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Abstract— The most recent research of SSTA requires accurate
non-Gaussian data processing modeling. Although quadrati
Gaussian forms have been proposed to data modeling, limitains
are imposed to ensure real coefficients. However, there areven
more difficult distributions such as uniform distribution w hich
can not be modeled by previous one. In this paper, we are goirtg
solve these problems by allowing complex coefficients anddhier
order Gaussian polynomials with a PDF recovering scheme.
Experimental results show how our methods and new algorithra
expose some enhancements in both accuracy and versatility.

I. INTRODUCTION

As the teCh”O'og}’ fea’_[ure SIzes ar_e getting smaller than tﬂs 1. The threshold voltage distribution in the chip beswedifferent
wave length of optical lithography light source, the pr@cesneasurement locations under 90 nm technology.

variation issues are also getting significant and must bentak
into consideration during design [1]. Classical cornesdsh
timing analysis produces timing predictions that are oftem In this paper, we present several effective and accuratie-met
pessimistic and grossly conservative because we have oodls to general models which are compatible with SSTA and
few chances to get parameters of all gates working on thean match more board types of distribution such as normal and
corner values. Statistical static timing analysis (SSTAatt high skewness by several novel techniques. First, by atigwi
characterizes time variables as statistical random \asabthe coefficients of Gaussian polynomials to be complex, we
offers a better approach for more accurate and realistinggm can match distributions with high skewness which could not
prediction. be achieved by previous approaches. Second, we expand the
Many existing SSTA algorithms were built upon Gaussiapower of the Gaussian polynomials from 3 to 4 and even above
distributions due to its simplicity while dealing with maxim to be matched with the up t&;, moment and beyond.
operation which is essential during timing analysis [2].[3] The rest of the paper is organized as following: Session
However, the modeling capability of a signal Gaussian Is reviews the pros and cons of existing statistical process
quite limited and may not be able to deal with various nomtata modeling methods and basic definitions of statistical
Gaussian process distributions. Recently, the authosf4]in moments. Session Ill presents our newly discovery to solve
[5] [6] and [7] have proposed the non-Gaussian models usémbse problems. Session IV shows how to use CQGP to the
in SSTA to solve these problems. As the technology featuD and MAX operations in SSTA. Session V shows the
size are getting smaller and smaller, the spatial cormlatiexperimental results. Finally, in session VI, we conclulis t
analysis becomes critical in SSTA. The authors in [8] hamaper.
proposed a mathematical approach to model this phenomenon.
For both these reasons, the authors in [7] has proposed to use 1. PRELIMINARY

a quadratic Gaussian polynomial,= a X2 + bX where . .
q POty asd”+ to We introduce the basic definition of moments and the

X is respective Gaussian random variable, and, ¢ are i tchi bl in the statistics d in in thi
respective real numbers. Although in most cases, this ret{GOMeNt matching problém in the stalistics domain in this
ssion. Later on, we will also briefly introduce the exigtin

can match the first 3 moments, it requires the skewness>fs o _ .
under a limitation to ensure real coefficients. Furthermtis  Pro¢€sS variation modeling techniques.
method is limited in only matching the first 3 moments an
thus the forth momenurtosisand even higher order moment
are not matched. Note that Kurtosis is one of the key momentsAccording to the scope of application, there are various
to measure the peak of a distribution. Figure 1 is the thidshalefinitions of moments. In the VLSI timing analysis, we
voltage distribution which we got from the industry. We camsually use the "scaled” raw moments as moments. However,
see the Kurtosis is different in different locations. Soptodel in the statistics domain, we usually use the central moments
the Kurtosis accurately is very important. such as variance and skewness as moments. To make our

. Moments in the Statistics Domain
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discussion more clear, we formally introduce our termigglo mo/ my 212 b3 Bl ms

. . 1 1 —
in the following. Tm} Elmé/ _15”}5 by | =- @m%
The nth raw momentm), (i.e., moment about zero) of a 12 —3M3 My by 55
distributionY (x) is defined by Once the s are obtained, we commutatg by the follow-
ing equations:
mp = (2*,)
_ !/
where L=my
! !
. . . . ay = mobl — ml
(f(z)) = Y (x), discrete distribution

Y (x)dz,continuous distribution 2
Finally, usinga’s and t’s, we can represent the approxi-
m/}, the mean is usually simply denoted as= m;. If the mated PDF in terms of exponentials,
moment is instead taken about a paintthen
k
(@) (@ . o)) Issues of AWE type SMM
= Z (z —a)"Y(z). There are several issues of SMM besides the traditional AWE

The statistical moments are most commonly taken about tigthods such as stability issues. One of the problem is about
mean.These so-called central moments and are denoteg asthe initial condition issues. AWE methods are traditiopall

f
Z/ (xi as = muby — m'by + im'2 3)
f(z

y (t) ~ k1eP*t + koeP?" + kaePs". (4)

and are defined by assume zero initial condition. However, as a matter of fact,
AWE can not guarantee zero initial condition. As a resul, th
mi = ((x — p)") resulting function may have big errors in the starting poit
n now illustrate a failure example of using AWE to approximate
= /(x — )Y (z)dz. a3 — sigma shifted Gaussian approximation in the following

B. AWE-type Statistical Moment Matching Ilr?:;eﬁi;tte(:jleé;lz;?;xvz tlg?t the whole curve is deviated from

Due to the different definition of moment definition, we
now define the statistical moment matching (SMM) method.
SMM is almost the same as the AWE method [9] except that
moment definitions are different and the target function is
usually probability density function (PDF). Thus, it is teepd
that PDF is always positive and the total area below PDF is
equal to one.

Given a PDFy(t), we can obtain its Laplace transform
Y (s) = [,y (t)e *'dt. Expandinge™** abouts = 0 to

yield
Fig. 2. Initial condition mismatches of AWE-SMM
o 1 1
Y (s) :/ y (t) {1—st—|— 532152— 683t3+...
0

B o0 (_1)k . ootk Nt C. Quadratic Gaussian Polynomial (QGP)
= B0, y (1) To facilitate SSTA, [2], [10], [11] propose the following

kfoo ( 1)k canonical timing model for a given delay functidn
— — k.1

We can see the statistical moment definition is differenntha , T
the AWE method by a division of a factoriahf™e — where Y/s are parameter distributions. To model the non-

m},/k!. To obtain an approximation df (s), we utilize Padé linearity of the delay dependency i's, the authors in [7] .

approximation as follows: proposed to add quadratic terms to the above linear carlonica
form as follows:

_1+a13+a252+...+ans” 5

T 14 bys+bos2 + ...+ bys™’ 2) D=m+aR+ZﬁiYi+Z%jYin- (5)

wherem andn are positive integers. ! "

We now use3’® approximation to illustrate the SMM Both canonical and quadratic time model assume parameter
process. Comparing these two equations (2) and (1) awvatiations to be Gaussian distributions which are not atway
considering & order approximation, i.e., m = 3 andn2, applicable in practice. In the cases when a parameter iarjat
we obtain the following equation: Y, can not be properly modeled by a simple Gaussian, [7]

Y (s)



proposes to express it as a quadratic polynomials in termsAaf Least Square Fitting Based Quadratic Gaussian Polynomi-
independent Gaussian random varialllg§ QGP) as follows: als

Before we resort to complex extension, let's make a last

Y =aX?+bX +¢, (QGP) (6) effort to the (real) quadratic Gaussian polynomial. Wheare¢h
is no real root which can simultaneously satisfy equation
wherea, b, andc are real numbers. (8) and (9), the QGP approach fails. It is, neverthelesh, sti

To get propew, b, andc, [7] uses moment matching meth-Possible to find some real coefficients which approximately
ods to match the first three moments. The moment matchip@fisfy the two equations. This problem is formulated as a
equations are as follows: least fitting problem as follows:

Minimize €3 + €3

mi=py =E{Y}=a+c (7)
ms = o3 = E{(Y — E{Y})*} = 2a® + b? (8) Where ¢ =
wy = E{(Y — E{Y})’} = 8a° +-6ab>  (9)

2a2+b27m2 and €y = 8a3+6ab27m3
ma2 ? :

m3

3
|

To get further understanding of these two equations and
the least square fitting approach, we now illustrate their

Issue_s (.)f Quadratu_: Gau5_5|an Polyn_omlal MOdEI behaviors in detail. Figure 4 plots these solution set of the
The limitation of this previous work is that it can only match

the first three moments - mean, variance and skewness. Also,
due to the limitations of real coefficients, it can not model
high skew distribution when the following conditions aret no

satisfied. <~ﬁ>
-

Ky | < V20y- (10)

I1l. CoMPLEX GAUSSIAN POLYNOMIAL (CGP) MoDEL

In this session, we will present our enhancement to use maie 4-t The Solutioc? Skets diagram of equation (7) and equa(®) with
general forms to model the process variation data. We wfffferent variance and skewness.

first analyze the high skgw_ness distribution issues and_thﬁvrb equation in the 2D plane. The X-axis and Y-axis are
the ways to deal W'th this Issue such as I_east-sql_Jare fit Hdb, respectively. The blue and red curves show the solution
and _complex quadratic G_aussmn pqunomlal. Cl.Jb'C as Weidt of equation (8) and equation (9), respectively. The uppe
as h_|gher order polynomial forms will also be discussed lfﬁcture shows the relation of a and b in one PDF when variance
details. ) ) ) _is equal to4 and skewness is equal 30 Actually, the solution

Let us first illustrate our complex Gaussian polynomialgis of equation (8) exactly forms an ellipse. The bottom
process data modeling flow as shown in Figure 3. First, assUBIEure shows another PDF which variance is equal &nd
the process data and/or its characteristics are given, @€ Uge\yness is equal ®00. The ratio of variance and skewness
our CGP modeling method to obtain accurate abstract foffyates equation (10) so there is no intersection betwieeset
of those data. Afterward, we pass the CGP to SSTA f@f, cyrves. Generally speaking, when the variance becomes
statistical timing analysis. Once SSTA is done, we thenverco larger, the major axis in the ellipse will become larger tas.
the distribution by the modified statistical moment matghing,q skewness becomes larger, the turning point will berggtti
method. far away from the ellipse. These two characteristics eritze
reason why real solutions are not exist. When the two curves
are reasonably close by, we anticipate the least squargyfitti
work perfectly. Otherwise, the fitting results may not beeabl
to meet your expectation. Figure 5 shows the inconsisteficy o

" Input Data >

i the fitting approach. To get more flexibility during equation
solving, complex coefficients must be allowed.
Modeled by Recover by
QGPICGP SMM

) _ ) ) Fig. 5. Two results obtained from Least Square Fitting Aithon. (a)Good.
Fig. 3. Complex Gaussian Polynomial Modeling Flow for SSTA (b) Bad




B. Complex Quadratic Gaussian Polynomials (CQGP)  e; toe, and,/x2 (a) * A1 t0 /X2 («) * A, respectively. Any

The key to derive a more robust modeling approach is phservation out of the ellipse can treat as an outlier.
allow a — ¢ to take complex values. When complex numbers Figure 6 shows two high skewness and Kurtosis examples
are allow, the 3 moment equations all can be simultaneou¥fpich CQGP can not be modeled very accurate. So, we need
satisfied. We now present our new complex quadratic Gaussfa@GP to handle this situation.
polynomial (CQGP) form as follows:

Y =aX?+bX +¢, (CQGP) (11)

wherea, b, andc are complex numbers. We have the following
theorem to show the effectiveness of the CQGP represemtatio
Theorem 1: Given any distributionY’, the complex Fig. 6. CQGP Modeling for High Skewness Distributions, fiesi and
guadratic Gaussian polynomial (CQGP) form can alwayggative.
match the first three moments &f.
As a matter of fact, to satisfy those moment equations when
the skew condition is violated, must be a real number while
b must be an imaginary number. We now prove this theoreth Complex Cubic Gaussian Polynomial (CCGP)
as follows:
Theorem 2: When condition (10) is violated; and ¢ must
be real whileb is an imaginary number.

CQGP matches any distribution up to the 3 moments- mean,
variance, skewness. Sometimes, in the case when the fourth
moment, Kurtosis, is needed, we propose to use complex cubic

Gaussian polynomials (CCGP).
proof: From equation (8), we know th&a? = my — b2. ussian polynomials ( )

Substituting into equation (9), we get= ms/(5b% + 4my).

Therefore, no matter what valuewill take, a« must be real. Y =aX?+bX?% +cX +d, (13)
Also, from b = +£v/my — 2a2, we know that wheru is real,
b must take imaginary values. wherea, b, ¢, andd are complex numbers. Following the

Furthermore, although CQGP allows complex coefficientsjoment definitions, we have the following theorem:
the moments of CQGP are stiltal. So, the moment based Theorem 4: Given the first 4 moments:; — my4 of any
statistical timing operations still can be applied withouwtd- distribution, a CCGPY = a X3 + bX?2 + ¢X + d will match
ification! So, we can still handle operations such as Add amlbse four moments if and only if — d satisfies the following
Max operations. Furthermore, the correlations in betwesen cequations:
also be easily preserved by the following theorem which is

similar to [7]. Following the approach in [7], we get: mi=b+d (14)
Theorem 3:Assuming CQGPY; = a; X? + b1 X + ¢ o — 1502 + Gac 4 2 + 2 (15)

and Yo = a2X2 + baXs + co are timing parameters in 2 9 )

gates 1 and 2 and assuming and X, are computational "3 = 300ba” + 24abc + 15a (—2ba + 2be) + 12b (2ca + b%)

Gaussian random variables at those gaigss the correlation + 3¢ (—2ba + 2bc) + 2b (—2b2 + 02) —2¢%b (16)
coefficient betweerX'; and X, and is equal taov (X1, X2).  m, = 104250 + 945 (4ca + 2b%) a® + 3810b%a°

Then + 105 (—4b% + 2¢) a + 105 (—8ba + 8be) ba

+105 (2ca + b?)* — 120b%ca + 6b> (2ca + b%)

The process to prove this theorem does not depend; on + 15 (—2ba + 2bc)2 +15 (—4b2 + 202) (20a + b2)
andb if they are complex numbers or not. Becalse a pure 9 on2
image number, the result féi b, is just a real number. This = 12be (=2ba + 2bc) + 3 (=20° + ¢°)
theorem still useful when we get a complex number solution. -+ 2b* (—2b% + ¢?) + 4b*c® 4 b* 17)

After knowing the covariance betweén andY;, as we
estimated from the measurement data, we are able to solve
the correlation coefficient betweei; and X, which can Proof: Following the definition of Gaussian distribution, we
be used in statistical timing analysis. Therefore, we c&@n compute its moments as follows:
construct a covariance matrixs-andS;; denotesov (Y;,Y;).

Furthermore, we can do eigen value decompositionSto E{X}=0, E{X?*} =1, E{X’} =0,

Let Ay, A2,---, A, are eigenvalues andi,eq, - ,e, are E{X4} =3, E{X5} =0, E{XG} =15,
eigenvectors of. The solid ellipsoid ofX value is satisfying o 81 91

(X - X) 51X -X)< X; (a) has1 — o probability and E{Xlg =0, E{X?) 1_1105’ B{X }12_ 0,

X the center, the direction and the length of major axes are E {X } =945, E {X } =0, B {X } = 10425

cov (Y1,Y2) = pabibs + 2p2aias (12)



Using these results, the moments of Y can be evaluated as: = 3 andn < 1. H (s) should be modified as follows:

E{Y}=E{aX®+bX*+cX +d} Y (s) = 1+as
:aE{X3}+bE{X2}+cE{X}+d 1+b18—|—b252—|—b333
=b+d The final moment matching matrix can be written as follows:
9 5 ) 5 0 my —m} bs %m’Q
E{(Y—E{Y}) }:E{(ax +OX% 4 X — D) } mh bo | =+ |
_ 2 6 5 2 4 —-m,) Zm, —xm/ b Im!
=a‘F{X 2abE { X 2 b)) E 1 X my oMy 1773 1 700 .
@B X0} 4 200 i + a2c+ ) g J 9 Thé Modified SMM method can match the o?llglnal point and
+ (2be = ad — ab) B {X?*} + (¢* — bd - b*) B {X7} k1 + ks + k3 is guaranteed to be zero. Following is an example
+ (=bc—cd) E{X} +bd to match a Gaussian distribution with? order approximation.
= 15a% + 6ac + 2b + 2 Because our method models only the situation when 0,

we shift right the Gaussian distribution witte. We getp; =
The fourth moment can also be computed in similar fashiony.241 + 0.72614, po = —0.6241 — 0.72914, p3 = —0.8142,
(Omited for briefly). k1 = —0.8847 — 0.0163, ky = —0.8847 4 0.0163; and k3 =
1.7693. It can be easily observed that in Figure 8, the Modified
Given the first four moments of any distribution, we solv&MM has much better match than SMM for as3shifted
Equations (14)-(17) by Newton Raphson methods to obta@aussian.
CCGP.
Figure 7 shows two examples modeled by CQGP and
CCGP, respectively. We can see that since CCGP matches
Kurtosis, it has better fitting results.

Ty T e Fig. 8. Model the Gaussian distribution by the Modified SMM

Fig. 7. CCGP Modeling Distributions the same as figure 6 . Lo .
Although we just show how to match zero initial condition

case, non-zero initial condition formulae can also be olethi

D. Complex High Order Gaussian Polynomial (CHGP) in similar fashion (just set»/bs equal to the initial value).

: One might doubt that the defining range of PDF is from
In case when the extreme accuracy is needed, we can

match even higher order moments of the distribution in simil fegative infinity t_o postive infinity and our SMM method
fashion. To match the first momentsmy.ms. .... and my, seems tc_> be defined from zero to positive infinity. We can
the random variable Y can be written 8 = ¢, X* + just modify the PDF as follows:
1 X1+ ..+ 1 X + ¢p. Similar to Theorem 4, we can { 0 t<0

calculate parameters;, ¢, ... and ¢, according toFE {Y}, y(t) t>0 (18)

2 k
E{(Y_E{Y}) } andE{(Y—E{Y}) } Since most of the parameters variation such as threshold

E. Recovering PDF of our models by Modified SMM voltage and effective gate length are greater than zero, our
' ) SMM method can be operated correctly.
After SSTA performs operations on our models such as

CQGP, CCGP, and CHGP. The distribution can be rediscover IV. SSTAWITH CQGP TiMING MODEL
by again the SMM (statistical moment matching) methods. - . . .
However, after extensive experiments, we find out that the!n block based timing analysis, the arrival time random

distribution which is recovered by SMM does not match th\éariable propagation involves two elemental operati(m_BD
initial condition. Therefore, we have developed a modifie@ind MAX. We can use the results from [12] and [13] directly.

SMM to solve this problem. .
From the definition of Laplace Transform, the initial vaIuéA" ADD Operation

theorem is as follows: If both X and Y are expressed in the quadratic form of
) ) N (5) X ~Q (mx,ax,Bx,vx)andY ~ Q (my, oy, By .y ),
Jim sf (s) = tli%ﬁ =71(07) then the output of the ADD operator is very straightforward
written as:

Now we use a CCGP with zero initial condition as an example.
In order to match zero for 8¢ order distribution, we let Z=X+Y ~Q(mz,az,8z,7z)



where the quadratic parameters are computed as:

(19)
(20)

mz = mx + my;

Bz = Bx + By;

B. MAX Operation

MAX operator, however, is more complicated since it is
generally a non-linear operator and error will hapen if we
approximate it with a linear one. Fortunately, we can borrow
the idea from [13]. Since we can use the methods proposed
in [13] to estimate the first three moments - mean, variance

ayz = ax +ay

Yz =7x +v

Probabiy Densiy

and skewness, we can pass these moments to equation (6) and Fig. 10. Model the sample from a non-Gaussian distribution

then complete the MAX operation.

V. EXPERIMENTAL RESULT

We will use our CQGP and CCGP methods to model various
distributions such as uniform distribution. Although sowfe
them look like a bell shape or even Gaussian distributiogy th
are actually faraway from being Gaussian. One way to check
whether a distribution is close to Gaussian distributiothis
Q-Q plot. Q-Q plot is a scheme that finds the correlation
between ordered observations and standard quantiles then
it tests the normality of the observation. If the correlatio
coefficients are approximate to 1, the observation is near to
Gaussian distribution.

Figure 9 is a Q-Q plot to test00000 observations. We
observe that they can not form a straight line and thus they
are not close to a Gaussian distribution. Therefore, using
linear Gaussian model will not be accurate. In this casé,
CQGP or CCGP should be applied. Figure 10 shows thg]
result of using CQGP which achieves a very accurate resu !
Furthermore, CCGP could get a better fit. Figure 11 sho
the two comparisons in detail. Since CCGP can match the
Kurtosis, so it can model the distribution peak more acalyat ]
than CQGP.

(5]

(6]

(7]
(8]
El
[10]

Fig. 9. Q-Q plot for a non-Gaussian distribution

VI. CONCLUSION [11]

In this paper, we propose several new process data modeling
method using complex high order Gaussian polynomials sujb]
as CQGP, CCGP, and CHGP. Complex coefficient allows much
more freedom during moment match while is compatible witﬁ3
main stream SSTA method. Furthermore, we also develop a
Modified Statistical Moment Match method to match the ititia
condition. Experimental results demonstrate the accuaacly
correctness of our method.

Fig. 11. To compare figure 10 in detail.
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