hammonic fold of
multi-layer can be as follows: high frequenecy
buckle folding along a thinner layer is first initiated
at a earlier shortening, followed by buckle of
thicker layers at a later shortening. The later folding
has a longer wavelength and forces the earlier
formed folds to deform with a lower frequency.
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