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ABSTRACT

This study presents a dynamic
growth model applicable to automated
seedling cultivation. Experiments on the
influence of environmental conditions on
cabbage seedling quality during three
growth stages were conducted in a
phytotron, and a growth database was
established. An error back propagation
neural network was used to analyze
experimental data and develop strategies
for a dynamic growth model to simulate
the relationship between environmental
factors (temperature, water supply and
daily radiation) and cabbage seedling



quality (cumulative dry matter of
seedlings). A feedback algorithm and
dynamic strategies were integrated into
the neural network to reflect the strong
importance of daily historical memory in
seedling growth. The dynamic model
was thus successfully developed with a
coefficient of determination of 0.996 and
error of 1.68%, and was verified using
the data from nurseries. The dynamic
model  performed  excellently in
determining seedling growth, achieving
superior results to static models. The
error in predicting the cumulative dry
matter resulting from seedling growth
was reduced by about 80% (from 18.2%
to 3.75% prediction error) when the
dynamic growth model was used in place
of the static model. This model not only
gave a clear view of production
management toward seedling growth, but
also provided a basis for better
environmental and quality control
strategies.

Keywords: Dynamic Growth Model,
Neural Network, Seedling
Quality,  Environmental
Conditions.

INTRODUCTION

Many investigations have indicated
that a growth model employing
environmental controls can be applied to
predict crop growth (Jones et al., 1989,
Seginer et al., 1986). Several growth
models have been developed for various
crops, such as tomatoes (Jones et al.,
1991), cucumbers (Nederhoff et al.,
1989), lettuce (Marsh et al., 1987), and
Bok-Choi (Shen and Chang, 1994). The
growth model is a useful tool for
mvestigating crop growth management

and environmental control since it can
predict the growing conditions according
to environmental variable responses.
However, the control settings of
traditional crop growth models have
certain limitations and constraints.
Consequently, Jacobson et al. (1987)
improved the growth model by
introducing artificial intelligence.

A neural network is an artificial
intelligence information management
system that can simulate biological
systems. Such a system can ascertain the
tramning data inner rules that would be
applied to new cases through the network
calculations. The agricultural system is
generally complicated, nonlinear, and
difficult to control. A neural network can
be used to establish a complicated
predictive model for agricultural research.
Several agricultural neural network
applications have been attempted.
Murase et al. (1992) developed a neural
network model to estimate the maximum
hoop stress produced in the skin of a
tomato during cracking. Meanwhile,
Seginer and McClendon (1992)
employed a neural network to determine
the optimum temperature for lettuce in a
greenhouse. Furthermore, Elizondo et al.
(1994) developed a neural network
model to predict the flowering and
physiological maturity of soybeans.
Finally, Chen et al. (1999) evaluated
sugar content in fruits by a near infrared
method using a back propagation
network, while Hsieh et al. (1999)
adopted a neural network to investigate
the relationship between environmental
factors and cabbage seedling quality. All
the above investigations demonstrate the
feasibility of applying neural networks to
agriculture. This study aims mainly to
develop a dynamic growth model



applicable to automated seedling
cultivation. This cabbage seedling
growth model was used to simulate and
analyze how environmental conditions
influence seedling quality.

EXPERIMENTS AND
ANALYSIS

The seedling cultivation period was
divided into three growth stages, and the
cumulative dry weight of the seedlings
was measured on the last day of each
stage. A growth curve was constructed
using cubic spline functions based on
experimental data and the average
cumulative weight of dry matter without
roots per plant (DW) was interpolated
from the growth curve throughout the
entire growth period.

1. Experimental Design

The seedling cultivation
environmental variables included air
temperature, water management, and
daily radiation. Four controlled day
temperatures (20°C, 25°C, 30°C, 35°C)
were preset for the temperature control
rooms in National Taiwan University's
phytotron for seedling cultivation. The
relative humidity in each control room
was maintained at between 70% and
90%.

The temperature control rooms were
divided into low temperature (20°C,
25°C) and high temperature (30°C, 35°C)
sets. Four 128-cell plug trays were used
to cultivate the cabbage seedlings in each
growth room. Cabbage seedlings in the
low temperature set were irrigated with
200, 400, 800, and 1200mL of water per
plug tray daily, while 400, 800, 1200, and
1600mL of water was supplied to the
high temperature set. The trays receiving

200 and 400mL of water were given the
whole of their water allocation at 8 a.m.,
while those receiving 800, 1200, and
1600mL of water were given their water
in two halves, at 8 a.m. and 4 p.m. The
combination of temperature and water
management  resulted in  sixteen
treatments for each experiment.

The hourly PAR (Photosynthetically
Active Radiation) was measured using an
LI-110SA (LI-COR, Inc), and recorded
by a Campbell Scientific 21X data logger.
The summed total daily PAR represented
the daily radiation.

In each experiment, the cultivation
period lasted thirty days. Seedling
cultivation is generally divided into three
ten-day growth stages, the first ten days
after sowing, then the eleventh to the
twentieth day, and finally the twenty-first
to the thirtieth days. The first growth
stage includes germination, cotyledon
and stalk growth, the second includes leaf
growth, and the third was dominated by
reinforcement (Huang, 1992).

The cumulative dry matter weight
(DW) was served as the quality index for
the growth model. Thirty seedlings from
each treatment were randomly sampled
and their cumulative dry matter weight
without roots measured on the last day of
each growth stage. The cumulative dry
matter weight data from 30 seedlings per
sampling was divided equally into two
sets, one used for model training and the
other for prediction. Six experiments
were conducted in various seasons, and
each experiment provided forty-eight
combinations of growth environments
(four temperature control conditions,
four water management conditions, and
three growth stages).



2. Seedling Growth Curves

Hsieh et al. (1999) showed that time
was a major influence on seedling growth,
and that seedling growth history was
needed to explain the relationship
between the growth environment and
growth quality. Therefore, seedling
growth curves were constructed to
provide growth history information.

The DW was measured on the last
day of each growth stage, with the DW
on the first and second days after sowing
being considered as zero (DW was zero
for the part above the ground during
germination) in each treatment. Each
treatment had six data entries (including
initial DW = 0) for each set of learning
and testing samples. Meanwhile, the
cubic spline function was employed to
construct the growth curve, as presented
in Fig. 1. The cubic spline equation is
defined as follows (Gerald and Wheatley,
1999; MALAB, 1995):

y = ai(x-x) + bi(x-%; ) + ¢i(x- x) + d;

where y denotes the cumulative dry
matter weight, X represents the days after
sowing, and a;, b;, ¢;, d; are coefficients, i
= the segment number, the segment 1
fromx=2tox=10, x; =2, the segment 2
from x = 10 to x = 20, x; = 10, the
segment 3 from x = 20 to x =30, x; =20.

The DW was interpolated for the
other twenty-five days according to the
growth curve. The data used to develop
the growth model were from the fifth (the
initial day of recording daily radiation) to
the thirtieth day, including the
experimental DW values on the tenth,
twentieth and thirtieth days, and the
interpolated values of DW for the other
23 days.

3. Mode!l Establishment Procedure

The error back propagation neural
network was adopted as the growth
model herein (Fig. 2), and computer
programs for neural network modeling
were written using Turbo C++ 3.0. The
models developed herein can make
predictions within the ranges being
investigated in the experiments, namely:
20-35°C for day air temperature,
200-1600mL for daily water supply per
plug tray, 3.8-38.6 mole/m” for total
daily radiation, and
0.38-225mg/seedling for DW on the
preceding day (DWy,).

This work established static and
dynamic growth models for cabbage
seedlings. The neural network used was a
dual-hidden layer structure with ten
neurons per hidden layer. The key
difference between the static and the
dynamic models was the consideration of
the time factor during the learning
process. The static learning process was
further divided into two types. Type I
combined all the sample data from the six
experiments and used just one neural
network for learning. The input
parameters of the neural network were
day temperature (°C), daily water supply
per plug tray (mL), total daily radiation
(mole/m?®), growth stage and cumulative
weight of dry matter per seedling on the
preceding day (DW,,) (mg/seedling).
Meanwhile, Type II combined only
sample data from the same growth stage
of six experiments. Three neural
networks, one for each stage, were used
for learning. The Type II neural network
used four input parameters, day
temperature, daily water supply per plug
tray, total daily radiation and DW;,,
because the three growth stages were
clearly distinguished. Both neural
networks used the measured DW as the



neural network target value (output). The
growth ~model simulations were
conducted after learning was completed.
Using Type I as an example, Fig. 3
presents the recalling simulation
(prediction) process of the Type Il static
growth model. The recalling simulation
process in Fig. 3 is a static prediction
based on a static learning model. The
simulation i1s batch type, and all the
DW,;; values must be known in advance
from the growth curve. On the other hand,
Fig. 4 displays the feedback simulation
process of the Type II static growth
model. The feedback simulation process
in Fig. 4 is a dynamic prediction based on
a static learning model. The experimental
DW value is an input value only on the
first day of the simulation, and the
predicted cumulative dry matter weight
for the present day (DW;) is used as the
mput value for DW;; on the following
day. This acts as a dynamic feedback
simulation, and DW,; can be obtained
through the results from the previous day.
The simulation process is self starting
provided the DW of the initial day of
simulation is known.

The learning process in the dynamic
growth model is conducted on a daily
basis (Fig. 5); twenty-five neural
networks are adopted for each growth
day from the 6™ to 30" day after sowing,
The four factors that influence seedling
quality are used as the neural network
input  parameters, namely day
temperature (°C), water supply per day
per plug fray (mL), total daily solar
radiation (mole/m?), and the DW;,. The
neural network target (prediction) value
18 DWI

All of the networks were combined
into a dynamic growth model of the
network system after all 25 networks

were processed through learning, as
illustrated in Fig. 6. Once the DW, (DW
at the initial day) is known and the first
and last days of the growth period are
assigned, the dynamic growth model
becomes a self starting process for
seedling growth simulation. The dynamic
learning mode in Fig. 6 is the major
feature when compared to the static
learning mode with feedback shown in
Fig. 4.

RESULTS AND DISCUSSION

The results of the Types I and II
static growth models are compared to
reveal how the grouping in growth stages
influences the model performance,
Furthermore, the difference in recalling
and feedback simulations by static
growth model is discussed, and the
dynamic growth model is examined to
show its superior performance. The
performances of the growth models are
evaluated using a relative error and
determination coefficient, r°. The average
relative error is defined as follows:

> (oW, - DW,.,. J(DF,,, )|

Error (%) = =l x 100%

n

where DW,,. denotes the DW predicted
by the growth model; DW . represents
the DW target value; and n is the number
of samples.

1. Static Growth Model

Two approaches were employed in
the static growth model neural network
learning process, according to whether
growth stages were considered. Type I
combined all the sampled data from six
experiments to examine the relationships
between environmental factors and



seedling quality using a dual-hidden
layer neural network. Meanwhile, Type II
exploited sampled data from three
distinct growth stages and used one
neural network for each stage. The total
numbers of learning and testing samples
were 2322 and 2302, respectively. Tables
I and 2 list the analyzed results of
recalling simulations for Types I and II.
Although the simulated results from both
Types were similar, the results from
using Type II were slightly better than
those with Type I, because the seedlings
were expected to share a similar
relationship between seedling quality
(DW) and growing environment at the
same growth stage (Type II, 10 days for
each stage). Therefore, the leaming
scheme with one network for each
growth stage helped to improve the
accuracy of both training and prediction.
In the case that used all DW data,
including experimental and interpolated
data, the average error exceeded 3.2% for
both the Type I and Type II models. The
models developed using just end of the
growth stage DW data had an average
error of below 2.6% (Tables | and 2). The
error associated with the model’s use of
real experimental data is expected to be
smaller, because the error does not
accumulate with time in recalling
simulations and experimental data are not
interpolated.

Although Tables 1 and 2 showed
that the recalling simulation of static
growth model had an average error of
below 4% and a determination
coefficient of over 099, it was
impossible to practically measure the dry
matter weight of seedlings (DW) daily
for recalling simulations. The feedback
approach illustrated in Fig. 4 was
employed to make the simulation more

realistic. A feedback approach based on
the well-trained static growth model
estimated the DW, and fed it back as the
DW,, for further analysis of each growth
day. Table 3 lists the predictions of the
static growth model with feedback
simulation. The predictions when all DW
data from both types are used were
similar, with average errors of around
12.5% and determination coefficients at
around 0.95. The analyzed results using
experimental DW data for Type I had an
average error of 16.5%, slightly better
than those for type II (18.2%). The error
of the feedback simulation in Table 3 is
significantly larger than that of the
recalling simulation (Table 1 & 2).
Consequently, the static growth model
with feedback simulation was inadequate
compared to the recalling simulation,
because the static learning strategy
merely adjusted the errors among the
sample data which must be known in
advance from the growth curve, and not
the errors resulting from feeding the
estimated output value back as the DW, ;.
The feedback simulation produced a
large accumulated error because of the
static learning scheme being unable to
tune the model according to daily
changes in growth. The static growth
model was trained through the neural
network process considering either the
whole growth period (Type I) or
individual growth stage (Type II), and
could not simulate the daily growth such
as feedback simulation in Fig. 4. The
error was Initially small, but accumulated
daily and peaked on the last day of each
growth stage. Therefore, the error listed
in Table 3 for the experimental data was
obtained from the maximum error on the
last day of each growth stage. On the
other hand, the error for all data in Table
3 could be considered the averaged error



over the growth stage. This phenomenon
could explain why the error for the
experimental data group exceeded that of
the whole data group in Table 3.

Regarding the comparison between
Types I and II, the results in training and
prediction {(simulation) both proved that
the Type II static growth ‘model
performed better overall, as shown in
Tables 1-3. However, since models of
both Types I and II had an input of DW,
which was provided on a daily basis, the
difference between the Type II (three
networks) and the Type I model (one
networks) on the importance of the
“growth stage” was reduced. This
phenomenon was illustrated by a small
difference in the simulation error for all
cases in Tables 1-3, and was even not
strange to see that Type I gave a better
feedback simulation than Type II for
experimental data in Table 3 (16.5 vs.
18.2 %), which was an exception among
above the cases.

2. Dynamic Growth Model

Although the static growth model in
the recalling simulation was quite good
(Tables 1 and 2), it was considered
impractical, as discussed above. The
static growth model in the feedback
simulation considered the time feedback,
but its predictive ability was madequate
because of its inability to dynamically
adjust the daily feedback error. The key
to overcoming this shortcoming was to
use a dynamic growth model which could
adjust the daily feedback error. This
approach allowed the daily neural
network learning to be fulfilled on a daily
basis (Fig. 5). All daily neural networks
were then combined in sequence to form
a whole dynamic growth model, as
illustrated in Fig 6. The dynamic growth

model could quickly determine the
seedling DW for each growth day via
neural network simulation once the DW
of the first simulation day and the growth
environment conditions were given.

Table 4 lists the simulated daily
seedling DW resulting from the dynamic
growth model. The daily average error
was below 2.9% with a determination
coefficient of over 0.98 for the training
set samples, while the daily average error
was less than 5.8% with a determination
coefficient exceeding 0.90 for the
prediction set samples. Table 5 lists the
lumped results for all growing days. For
all data, the average errors of the samples
of the training and prediction sets were
1.36% and 3.62%, with determination
coefficients of 0998 and 0.985,
respectively. Meanwhile, for the
experimental data, the average errors of
the samples of the training and prediction
sets were 1.68% and 3.75%, with
determination coefficients of 0.996 and
0.987, respectively. Comparison of
Tables 3 and 5 reveals that the prediction
errors decreased by approximately 70%
~ 80% (from 12.4% to 3.62% and from

182% to  3.75%), while the
corresponding determination coefficient
rose from 0.95 (0.92) to 0.99. The
dynamic growth model neural network
simulation thus performed well owing to
dynamic time error minimization.

Figure 7 displays typical estimated
growth curves for the static growth
model with recalling simulation, the
static growth model with feedback
simulation, and the dynamic growth
model simulation. The Type II approach
was used for the static growth mode!
herein. The prediction errors in Fig. 7 for
the static growth model with recalling
simulation, the static growth model with



feedback simulation, and the dynamic
growth model simulation were 3.38%,
23.52% and 4.72%, respectively. The
results of the static growth model with
recalling simulation results were slightly
better than those of the dynamic growth
model simulation. The static growth
model with recalling simulation
performed best in terms of prediction
error, but was unsuitable for practical
applications because of the unavailability
of the daily seedling DW. Unlike its good
performance  with  the  recalling
simmulation, the results of the static
growth model for the feedback
simulation were the worst among models,
with the deviation of the estimated
growth curve from target values at each
growth stage becoming increasingly
obvious with more growing days.
Although the corresponding error on the
first day of each growth stage (the
experimental value as the DW, input at
the 6th, 11th, and 21st day) was small, the
relevant error increased to & maximum on
the last day of each growth stage (the
10th, 20th, and 30th day). Although the
static growth model with feedback
simulation could utilize the dynamic
feedback of DW, the static nature of the
leamning process compromised prediction
ability and caused errors to accumulate
over time. The estimated growth curve of
the dynamic growth model simulation
was within a small error range and the
error did not increase with the number of
. growing days, as shown in Fig. 7.
Consequently the simulation
performance of the dynamic growth
model was proven to be good, and the
only inputs required for dynamic
feedback were the DW, at the beginning
of simulation and daily environmental
conditions. Therefore, the dynamic
growth model is suggested as the best of

the models presented in this study.

CONCLUSION

This investigation cultivated
cabbage seedlings in a phytotron with
various  environmental  conditions
(temperature, water supply, and
radiation). Experiments involved three
growth stages, seedling DW was
measured and applied to construct the
growth curve by using the cubic spline
function.

The feedback neural network
simulation benefited from historical
growth factors and achieved good
learning results when it utilized the DW,,
as an input parameter. The static growth
model with recalling simulation was
reasonably accurate since it had a 3.6%
error for all data groups and a 2.6% error
for the experimental data group, but it
was impractical because the daily
seedling DW was not available in
advance. The static growth model with
feedback simulation was less accurate
than the recalling simulation, with the
error of all data groups surpassing 12%,
while that of the experimental data group
exceeded 16%. The static growth model
feedback simulation suffered from a
significant accumulated error and could
not adjust the daily feedback error.

The dynamic growth model
simulation effectively improved the error
accumulation by using dynamic feedback
learning. The dynamic growth model
revealed that the errors of training and
prediction sets were 1.68% and 3.75%,
with determination coefficients of 0.996
and 0.987 respectively. The dynamic
growth model neural network system not
only had the advantage of feedback
learning, but also performed well in



response to dynamic time error
adjustment. This work successfully used
a neural network simulation to develop a
dynamic growth model that could be
used to produce an optimal seedling
environment control and automated
seedling cultivation strategy.
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Table 1. Results of Type I (one neural network) static growth mode! with recalling

simulation
Method Number of Error (%) 1t
Samples
Training 2322 3.59 0.999
All data’
Prediction 2302 3.62 0.999
Experimental Training 285 2.60 0.999
*

dataat BOGS* | o viction | 283 2.60 0.999

! including experimental DW data and the data interpolated from growth curve.

* EOGS : end of growth stages

Table 2. Results of Type II (three neural networks) static growth model with
recalling simulation

Method Numberof | o (%) P
Samples
Training 2322 3.22 0.999
All data’

Prediction 2302 3.24 0.999
Experimental Training 285 2.53 0.999

*
data at EOGS Prediction 283 2.54 0.999

! including experimental DW data and the data interpolated from growth curve.

* EOGS : end of growth stages

Table 3. Prediction results of static growth model with feedback simulation

Method Number of Error (%) r
Sampies
Type 1 All data' 2302 12.6 0.956
{one neural :
Experimental
network) data at EOGS* 283 16.5 0.623
Type 0 All dataf 2302 12.4 0.953
(three neural Fxpeti
perimental
networks) data at FOGS* 283 18.2 0.918

T including experimental DW data and the data interpolated from growth curve.

* EOGS : end of growth stages

11



Table 4. Results of dynamic growth model simulations at each growing day

Training Prediction
Growth day [Number of Error (%) 2 Number of] Error (%) 2
Samples Samples
6th day 96 0.61 0.999 96 1.05 0.999
7th day 96 0.50 0.999 96 0.83 0.999
8th day 96 0.19 0.999 96 1.06 0.997
Oth day 06 0.12 0.999 96 1.03 0.997
10th day 96 0.26 0.999 96 1.67 0.985
11th day 96 0.55 0.998 96 2.33 0.979
12th day 96 1.26 0.993 96 3.13 0.961
13th day 96 1.69 0.988 96 4,05 0.942
14th day 96 1.32 0.992 96 4,20 0.932
15th day 96 1.68 0.990 96 4.37 0.930
16th day 96 1.82 0.988 96 4,66 0.927
17th day 96 2.31 0.986 96 5.05 0.924
18th day 96 2.30 0.985 96 5.17 0.919
19th day 96 242 0.984 96 5.40 0.914
20th day 96 2.84 0.982 96 5.75 0.905
21st day 93 1.05 (.996 91 4.27 0.918
22nd day 03 1.20 0.996 91 4.24 0.920
23rd day 93 1.14 0.996 91 4,03 0.922
24th day 93 1.11 0.997 91 4.02 0.925
25th day 93 1.31 0.996 01 4.05 0.926
26th day 93 1.30 0.995 91 3.85 0.933
27th day 93 1.40 0.993 91 3.93 0.935
28th day 77 1.41 0.993 75 4.29 0.933
29th day 77 1.43 0.989 75 441 0.933
30th day 77 1.72 0.983 75 4,19 0.940
Weighted 136 | 0.998 362 | 0985
verage

Fa 30
¥ Weighted Average = Z (Average Error x Number of Samples) + Z {Number of Samples)
i=d

=&

Table 5. Simulation results of dynamic growth model

Number of

Method Samples Error (%) r
Training 2322 1.36 0.998
All data’
Prediction 2302 3.62 0.985
Experimental Training 285 1.68 0.996
%*
data at EOGS*| o giction | 283 3.75 0.987

! including experimental DW data and the data interpolated from growth curve.

* EOGS : end of growth stages
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FIG 1. A typical growth curve fitted by cubic spline functions
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FIG 2. The structure of error-back-propagation neural network
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Fig 4. Type II static growth model with feedback simulation process
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Fig 5. Dynamic growth model in learning process
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Fig 6. Dynamic growth model in simulation process
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