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Abstract— The most recent research of SSTA requires accurate
non-Gaussian data processing modeling. Although quadratic
Gaussian forms have been proposed to data modeling, limitations
are imposed to ensure real coefficients. However, there are even
more difficult distributions such as uniform distribution w hich
can not be modeled by previous one. In this paper, we are goingto
solve these problems by allowing complex coefficients and higher
order Gaussian polynomials with a PDF recovering scheme.
Experimental results show how our methods and new algorithms
expose some enhancements in both accuracy and versatility.

I. I NTRODUCTION

As the technology feature sizes are getting smaller than the
wave length of optical lithography light source, the process
variation issues are also getting significant and must be taken
into consideration during design [1]. Classical corner-based
timing analysis produces timing predictions that are oftentoo
pessimistic and grossly conservative because we have only
few chances to get parameters of all gates working on their
corner values. Statistical static timing analysis (SSTA) that
characterizes time variables as statistical random variables
offers a better approach for more accurate and realistic timing
prediction.

Many existing SSTA algorithms were built upon Gaussian
distributions due to its simplicity while dealing with maximum
operation which is essential during timing analysis [2] [3].
However, the modeling capability of a signal Gaussian is
quite limited and may not be able to deal with various non-
Gaussian process distributions. Recently, the authosrs in[4]
[5] [6] and [7] have proposed the non-Gaussian models used
in SSTA to solve these problems. As the technology feature
size are getting smaller and smaller, the spatial correlation
analysis becomes critical in SSTA. The authors in [8] has
proposed a mathematical approach to model this phenomenon.
For both these reasons, the authors in [7] has proposed to use
a quadratic Gaussian polynomial,Y = aX2 + bX + c, where
X is respective Gaussian random variable, anda, b, c are
respective real numbers. Although in most cases, this method
can match the first 3 moments, it requires the skewness is
under a limitation to ensure real coefficients. Furthermore, this
method is limited in only matching the first 3 moments and
thus the forth momentKurtosisand even higher order moments
are not matched. Note that Kurtosis is one of the key moments
to measure the peak of a distribution. Figure 1 is the threshold
voltage distribution which we got from the industry. We can
see the Kurtosis is different in different locations. So, tomodel
the Kurtosis accurately is very important.
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Fig. 1. The threshold voltage distribution in the chip between different
measurement locations under 90 nm technology.

In this paper, we present several effective and accurate meth-
ods to general models which are compatible with SSTA and
can match more board types of distribution such as normal and
high skewness by several novel techniques. First, by allowing
the coefficients of Gaussian polynomials to be complex, we
can match distributions with high skewness which could not
be achieved by previous approaches. Second, we expand the
power of the Gaussian polynomials from 3 to 4 and even above
to be matched with the up to4th moment and beyond.

The rest of the paper is organized as following: Session
II reviews the pros and cons of existing statistical process
data modeling methods and basic definitions of statistical
moments. Session III presents our newly discovery to solve
those problems. Session IV shows how to use CQGP to the
ADD and MAX operations in SSTA. Session V shows the
experimental results. Finally, in session VI, we conclude this
paper.

II. PRELIMINARY

We introduce the basic definition of moments and the
moment matching problem in the statistics domain in this
session. Later on, we will also briefly introduce the existing
process variation modeling techniques.

A. Moments in the Statistics Domain

According to the scope of application, there are various
definitions of moments. In the VLSI timing analysis, we
usually use the ”scaled” raw moments as moments. However,
in the statistics domain, we usually use the central moments
such as variance and skewness as moments. To make our



discussion more clear, we formally introduce our terminology
in the following.

The nth raw momentm′

k (i.e., moment about zero) of a
distributionY (x) is defined by

m′

k = 〈xk, 〉

where

〈f(x)〉 =
∑

f(x)Y (x), discrete distribution

=

∫

f(x)Y (x)dx,continuous distribution.

m′

1, the mean is usually simply denoted asµ = m1. If the
moment is instead taken about a pointα, then

mk(α) = 〈(x − α)k〉
=

∑

(x − α)kY (x).

The statistical moments are most commonly taken about the
mean.These so-called central moments and are denoted asmk

and are defined by

mk = 〈(x − µ)k〉

=

∫

(x − µ)nY (x)dx.

B. AWE-type Statistical Moment Matching

Due to the different definition of moment definition, we
now define the statistical moment matching (SMM) method.
SMM is almost the same as the AWE method [9] except that
moment definitions are different and the target function is
usually probability density function (PDF). Thus, it is required
that PDF is always positive and the total area below PDF is
equal to one.

Given a PDFy(t), we can obtain its Laplace transform
Y (s) =

∫

∞

0
y (t) e−stdt. Expandinge−st about s = 0 to

yield

Y (s) =

∫

∞

0

y (t)

[

1 − st +
1

2
s2t2 − 1

6
s3t3 + . . .

]

=

∞
∑

k=0

(−1)
k

k!
sk

∫

∞

0

tky (t) dt

=

∞
∑

k=0

(−1)
k

k!
skm′

k. (1)

We can see the statistical moment definition is different than
the AWE method by a division of a factorial,mawe

k =
m′

k/k!. To obtain an approximation ofY (s), we utilizePadě
approximation as follows:

Ȳ (s) =
1 + a1s + a2s

2 + . . . + ansn

1 + b1s + b2s2 + . . . + bmsm
, (2)

wherem andn are positive integers.
We now use3rd approximation to illustrate the SMM

process. Comparing these two equations (2) and (1) and
considering a3rd order approximation, i.e., m = 3 and n≤ 2,
we obtain the following equation:
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Once theb′js are obtained, we commutateal by the follow-
ing equations:

1 = m′

0

a1 = m′

0b1 − m′

1

a2 = m′

0b2 − m′

1b1 +
1

2!
m′

2 (3)

Finally, usinga′s and b′s, we can represent the approxi-
mated PDF in terms of exponentials,

y (t) ≈ k1e
p1t + k2e

p2t + k3e
p3t. (4)

Issues of AWE type SMM:
There are several issues of SMM besides the traditional AWE
methods such as stability issues. One of the problem is about
the initial condition issues. AWE methods are traditionally
assume zero initial condition. However, as a matter of fact,
AWE can not guarantee zero initial condition. As a result, the
resulting function may have big errors in the starting point. We
now illustrate a failure example of using AWE to approximate
a 3− sigma shifted Gaussian approximation in the following
figure. It clearly shows that the whole curve is deviated from
the shifted Gaussian a lot.
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Fig. 2. Initial condition mismatches of AWE-SMM

C. Quadratic Gaussian Polynomial (QGP)

To facilitate SSTA, [2], [10], [11] propose the following
canonical timing model for a given delay functionD:

D = µ + αR +
∑

i

βiYi,

where Y ′

i s are parameter distributions. To model the non-
linearity of the delay dependency toY ′

i s, the authors in [7]
proposed to add quadratic terms to the above linear canonical
form as follows:

D = m + αR +
∑

i

βiYi +
∑

i,j

γijYiYj . (5)

Both canonical and quadratic time model assume parameter
variations to be Gaussian distributions which are not always
applicable in practice. In the cases when a parameter variation,
Y, can not be properly modeled by a simple Gaussian, [7]



proposes to express it as a quadratic polynomials in terms of
independent Gaussian random variableX (QGP) as follows:

Y = aX2 + bX + c, (QGP ) (6)

wherea, b, andc are real numbers.
To get propera, b, andc, [7] uses moment matching meth-

ods to match the first three moments. The moment matching
equations are as follows:

m1 = µY = E{Y } = a + c (7)

m2 = σ2
Y = E{(Y − E{Y })2} = 2a2 + b2 (8)

m3 = κ3
Y = E{(Y − E{Y })3} = 8a3 + 6ab2 (9)

Issues of Quadratic Gaussian Polynomial Model:
The limitation of this previous work is that it can only match
the first three moments - mean, variance and skewness. Also,
due to the limitations of real coefficients, it can not model
high skew distribution when the following conditions are not
satisfied.

|κY | ≤
√

2σY . (10)

III. C OMPLEX GAUSSIAN POLYNOMIAL (CGP) MODEL

In this session, we will present our enhancement to use more
general forms to model the process variation data. We will
first analyze the high skewness distribution issues and then
the ways to deal with this issue such as least-square fitting
and complex quadratic Gaussian polynomial. Cubic as well
as higher order polynomial forms will also be discussed in
details.

Let us first illustrate our complex Gaussian polynomial
process data modeling flow as shown in Figure 3. First, assume
the process data and/or its characteristics are given, we use
our CGP modeling method to obtain accurate abstract form
of those data. Afterward, we pass the CGP to SSTA for
statistical timing analysis. Once SSTA is done, we then recover
the distribution by the modified statistical moment matching
method.

Fig. 3. Complex Gaussian Polynomial Modeling Flow for SSTA

A. Least Square Fitting Based Quadratic Gaussian Polynomi-
als

Before we resort to complex extension, let’s make a last
effort to the (real) quadratic Gaussian polynomial. When there
is no real root which can simultaneously satisfy equation
(8) and (9), the QGP approach fails. It is, nevertheless, still
possible to find some real coefficients which approximately
satisfy the two equations. This problem is formulated as a
least fitting problem as follows:

Minimize ǫ21 + ǫ22

where ǫ1 = 2a2
+b2−m2

m2
, andǫ2 = 8a3

+6ab2−m3

m3
.

To get further understanding of these two equations and
the least square fitting approach, we now illustrate their
behaviors in detail. Figure 4 plots these solution set of the
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Fig. 4. The solution sets diagram of equation (7) and equation (8) with
different variance and skewness.

two equation in the 2D plane. The X-axis and Y-axis area
andb, respectively. The blue and red curves show the solution
set of equation (8) and equation (9), respectively. The upper
picture shows the relation of a and b in one PDF when variance
is equal to4 and skewness is equal to3. Actually, the solution
sets of equation (8) exactly forms an ellipse. The bottom
picture shows another PDF which variance is equal to4 and
skewness is equal to300. The ratio of variance and skewness
violates equation (10) so there is no intersection between these
two curves. Generally speaking, when the variance becomes
larger, the major axis in the ellipse will become larger too.As
the skewness becomes larger, the turning point will be getting
far away from the ellipse. These two characteristics explain the
reason why real solutions are not exist. When the two curves
are reasonably close by, we anticipate the least square fitting
work perfectly. Otherwise, the fitting results may not be able
to meet your expectation. Figure 5 shows the inconsistency of
the fitting approach. To get more flexibility during equation
solving, complex coefficients must be allowed.
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Fig. 5. Two results obtained from Least Square Fitting Algorithm. (a)Good.
(b) Bad



B. Complex Quadratic Gaussian Polynomials (CQGP)

The key to derive a more robust modeling approach is to
allow a − c to take complex values. When complex numbers
are allow, the 3 moment equations all can be simultaneously
satisfied. We now present our new complex quadratic Gaussian
polynomial (CQGP) form as follows:

Y = aX2 + bX + c, (CQGP ) (11)

wherea, b, andc are complex numbers. We have the following
theorem to show the effectiveness of the CQGP representation.

Theorem 1: Given any distribution Y , the complex
quadratic Gaussian polynomial (CQGP) form can always
match the first three moments ofY .

As a matter of fact, to satisfy those moment equations when
the skew condition is violated,a must be a real number while
b must be an imaginary number. We now prove this theorem
as follows:

Theorem 2: When condition (10) is violated,a andc must
be real whileb is an imaginary number.

proof: From equation (8), we know that2a2 = m2 − b2.
Substituting into equation (9), we geta = m3/(5b2 + 4m2).
Therefore, no matter what valueb will take, a must be real.
Also, from b = ±

√
m2 − 2a2, we know that whena is real,

b must take imaginary values.
Furthermore, although CQGP allows complex coefficients,

the moments of CQGP are stillreal. So, the moment based
statistical timing operations still can be applied withoutmod-
ification! So, we can still handle operations such as Add and
Max operations. Furthermore, the correlations in between can
also be easily preserved by the following theorem which is
similar to [7]. Following the approach in [7], we get:

Theorem 3:Assuming CQGPY1 = a1X
2
1 + b1X1 + c1

and Y2 = a2X
2
2 + b2X2 + c2 are timing parameters in

gates 1 and 2 and assumingX1 and X2 are computational
Gaussian random variables at those gates.ρx is the correlation
coefficient betweenX1 andX2 and is equal tocov (X1, X2).
Then

cov (Y1, Y2) = ρxb1b2 + 2ρ2
xa1a2 (12)

The process to prove this theorem does not depend onb1

andb2 if they are complex numbers or not. Becauseb is a pure
image number, the result forb1b2 is just a real number. This
theorem still useful when we get a complex number solution.

After knowing the covariance betweenY1 and Y2, as we
estimated from the measurement data, we are able to solve
the correlation coefficient betweenX1 and X2 which can
be used in statistical timing analysis. Therefore, we can
construct a covariance matrix -S andSij denotescov (Yi, Yj).
Furthermore, we can do eigen value decomposition toS.
Let λ1, λ2, · · · , λp are eigenvalues ande1, e2, · · · , ep are
eigenvectors ofS. The solid ellipsoid ofX value is satisfying
(

X − X̄
)

′

S−1
(

X − X̄
)

≤ χ2
p (α) has1 − α probability and

X̄ the center, the direction and the length of major axes are

e1 to ep and
√

χ2
p (α) ∗ λ1 to

√

χ2
p (α) ∗ λp, respectively. Any

observation out of the ellipse can treat as an outlier.
Figure 6 shows two high skewness and Kurtosis examples

which CQGP can not be modeled very accurate. So, we need
CCGP to handle this situation.
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Fig. 6. CQGP Modeling for High Skewness Distributions, positive and
negative.

C. Complex Cubic Gaussian Polynomial (CCGP)

CQGP matches any distribution up to the 3 moments- mean,
variance, skewness. Sometimes, in the case when the fourth
moment, Kurtosis, is needed, we propose to use complex cubic
Gaussian polynomials (CCGP).

Y = aX3 + bX2 + cX + d, (13)

where a, b, c, and d are complex numbers. Following the
moment definitions, we have the following theorem:

Theorem 4: Given the first 4 momentsm1 − m4 of any
distribution, a CCGPY = aX3 + bX2 + cX + d will match
those four moments if and only ifa−d satisfies the following
equations:

m1 = b + d (14)

m2 = 15a2 + 6ac + 2b2 + c2 (15)

m3 = 300ba2 + 24abc + 15a (−2ba + 2bc) + 12b
(

2ca + b2
)

+ 3c (−2ba + 2bc) + 2b
(

−2b2 + c2
)

− 2c2b (16)

m4 = 10425a4 + 945
(

4ca + 2b2
)

a2 + 3810b2a2

+ 105
(

−4b2 + 2c2
)

a2 + 105 (−8ba + 8bc) ba

+ 105
(

2ca + b2
)2 − 120b2ca + 6b2

(

2ca + b2
)

+ 15 (−2ba + 2bc)
2

+ 15
(

−4b2 + 2c2
) (

2ca + b2
)

− 12bc (−2ba + 2bc) + 3
(

−2b2 + c2
)2

+ 2b2
(

−2b2 + c2
)

+ 4b2c2 + b4 (17)

Proof: Following the definition of Gaussian distribution, we
can compute its moments as follows:

E {X} = 0, E
{

X2
}

= 1, E
{

X3
}

= 0,

E
{

X4
}

= 3, E
{

X5
}

= 0, E
{

X6
}

= 15,

E
{

X7
}

= 0, E
{

X8
}

= 105, E
{

X9
}

= 0,

E
{

X10
}

= 945, E
{

X11
}

= 0, E
{

X12
}

= 10425



Using these results, the moments of Y can be evaluated as:

E {Y } = E
{

aX3 + bX2 + cX + d
}

= aE
{

X3
}

+ bE
{

X2
}

+ cE {X} + d

= b + d

E
{

(Y − E {Y })2
}

= E
{

(

aX3 + bX2 + cX − b
)2

}

= a2E
{

X6
}

+ 2abE
{

X5
}

+
(

2ac + b2
)

E
{

X4
}

+ (2bc − ad − ab)E
{

X3
}

+
(

c2 − bd − b2
)

E
{

X2
}

+ (−bc − cd)E {X} + bd

= 15a2 + 6ac + 2b2 + c2

The fourth moment can also be computed in similar fashion
(Omited for briefly).

Given the first four moments of any distribution, we solve
Equations (14)-(17) by Newton Raphson methods to obtain
CCGP.

Figure 7 shows two examples modeled by CQGP and
CCGP, respectively. We can see that since CCGP matches
Kurtosis, it has better fitting results.
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Fig. 7. CCGP Modeling Distributions the same as figure 6

D. Complex High Order Gaussian Polynomial (CHGP)

In case when the extreme accuracy is needed, we can
match even higher order moments of the distribution in similar
fashion. To match the firstk moments,m1, m2, ..., and mk,
the random variable Y can be written asY = ckXk +
ck−1X

k−1 + ... + c1X + c0. Similar to Theorem 4, we can
calculate parametersc1, c2 ... and ck according toE {Y },

E
{

(Y − E {Y })2
}

, ..., andE
{

(Y − E {Y })k
}

.

E. Recovering PDF of our models by Modified SMM

After SSTA performs operations on our models such as
CQGP, CCGP, and CHGP. The distribution can be rediscover
by again the SMM (statistical moment matching) methods.
However, after extensive experiments, we find out that the
distribution which is recovered by SMM does not match the
initial condition. Therefore, we have developed a modified
SMM to solve this problem.

From the definition of Laplace Transform, the initial value
theorem is as follows:

lim
s→∞

sf (s) = lim
t→0+

= f
(

0+
)

Now we use a CCGP with zero initial condition as an example.
In order to match zero for a3rd order distribution, we let

m = 3 andn ≤ 1. H (s) should be modified as follows:

Y (s) =
1 + a1s

1 + b1s + b2s2 + b3s3

The final moment matching matrix can be written as follows:




0 m′

0 −m′

1

m′

0 −m′

1
1

2!
m′

2

−m′

1
1

2!
m′

2 − 1

3!
m′

3









b3

b2

b1



 = -





1

2!
m′

2

− 1

3!
m′

3
1

4!
m′

4





The Modified SMM method can match the original point and
k1+k2 +k3 is guaranteed to be zero. Following is an example
to match a Gaussian distribution with3rd order approximation.
Because our method models only the situation whent > 0,
we shift right the Gaussian distribution with3σ. We getp1 =
−0.6241+ 0.7261i, p2 = −0.6241− 0.7291i, p3 = −0.8142,
k1 = −0.8847− 0.0163i, k2 = −0.8847 + 0.0163i andk3 =
1.7693. It can be easily observed that in Figure 8, the Modified
SMM has much better match than SMM for a 3-σ shifted
Gaussian.
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Fig. 8. Model the Gaussian distribution by the Modified SMM

Although we just show how to match zero initial condition
case, non-zero initial condition formulae can also be obtained
in similar fashion (just seta2/b3 equal to the initial value).

One might doubt that the defining range of PDF is from
negative infinity to postive infinity and our SMM method
seems to be defined from zero to positive infinity. We can
just modify the PDF as follows:

{

0 t < 0
y(t) t ≥ 0

(18)

Since most of the parameters variation such as threshold
voltage and effective gate length are greater than zero, our
SMM method can be operated correctly.

IV. SSTA WITH CQGP TIMING MODEL

In block based timing analysis, the arrival time random
variable propagation involves two elemental operations:ADD
andMAX. We can use the results from [12] and [13] directly.

A. ADD Operation

If both X and Y are expressed in the quadratic form of
(5) X ∼ Q (mX , αX , βX , γX) andY ∼ Q (mY , αY , βY .γY ),
then the output of the ADD operator is very straightforward
written as:

Z = X + Y ∼ Q (mZ , αZ , βZ , γZ)



where the quadratic parameters are computed as:

mZ = mX + mY ; αZ = αX + αY (19)

βZ = βX + βY ; γZ = γX + γY (20)

B. MAX Operation

MAX operator, however, is more complicated since it is
generally a non-linear operator and error will hapen if we
approximate it with a linear one. Fortunately, we can borrow
the idea from [13]. Since we can use the methods proposed
in [13] to estimate the first three moments - mean, variance
and skewness, we can pass these moments to equation (6) and
then complete the MAX operation.

V. EXPERIMENTAL RESULT

We will use our CQGP and CCGP methods to model various
distributions such as uniform distribution. Although someof
them look like a bell shape or even Gaussian distribution, they
are actually faraway from being Gaussian. One way to check
whether a distribution is close to Gaussian distribution isthe
Q-Q plot. Q-Q plot is a scheme that finds the correlation
between ordered observations and standard quantiles then
it tests the normality of the observation. If the correlation
coefficients are approximate to 1, the observation is near to
Gaussian distribution.

Figure 9 is a Q-Q plot to test100000 observations. We
observe that they can not form a straight line and thus they
are not close to a Gaussian distribution. Therefore, using a
linear Gaussian model will not be accurate. In this case,
CQGP or CCGP should be applied. Figure 10 shows the
result of using CQGP which achieves a very accurate result.
Furthermore, CCGP could get a better fit. Figure 11 shows
the two comparisons in detail. Since CCGP can match the
Kurtosis, so it can model the distribution peak more accurately
than CQGP.
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Fig. 9. Q-Q plot for a non-Gaussian distribution

VI. CONCLUSION

In this paper, we propose several new process data modeling
method using complex high order Gaussian polynomials such
as CQGP, CCGP, and CHGP. Complex coefficient allows much
more freedom during moment match while is compatible with
main stream SSTA method. Furthermore, we also develop a
Modified Statistical Moment Match method to match the initial
condition. Experimental results demonstrate the accuracyand
correctness of our method.
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Fig. 10. Model the sample from a non-Gaussian distribution
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Fig. 11. To compare figure 10 in detail.

REFERENCES

[1] S. R. Nassif, “Modeling and analysis of manufacturing variations,”
CICC, 2001, pp. 223-228.

[2] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single pert-like traversal,”ICCAD’03, 2003.

[3] A. Ramalingam, A. K. Singh, S. R. Nassif, G.-J. Nam, M. Orshansky,
and D. Z. Pan, “An accurate sparse matrix based framework forstatistical
static timing analysis,”Proc. IEEE/ACM Int’l Conference on Computer-
Aided Design (ICCAD), November, 2006.

[4] Y. Zhan, X. Li, A. Strojwas, and L. Pileggi, “Correlation-aware sta-
tistical timing analysis with non-gaussian delay distributions,” Design
Automation Conference, 2005.

[5] X. Li, J. Le, and L. Pileggi, “Projection-based statistical analysis of
full-chip leakage power with non-log-normal distributions,” Design
Automation Conference, 2006.

[6] V. Nookala and S. S. Sapatnekar, “Latency tolerance and asynchronous
design: A method for correcting the functionality of a wire-pipelined
circuit,” Design Automation Conference, 2004.

[7] L. Zhang, J. Shao, and C. P. Chen, “Non-gaussian statistical parameter
modeling for ssta with confidence interval analysis,”ISPD, 2006.

[8] F. Liu, “How to construct spatial correlation models: A mathematical
approach,”TAU, 2007.

[9] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for
timing analysis,”TCAD, 1990.

[10] C. Visweswariah, K. Ravindran, and K. Kalafala, “First-oeder parame-
terized block-based statistical timing analysis,”TAU’04, 2004.

[11] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for
intra-die process variations with spatial correlations,”Cmputer Aided
Design, 2003 International Conference on. ICCAD-2003, 2003.

[12] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C. P. Chen, “Correlation-
preserved statistical timing with quadratic form of gaussian variables,”
Dac, 2005.

[13] K. Chopra, B. Zhai, D. Blaauw, and D. Sylvester, “A new statistical max
operation for propagating skewness statistical timing analysis,” ICCAD,
2006.



赴國外研究心得報告赴國外研究心得報告赴國外研究心得報告赴國外研究心得報告    

                                                             

計畫編號 NSC 95-2221-E-002-399 

計畫名稱 超大型積體電路製程偏差統計型時序分析(I) 

出國人員姓名 

服務機關及職稱 
陳中平,台大電子所,副教授 

出國時間地點 1 月 23 日,日本,横濱 

國外研究機構 aspdac 

 

工作記要工作記要工作記要工作記要：：：：2006 2006 2006 2006 年的年的年的年的    13th Asia and South Pacific Design Automation Co13th Asia and South Pacific Design Automation Co13th Asia and South Pacific Design Automation Co13th Asia and South Pacific Design Automation Conferencenferencenferencenference    ASPASPASPASP----DAC 2008DAC 2008DAC 2008DAC 2008,,,,在在在在日本橫濱市舉行日本橫濱市舉行日本橫濱市舉行日本橫濱市舉行,,,,我們發表了一篇論文我們發表了一篇論文我們發表了一篇論文我們發表了一篇論文,,,,我個人並擔任會議議程委員我個人並擔任會議議程委員我個人並擔任會議議程委員我個人並擔任會議議程委員,,,,此次此次此次此次 aspdacaspdacaspdacaspdac 會有一些會有一些會有一些會有一些 sstasstasstassta 的文章不的文章不的文章不的文章不錯錯錯錯,,,,學習效果相當好學習效果相當好學習效果相當好學習效果相當好....本人臨時被指浱為本人臨時被指浱為本人臨時被指浱為本人臨時被指浱為 session chairsession chairsession chairsession chair 並為並為並為並為 panelist, panelist, panelist, panelist,收獲良多收獲良多收獲良多收獲良多....    
 


