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In this project, we have explored the electronic structures and nonlinear
optical properties of many different conjugated systems. We successfully
apply our MIM methodology to the cyclophane and cyclophanene. With
this novel technique, we are able to find out the relative importance of
through-bond and through-space contribution to the excited-state charge
delocalization. We discover that through-bond delocalization is very
important in the cyclophanene, indicating that ethylene bridge plays a
nontrivial role in this molecule.

We have also examined the validity of Zerbi’s formula of vibrational
contribution to NLO coefficients from exact quantum mechanical SOS
expression. We discover that this formula is valid only in the solid state
limit, while some non-negligible terms still exist for finite systems. In
addition, we apply these formula to the polyacetylene, the exact analytical
formula are obtained. The parabolic approximation usually adopted is
shown to be good.
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Through-Space/Through-Bond Delocalization in Cyclophane
Systems: A Molecule-In-Molecule approach

Hsin-Chieh Lin and Bih-Yaw Jin*
Department of Chemistry, National Taiwan University, Taipei, Taiwan

The novel method based on the “Molecule-in-Molecule” (MIM) theory originally proposed by Longuet-Higgins
and Murrel in 1956 was used to obtain useful excited-state information of the charge-transfer exciton (charge-
resonance exciton) of cyclophane and cyclophanene molecules at the ground state geometry.”

The MIM Hamiltonian of a molecular dimer can be constructed by configuration interaction (CI) matrix,* as
shown in scheme 1, F and C are energies in configuration representations of Frenkel (local) and charge-transfer
(CT) excitons, respectively. The off diagonal matrix elements can differenciate into two parts, one part is V¢ and
V., and the other part is t, and t. that are coupling matrix elements between the same kinds and different kinds of
configurations, respectively. Four frontier orbitals were extracted from the dimer Hamiltonian that was constructed
by two interactive chromophores, combining the four-orbital model and the molecular symmetry, and then the
analytical solutions can be obtained. Alternatively, combining the energies of excited states calculated by quantum
chemical methods (INDO/S, TD-DFT and so on) with the analytical solutions, this four-state approach allow us to
estimate the matrix element F, C, Vi V.. The criteria of selecting the correct excited states is based on the
symmetries of the configuration, only two sets of the configurations that we expected. One is the HOMO -LUMO
and HOMO-1-LUMO+1 transitions, the other is the HOMO-LUMO+1 and HOMO-1-LUMO transitions.
Additionally, we use half of the energy splitting of the HOMO and LUMO to fit the transfer matrix elements t;,
and t., respectively. We check the electron distribution in the essential orbitals by the symmetric and
antisymmetric combinations of the single chromophores. After estimating these matrix elements under the four-
state approximation, the truncated Hamiltonian can be obtained, and then, we can obtain the CT contribution by
this simplify model.
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The cyclophanes and cyclophanenes shown in Scheme 2 have been synthesized and characterized by previous
work™”. It is worthy to remember that the cyclophane 1 is a classical example in cyclophane chemistry and
cyclophane cores contain this part have been well studied as an example of through-space delocalization after
photoexcitation.® In addition, the ground state interaction of this cyclophane have been discussed by Ratner et al..’

In literature, the cyclophane systems were widely optimized by semiempirical AM1 method that can provide
very excellent geometries compared with X-ray data.''> We also optimized the model cyclophanes by high-level
density functional theory (DFT) method to prevent the artifact. As shown in Table 1, these cyclophanes were
optimized at AM1 and DFT (B3LYP/6-31G**) levels for the ground state geometries and AM1/CI level for the
excited-state geometry. Excitation energies and molecular orbital levels were calculated by INDO/S method
because it can provide consistent results compare with the absorption, fluorescence spectrum'® and UPS'
experimental observations.

To our best knowledge, excited-state delocalization mechanism of cyclophane systems with the double bond
tether have not been addressed, therefore. In this paper, we want to find out the contribution of the n-bond tether in
novel cyclophanes to the intramolecular charge transfer (ICT) property' in the lowest excited state by using the
truncated MIM method. As discussed above, the excited wavefunction contains two parts, local exciton and CT-
exciton contributions. Because CT-exciton is sensitive to the distance between the two cofacial chromophores
when the distances of the interchromophores are very close.'® Thus, the contribution of the CT-exciton could be
enhanced by cyclophane systems (chemical bonding can shorten the distance of the interchromophores), therefore,
one can use this key information to determine the delocalization mechanism by the MIM method.

In Table 1, the T-bond indicates the through m-bond contributions and the T-space is the total contributions of
through space (without coupling the electron density of the conjugate p-orbitals on the tether) contribution and the
through o-bond contribution. The contributions of 0-bond in T-space can be neglected.'” The sp® tether of the
cyclophanene shows a replacement of the double bond tether to a single bond tether, but the distances of the
aromatic chromophores remain the same. Cyclophane 1 and derivatives have been argued that it is near pure
through space delocalization according to the nonlinear optical properties'’. In cyclophanene 1, the orthogonal
nature of the p-orbitals between benzene ring and the double bond tether may lead to a small T-bond contribution.
Our approach indicates that the T-space contributions of CT-exciton can reach about 98%, alternately, the through
n-bond only can provide small contributions (~2%), so our approach can give convincing result that the
cyclophanene 1 is an case of near pure through space delocalization. Thus, the 0-bond gives a much smaller
contribution to electron delocalzation than n-bond does, which means the g-bond contributions of CT-exciton is
lower than 2%. In other words, the cyclophane 1 is also near pure through-space delocalization. For sp® tether in
cyclophane 1 and cyclophanene 1, the CT% of the cyclophanene 1 is larger than cyclophane 1 that is due to the
shorter distance of the double bond tether compared with the single bond tether in cofacial cyclophanes.

Table 1.

sp’ tether sp” tether  T-Space:T-Bond
phane 1 16.6347  -----—- e In contrast to molecules 1, the cyclophane
phanene 1 17.3561 17.7454 98% :2% 2 and cyclophanene 2 contain five-member
phane 2 0.7066  -——--—- e furan moieties, therefore, two teraryl
phanene 2 0.2699 2.1075 13%:87% chromophores cannot be in cofacial packing.
phanene 2* 0.9012 7.9865 11%:89% Obviously, the CT% of the cyclophane 2 and

cyclophanene 2 were smaller than the relative cyclophane 1 and cyclophanene 1. The increase of the CT% from
the cyclophanene 2 (sp*) to the cyclophane 2 (sp®) can be attributed to the more cofacial packing for former case
(the p-orbitals can gain larger overlap). Through th analysis of the four-state Hamiltonian, we found that the
transfer integral (t, and t.) in cyclophanene 2 (sp?) have more than one order of magnitude values with respect to
the relative cyclophane 2 (sp*). This feature is raised from the obvious electron density of HOMO and LUMO
orbitals localized on the double-bond tether, especially in the LUMO level.'? This feature also can be reproduced
by DFT method. The lowest excited state of the cyclophanene 2 (sp?) has 87% contribution from only one 7-bond
on the tether, and the sum of others contributions only can provide lower than 13% which is due to through-space
delocalization.

In order to compare the calculated MIM results with the molecular structures in detail, we optimized the lowest
excited state geometry of cyclophanene 2*. After photoexcitation, the geometry of cyclophanene 2 will reorganize
the nuclei coordinates to a more planar structure. The photo-induced planarity is due to the C-C single bond along
the conjugated path that will exchange the length to adapt more double bond characters from reducing antibonding
character and increasing the bonding character by the occupied and unoccupied orbitals, respectively. As shown in
Figure 1, we can see that the twist angle of the position 4 of the cyclophanene 2* can be reduced from about 50° to
lower than 30°. By the photo-induced planarity, we can rationalize by the MIM results, the cyclophanene 2* (sp*)
can enhance the CT-exciton from 2.1% to 8.0% (in Table 1) through bond mechanism. In sp® tether, the CT
contribution of cyclophanene 2* (sp®) (0.90%) is slightly large than cyclophanene 2 (sp®) (0.27%). About the
factor, we can have a sensible explanation by the critical distances in Figure 1. The sharp decrease (about 20



degrees) of the twist angles at position 3 and 4 will lead to stronger conjugation character and this feature can
reduce the interchromophore distances. From the interchromophore distances in Figure 1, these data demonstrate
that the most important critical distance ¢ (2.77 A) of cyclophanene 2* is reduced by 0.40 A compare with the
distance ¢ of the cyclophanene 2. The critical distance c is close to the shortest interchromophore distance (2.71 A)
in the through-space cyclophanene 1. Therefore, the two inner cofacial p-orbitals of the critical distance ¢ can
enhance the CT% in cyclophanene 2* (sp*) apparently.
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Figure 1. Critical twist angles for the cyclophanene 2 in tfle grouncﬁ state geometry (open circles) and lowest excited-state

geometry (filled circles). Critical distances of ground state: a-a’=2.995, b-b’=3.586, c-¢’=3.169, d-d’=3.025, lowest excited state:
a-a’=2.993, b-b’=3.397, c-¢’=2.769, d-d’=3.058 (in A).

After a detailed comparison, we consider this truncated MIM approach is a reliable method to determine the
delocalization mechanism in cyclophane systems. Compare our theoretical results with experimental data; we can
conclude that the interesting shoulder of the cyclophanene 2 in the absorption spectrum’® can be addressed to a
through-bond (n-bond) delocalization mechanism chiefly.

In summary, we have applied the “molecule-in-molecule” technique under the four-state approximation to
analyze the through-space and through-bond problems in the cyclophane systems successfully. By this truncated
Hamiltonian, the model cyclophanene 1 and 2 can be addressed to through-space and through-bond delocalization
in the lowest excited state, respectively. This novel approach can be directly applied to not only cyclophane
systems but also many bichromophoric systems.
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Vibrational Contributions to Nonlinear Optical
Coefficients

Chia-Chun Chou and Bih-Yaw Jin
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Abstract

Considering a two-level system with a single vibrational mode, we apply the exact
sum-over-state (SOS) formulas for the (hyper) polarizabilities expressed in terms of
vibronic states to this model. Instead of using Placzek’s approximation, we apply
Herzberg-Teller expansion to the sum-over-state formulas including vibrational
energy levels. Besides, electrical and mechanical harmonicity are employed. The
results we obtain include not only the lattice relaxation expression for vibrational
contributions but also the contributions of the next higher order terms. The method we
present here is also applied to multi-level and multi-mode system.

|. Introduction

There has been growing interest in the study of nonlinear polarizabilities motivated
largely by the potential for using this property in the design of optical communication
devices. The design of materials with large optical nonlinearities is an active and well-
reviewed area of research [1]. Nonlinear optical processes are governed by molecular
hyperpolarizabilities. These properties can be divided into contributions originating
from the effects of electric fields on (a) electronic motions and (b) nuclear motions.
The past decade has been an interesting number of calculations of vibrational
polarizabilities and hyperpolarizabilities [2-4]. On the one hand, polarizabilities and
hyperpolarizabilities can be defined by a perturbation theory treatment of the electric
fields and this gives rise to sum-over-state formulas in terms of vibronic energies and
dipole moment matrix elements. The effect these terms including vibrational levels
have on the calculated second hyperolarizability was also examined [3]. On the other
hand, a semiclassical treatment is presented by Zerbi and coworkers which allows
deriving an explicit analytical expression for this contribution in terms of vibrational
spectroscopic observables [2]. The lattice relaxation expression has been obtained
from the exact sum-over-state formulas by using Placzek’s approximation [4]. The
purpose here is to derive the lattice relaxation expression from the sum-over-state
formulas by taking into account the vibrational energies in the denominators of the
sum-over-state formulas instead of using Placzek’s approximation.



We begin by considering a two-level system with a single vibrational mode,
applying the exact sum-over-state formulas for the (hyper)polarizabilities expressed in
terms of vibronic states to this model (Sec. II). The vibrations are described by
displaced, one-dimensional harmonic oscillators. Within the double harmonic
approximation (electrical and mechanical harmonicity), not only the lattice relaxation
expression for vibrational contributions but also the contributions of the next higher
order terms can be also obtained by using Herzberg-Teller expansion and by making
use of a formula developed by Ting [5]. In Sec. III, the method we here employ is
applicable to multi-level and multi-mode system. Finally, in Sec. IV, the results are
discussed and compared to earlier work.

II. Two level system with a single vibrational mode

In this section, we will consider a two level system with a single vibrational mode.
The vibrational levels of the ground and excited electronic states will be modeled by
harmonic oscillators (mechanical harmonicity approximation). For simplicity, the
oscillators are assumed to have identical frequencies @, but the minima for the
ground electronic state and for the excited electronic state are displaced. The
difference in energy between the minima of the two electronic states will be called A.

A. Polarizability
From sum-over-state method, the polarizability @ can be expressed as

o= a =y {AmmIA0)
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Considering a two level system with a single vibrational mode, the polarizability is
K 90|ﬂ| gm\ (g0l em)]
=3 z (2.2)
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The bar over the m in the | m> indicates that this is a vibrational level of the excited

m} being levels of the ground state. Within the Born-Oppenheimer

approximation, we can write the dipole moment of the ground electronic state as a
function of the vibrational coordinate and expand it in a Taylor series about the
minimum of the ground electronic state. For simplicity, we set the minimum for the
ground electronic state to be zero. Furthermore, the electronic transition moment is
only expanded to the first derivative term (electrical harmonicity approximation).
Therefore,

(90| gm) = (0], (Q) m) 23)
and
He (Q) = 11,4 (0) + [aggg J Q (2.4)

Substituting the equation (2.3) and (2.4) into the first term in the equation (2.2), we
can obtain
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where K is the force constant of the ground vibrational state.
The first term in the equation (2.5) is the lattice relaxation expression for vibrational
contributions to the polarizability. If the vibrational frequencies are much smaller than
the electronic frequencies, i.e. Nw << A, the first term in the equation (2.5) will
dominate. Moreover, the first term in the equation (2.5) is a pure vibrational
contribution to the polarizability. That is to say, no electronic excitation is involved.
However, the second term in the equation (2.5) is the other type of the contribution to
the polarizability. The contribution comes from the coupled motion of the electronic
excitation and the nuclear vibration within the adiabatic approximation.

Considering the second term in the equation (2.5), we obtain
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We will expand the equation (2.6) in powers of % ,

a0l fem) =%z<o|ﬂge|m><f_“|ﬂeg|o>{ () ‘A} =0

m=0

5o[(0ledem)]

&= A+mMnw

Since the vibrational levels of the excited state |m> form a complete set, the first

term in the equation (2.7) is
o\ _ 2
2 (0] 1ge] MY 15 0) = (0] 15| 0) (2.8)
m=0
We also write the electronic transition moment as a function of the vibrational
coordinate and expand it in a Taylor series about the minimum of the ground
electronic state.

0
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Substituting the equation (2.9) into the second term in the equation (2.8), we can
obtain

ou ? n
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Similarly, we substitute the equation (2.9) into the second term in the equation (2.7)
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Since the Franck-Condon factor for a two level system with a single vibrational mode
is

mo-S
=|(ojm)f* = Sme! (2.12)



the first term in the equation (2.11) can be reduced by

im<o| my(mo) =S (2.13)

The second term in the equation (2.11) can be simplified by the raising and lowering
operator formalism of the harmonic oscillator.

> mlolm)miclo)+ omimo)) =2 Smommpy 219

The summations in the equation (2.14) have been given by Ting [5]. Hence, the
second term in the equation (2.11) is

Smlammo) oamima)=2)5 (2] @

2mw
where O serves as a dimensionless measure of the displacement d of the oscillators
o= __d (2.16)
(01Q7[0)
In the same way, we can obtain the third term in the equation (2 11)
> m(0|Q m)(m|Q|o) = Zm\ 1m) = (s+1) (2.17)
m=0

Therefore, we obtain
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Through the same process, we can obtain the polarizability to the order of (M)}
A
2
e 6ugg Ofy | , Hel0)  1( 01" n
0Q Q) A Al0Q ) 2mw
1) _nw| » Ofge Hee n
+—{ =2 12 (0) S+ 11, (0 —_(s+1
A{ ; [yge< 50,0 52 ) o2 S5

N [%)jz [ﬂ;e(o)s(s +1)- yge(o){a:(;e l d(2s+1)+ {%I ﬁ)(sz *5S* 1)] * O[(%)I J}

The first term is the lattice relaxation expression for vibrational contributions to the
polarizability and the second term is the electric contribution to the polarizability.
Consequently, if the vibrational frequencies are much smaller than the electronic
frequencies (Nw << A), we can find that the dominant vibrational contribution to the
polarizability @ is mainly from the pure vibrational motion. Besides, the third term
in the equation and the second term, the electric contribution to the polarizability, are
the same order.

B. First hyperpolarizability
From sum-over-state method, the first hyperpolarizability [ can be expressed as
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C0n51der1ng a two level system with a single vibrational mode, the first
hyperpolarizability is
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Making the same approximation, the pure vibrational terms in the equation (2.20) can
be expressed as

(9014 gm)(gmz gn)( gn|#4 90) (90| gm)
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Substituting the equation (2.3) and the equation (2.4) into the equation (2.21), we can
find that there is no pure vibrational contribution to the first hyperpolarizability [.

Subsequently, the terms that have only one pure vibrational frequency in the
denominators are the second term and the third term in the equation (2.20).
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Substituting the equation (2.3) and the equation (2.4) into the equation (2.22), we can
obtain

(ol [%gJ s (glluen)ienilg0) , {11Q)0) [%gJ 5 (90l em){emifg)
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Since the matrix elements in the equation (2.23) are real and the N and M are
dummy variables, the equation (2.23) can be written as

i,

Following the similar procedure for the polarizability &, the summation in the
equation (2.24) is then
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Using the completeness relationship of the vibrational levels of the excited state |ﬁ>

2.21)

and the equation (2.9), the first term in the equation (2.25) become
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Therefore, the first hyperpolarizability [ to the order of (%)J turns into
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On the other hand, the electrical contribution to the polarizability a is
2414,
af= 2.28
A (2.28)

The first derivative of the electrical contribution to the polarizability a with respect
to the vibrational mode at the minimum of the ground electronic state is
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Substituting the equation (2.29) into the equation (2.27), we can obtain
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where <O|Q|1><1|Q| 0> KO|Q|1>‘ =— e has been used. The K in the equation (2.30)

is the force constant of the ground vibrational state. The equation (2.30) is the lattice
relaxation expression for vibrational contributions to the first hyperpolarizability [.
Consequently, if the vibrational frequencies are much smaller than the electronic
frequencies (Nw << A), we can find that the dominant contribution to the first
hyperpolarizability [ is mainly from the term in the equation (2.30).

Following the similar procedure for the polarizability @ , we can find the
contributions of the next higher order terms to the first hyperpolarizability [.

Considering the terms that have A’ in the denominators, we have to include the
second term in the equation (2.25) and the fourth term and the sixth term in the
equation (2.20). The fourth term and the sixth term in the equation (2 20) are
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We expand the first term in the equation (2.31) in powers of %
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Keeping the equation (2.32) to the order of Al we can obtain
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Similarly, the second term in the equation (2.31) can be also expanded to the order of

1 :
—-. That is to say,
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Keeping the equation (2.34) to the order of é , We can obtain
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Hence, the equation (2.31) to the order of é turn out to be
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Subsequently, the second term in the equation (2.25) is
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Substituting the equation (2.9) into the equation (2.37), we can obtain
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Using the raising and lowering operator formalism of the harmonic oscillator and the
summations have been given by Ting [5], we can simplify the equation (2.37).
Therefore,
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The term of the order of Lz in the equation (2.24) is then
A
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Combining the equation (2.36) with the equation (2.40), we can obtain
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where (0|Q°|0) = 2rrr]la) and (0|Q1) = Jﬁu have been used.

Therefore, combining the equation (2.41) with the equation (2.30), we can write the
first hyperpolarizability [ as
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The first term in the equation (2.42) is the lattice relaxation expression for
vibrational contributions to the first hyperpolarizability. If the vibrational frequencies
are much smaller than the electronic frequencies, i.e. N <<A, the first term in the
equation (2.42) will dominate. Moreover, there is no pure vibrational contribution to

the first hyperpolarizability. That is to say, the contribution of the order of % to the

first hyperpolarizability comes from the coupled motion of the electronic excitation
and the nuclear vibration within the adiabatic approximation. Besides, the second
term in the equation (2.42), the electric contribution to the first hyperpolarizability,
and the other terms are the same order.

C. Second hyperolarizability
From sum-over-state method, the second hyperpolarizability ) can be expressed as
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where {4 =pu- <g | ,u| g> . Following the similar procedure for the first

hyperpolarizability [, we can write the pure vibrational terms in the equation (2.43)
as
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Under the same approximation, we can simplify the equation (2.44). The equation
(2.44) then become
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Using ‘<0|Q| 1>‘2 = 2r:w and |<1|Q| 2) | :mi we can find that the equation (2.45) is

(2.44)

equal to zero. Like the first hyperpolarizability [, there is also no pure vibrational
contribution to the second hyperpolarizability ).

5)]



Next, we consider the terms that have two pure vibrational frequencies in the
denominators.
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The equation (2.46) ck;)l be reduced to
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We expand the summations in the equation (2.47) in terms of %
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The first terms in the equations (2.48), (2,49) and (2.50) are then
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ou
(1t ) {u;e(ow( 2 j e |1>} 25
m=0
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Therefore, the equation (2.47) expanded to the order of % turns into
La,ugg Z%ZL (2.54)
k> 0Q A 0Q ) A '

where K is the is the force constant of the ground vibrational state. Consequently, if
the vibrational frequencies are much smaller than the electronic frequencies, i.e.
N << A, the term in the equation (2.54) will dominate.



Subsequently, considering the terms involved in A’ in the denominators, we have
to include not only the second terms in the equations (2.48), (2,49) and (2.50) but also
the terms that have only one pure vibrational frequency in the denominators.

Namely,
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At first, we can simplify the equation (2.55).
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In the same way, the summations in the equation (2.56) are expanded in terms of %

. 1
and we keep the summations to the order of R
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(2.57)
Through the similar procedures for the polarizability @ and the first
hyperpolarizability [, the equation (2.56) can be expressed as
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where K is the is the force constant of the ground vibrational state.

Furthermore, we have to include the second terms in the equations (2.48), (2,49)
and (2.50). Using the raising and lowering operator formalism of the harmonic
oscillator and the summations have been given by Ting [5], we can simplify the
second terms in the equations (2.48), (2,49) and (2.50). Therefore, the terms in the

equation (2.47) of the order of é then turn out to be
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Collecting all the terms of the order of Al the terms in the equations (2.58) and

(2 59) we can obtain
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(2.60)

Simplifying the equation (2.60), we can obtain



ou ou 1 ou H
0 0 ge 99 1 ee 99
kAz 2011 (0) = 22 (0) 1 )( 20 M aQJ k ( N }
11 2 a'uge 1, alugg 1 2 a'ugg aluge nw
+——24%(0 0 - Z(s+1
k A 'ug‘*()LaQJO kAzﬂe()L N’ K2 02( )
L1 Oy 4r]_a)+L Oty \ (Ot aﬂgg L3r]a)
N 2k*(0Q ) 2 A 0Q ) aQ )\ aQ ) Kk 2
ou. \ 0
L ) o %) [0 4
N 2k | 0Q J, 0Q ) V2mw
(2.61)

On the other hand, the electrical contribution to the first hyperpolarizability £ is

g =6lu, - ygg)/" o (2.62)

The first derivative of the electrical contribution to the first hyperpolarizability £
with respect to the vibrational mode at the minimum of the ground electronic state is

2uge(0)[?5€j

B Ll (e [ |Hel0) L 0
(aQ Jo _6“ 0Q ]O ( aQ M N 6 (14, (0) = 45 0) A (2.63)

Through the equation (2.63) and the equation (2.29), the first four terms in the
equation (2.61) can be written as
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Hence, the terms involved in A? in the denominators then become
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Combining the equation (2.54) with the equation (2.65), we can write the second
hyperpolarizability y as
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(2.66)




If the vibrational frequencies are much smaller than the electronic frequencies, i.e.
N << A, the first term in the equation (2.66) will dominate. The second and the third
terms in the equation (2.66) involved in the derivatives of the electrical contribution to
the polarizability and of the electrical contribution to the first hyperpolarizability are
the lattice relaxation expression for vibrational contributions to the second
hyperpolarizability. Moreover, there is no pure vibrational contribution to the second

N . o 1
hyperpolarizability. That is to say, the contribution of the order of 2 to the second

hyperpolarizability comes from the coupled motion of the electronic excitation and
the nuclear vibration within the adiabatic approximation. Besides, the other terms in
the equation (2.66) and the lattice relaxation expression for vibrational contributions
to the second hyperpolarizability are the same order.

[11. Multi-level system with multiple vibrational modes

The method in section II is also applicable to multi-level system with multiple
vibrational modes. In the same way, the vibrational levels of the ground and excited
electronic states will be modeled by harmonic oscillators (mechanical harmonicity
approximation). Furthermore, for simplicity, the oscillators of the same mode are
assumed to have identical frequencies <, but the minima for the ground electronic
state and for the excited electronic state of the same mode are displaced.

A. Polarizability
From sum-over-state method, the polarizability @ can be expressed as

1y g =y Ol
2! mo  En—E,
Therefore, the electrical contribution to the polaizability turns into

4 :z<9|ﬂ|‘%><el 49) :iﬁ (3.2)
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where A, =E, —E,. E, and E; refer to the ground and the i-th excited electronic

state energy respectively. If we include multiple vibrational modes with multi-level
electronic states, we have
2
< ‘ go| /1‘ g ma>

%o Zmoﬂw Z ;—OA + 2 mnaf

In the equation (3.3), {mg‘} refers to (mo , Mz, m A ) and m; denotes the vibrational

(3.3)

quantum number of the first mode in the ground electronic state, M, denotes the
vibrational quantum number of the second mode in the ground electronic state and so
on. Similarly, {ma} refers to (ml M, me A ) and m' denotes the vibrational

quantum number of the first mode in the i-th electronic state, m’ denotes the

vibrational quantum number of the second mode in the i-th electronic state and so on.
Within the Born-Oppenheimer approximation,

(g0l gmi) =( olugg( )|m;> (3.4)
For a collection of oscillators, we have |0 = |_| )(g . a and ‘mg‘> = |_| X (Q )

where X g denotes the harmonic oscillator eigenfunction of the a-th mode with

vibrational quantum number m* in the ground electronic state. In the same way, we
can write the dipole moment of the ground electronic state as a function of the
vibrational coordinate and expand it in a Taylor series about the minimum of the
ground electronic state. For simplicity, we set the minimum for the ground electronic
state to be zero. Furthermore, the electronic transition moment is only expanded to the
first derivative term (electrical harmonicity approximation). Therefore,
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Hey (Q) = 1y, (0)+Z( ﬂggj Q, (3.5)
=~ aQ, ),
Substituting the equation (3.5) into the equation (3.4), we obtain
a ﬂ a
(0]4gg | M) = 1 (O)C O‘rno>+2( ggJ (0[Qy [m) (3.6)
0

Since {mg‘} # (O, 0,0,A ) for the first summation in the equation (3.3), <0‘ m§> =0.

(0/Q, ‘ m§‘> =0 unless a=b, m? =15 and the vibrational quantum numbers of other

modes are equal to zero. Consequently,
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<0| Hyg > (angJ < > (3.7)
where < 13> = d . Therefore, the first term in the equation (3.3) then
21,0
becomes
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By neglecting the second term in the equation (3.3) that has A, in the denominator,
we can express the polarizability as
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where K; is the force constant of the a-th mode and kg = 1, (a)(f‘ )2 has been used.

The equation (3.9) is the lattice relaxation expression for vibrational contribution to
the polarizability.

Similar to the result in section II, the result we have obtained is that if the
vibrational frequencies are much smaller than the electronic frequencies (Nw; <<A,),

we can find that the dominant vibrational contribution to the polarizability a is
mainly from the pure vibrational motion.

B. First hyperpolarizability
From sum-over-state method, the first hyperpolarizability [ can be expressed as
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At first, the terms involved in pure vibrational motion are
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Through the same approximation and the equations (3.5), (3.6) and (3.7), the equation
(3.11) then turns into

(0/.199 Jz n
1 a,ugg Jz r] a(?a 0 2’luaa)0a
(0 (! =0  (3.12)
> (e ol )( 0. ), i 2% (ness )

Hence, there is no pure vibrational contribution to the first hyperpolarizability .

Subsequently, the terms in the equation (3.10) that have only one pure vibrational
frequency in the denominators are
Hens)ent
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Let 5(ﬁi°) =n‘na” + % r](a),C - a)g) and 5(ma) =mnw® + % r](a),a - a)g‘), and the
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equation (3.13) can be simplified
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Keeping the equation (3.15) to the first term we can obtain
gl
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where we have used the fact that

ﬁi°> is a complete set. We also write the electronic

transition moment as a function of the vibrational coordinate and expand it in a Taylor
series about the minimum of the ground electronic state.
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Substituting the equation (3.17) into the equation (3.16), we can obtain
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In the same way, we can a;so obtain
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Substituting the equations (3.18) and (3.19) into the equation (3.14) and using the
equation (3.7), we can obtain
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On the other hand, the first derlvatlve of the electrical contribution to the
polarizability @ with respect to the a-th vibrational mode at the minimum of the
ground electronic state through the equation (3.2) is

(3.20)
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Therefore, substituting the equation (3.21) into the equation (3.20), we can then
express the first hyperpolarizability [ as
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where K; is the force constant of the a-th mode and k; = (a)(f‘ )2 has been used.

The equation (3.9) is the lattice relaxation expression for vibrational contribution to
the first hyperpolarizability.
Similar to the result in section II, the result we have obtained is that if the

vibrational frequencies are much smaller than the electronic frequencies (Nw; <<A,),
we can find that the dominant vibrational contribution to the hyperpolarizability £ is
mainly from the term in the equation (3.22).

V. Conclusion

In this paper, we first applied the exact sum-over-state (SOS) formulas for the
(hyper)polarizabilities expressed in terms of vibronic states to a two-level system with
a single vibrational mode. Next, the same method was also applied to multi-level
system with multiple vibrational modes. In these two systems, the lattice relaxation
expression for vibrational contributions to (hyper)polarizabilities can be obtained. For
the two-level system with a single vibrational mode we considered, the contributions
of the next higher order terms can also be obtained by making using of the formula
developed by Ting. Additionally, there were some extra terms not contained in the
formulas obtained by using Placzek’s approximation.

If the vibrational frequencies are much smaller than the electronic frequencies, the
lattice relaxation expression for vibrational contributions to the polarizability will
dominate. Moreover, the term is a pure vibrational contribution to the polarizability.
On the same condition that vibrational frequencies are much smaller than the
electronic frequencies, there are no pure vibrational contributions to the first and to
the second hyperpolarizability. Similarly, the lattice relaxation expression for
vibrational contributions to the first hyperpolarizability is dominant. However, for the

second hyperpolarizability, the contribution of another term of the order of % will

dominate. Besides, there also are other terms the same order as the lattice relaxation
expression for vibrational contributions to the second hyperpolarizability. On the
other hand, if the ground electronic state dipole moment of symmetric modes is equal
to zero, there are only two contributions of the same order to the second
hyperpolarizability. One term is the lattice relaxation expression for vibrational



contributions to the second hyperpolarizability and the other term is involved in the
derivative of the electronic transition moment with respect to the vibrational mode.

We haved derived the vibrational contributions to (hyper)polarizabilities from the
different method. Subsequently, in order to gauge the importance of the various
contributions to (hyper)polarizabilities, it is significant to consider whether any
qualitatively new effects will arise in polymer systems and polyacetylene will be
examined using the tight binding approximation with harmonic vibrations.
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