Rabaichromone (2). Amorphous, UV λ_{max}^{MeOH} nm: 234, 242, 296, 318; (+ NaOH) 243, 252, 295, 375; $[\alpha]_D - 132^{\circ}$ (MeOH; c 0.84); ¹H NMR: see Table 1; EIMS m/z (rel. int.): 392 $[C_{20}H_{24}O_8]^+$ (39), 277 (1), 259 (100), 243 (33), 233 (80), 217 (24), 193 (49), 179 $[C_9H_7O_4]^+$ (1), 163 $[C_9H_7O_3]^+$ (12).

Barbaloin isomers (3). Brown, amorphous, UV $\lambda_{max}^{\text{meOH}}$ nm: 260, 268, 298, 358; (+NaOH) 267, 370, 389, 424, 445; ¹H NMR: see Table 2; EIMS *m*/*z* (rel. int.): 280 [C₁₇H₁₂O₄]⁺ (79), 262 (31), 256 [C₁₅H₁₂O₄]⁺ (100), 238 (10).

10-C-Rhamnosyl aloe-emodin anthrone (4). Amorphous. Found: M⁺ 402.1313; $C_{21}H_{20}O_8$ requires 402.1315. UV λ_{max}^{MeOH} nm: 252, 260, 272, 295, 358; (+ NaOH) 267, 372, 391, 423, 444; ¹H NMR: see Table 2; EIMS m/z (rel. int.): 402 [M]⁺ (18), 298 (16), 280 (44), 262 (54), 256 (100), 238 (14), 227 (18), 210 (25), 147 [C₆H₁₁O₄]⁺ (4).

11-O-Rhamnosyl aloe emodin (5). Amorphous, yellow. Found: M⁺ 416.1083; $C_{21}H_{20}O_9$ requires 416.1107. UV λ_{max}^{MeoH} nm: 251, 257, 286, 428; (+NaOH) 234, 244, 250, 256, 261, 280, 508; ¹H NMR: see Table 2; EIMS m/z (rel. int.): 416 [M]⁺ (2), 299 (49), 270 (24), 254 [$C_{15}H_{10}O_4$]⁺ (100), 241 (22), 225 (25). Acknowledgements—The authors extend their thanks to Dr I. Sadler (Department of Chemistry, Edinburgh University) for 360 MHz ¹H NMR spectra. J.M.C. was funded by an SERC CASE scholarship.

REFERENCES

- 1. Reynolds, T. (1986) Bot. J. Linn. Soc. 92, 383.
- 2. Reynolds, T. (1985) Bot. J. Linn. Soc. 90, 179.
- 3. Conner, J. M., Gray, A. I., Reynolds, T. and Waterman, P. G. (1987) *Phytochemistry* 26, 2995.
- 4. Speranza, G., Dada, G., Lunazzi, L., Gramatica, P. and Manitto, P. (1986) *Phytochemistry* 25, 2219.
- 5. Prox, A. (1968) Tetrahedron 24, 3697.
- 6. Rauwald, H-W. and Roth, K. (1984) Arch. Pharm. 317, 362.
- 7. Hörhammer, L., Wagner, H. and Bittner, G. (1964) Z. Naturforsch. 19C, 222.
- 8. Williams, C. A. (1975) Biochem. Syst. Ecol. 3, 229.

Phytochemistry, Vol. 28, No. 12, pp. 3553-3555, 1989. Printed in Great Britain. 0031 -9422/89 \$3.00 + 0.00 © 1989 Pergamon Press plc

LIGNANS FROM LEAVES OF CALOCEDRUS FORMOSANA

JIM-MIN FANG, KUO-CHIO HSU and YU-SHIA CHENG*

Department of Chemistry, National Taiwan University, Taipei, 10764, Taiwan, R.O.C.

(Received 14 December 1988)

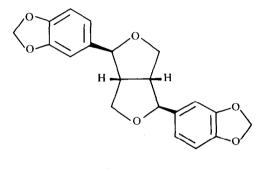
Key Word Index—Calocedrus formosana; Cupressaceae; shonanin; 4,4'-dihydroxy-3,3'-dimethoxy-9,9'-epoxy-lignan; sesamin; yatein.

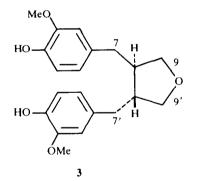
Abstract—Sesamin, yatein and 4,4'-dihydroxy-3,3'-dimethoxy-9,9'-epoxylignan were isolated from leaves of *Calocedrus formosana*. The structure of the epoxylignan was unambiguously determined by spectroscopic methods and X-ray diffraction.

INTRODUCTION

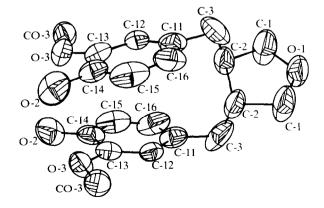
Calocedrus formosana [1] is an endemic conifer commonly called 'shonan'. Its heartwood is rich in terpenoid acids [2–4]. We have recently reported on the terpenoid constituents of its leaves [5]. In a continuation of this work, we have now isolated (+)-sesamin (1) [6], (-)yatein (2) [7] and an epoxylignan (3) from the leaves. The lignan components of heartwood, such as hinokinin, hibalactone and calocedrin [8], were not found in leaves.

RESULTS AND DISCUSSION

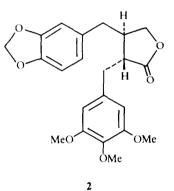

The epoxylignan (3), namely shonanin, was obtained as colourless crystals, mp 136–137°. The structure of this optically inactive compound was determined as 4,4'-dihydroxy-3,3'-dimethoxy-9,9'-epoxylignan from its spec-

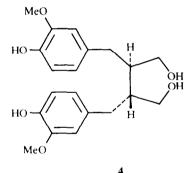

tral data. The mass spectrum showed a parent ion at m/z 344 corresponding to a molecular formula $C_{20}H_{24}O_5$, while the ¹³C NMR spectrum displayed only 10 signals, indicating that 3 is a symmetric molecule. The ¹³C chemical shift values were similar to those of secoisolariciresinol (4) [9], except for C-9 (C-9') appearing at a lower field (Table 1). A single crystal X-ray analysis of shonanin clearly showed the *trans* configuration rather than a *meso* compound.

Crystal data: $C_{20}H_{24}O_5$, orthorhombic, space group Fdd2, a=21.786(5), b=16.544(5), c=9.92(3), Z=8; 523 reflections ($I > 2.5 \sigma$) were measured using MoK_x radiation. Refinement of positional and anisotropic thermal parameters for all non-hydrogen atoms converged to R = 0.0623 and $R_w = 0.0612$. The atomic coordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University


Table 1. ¹³C NMR data (75 MHz, CDCl₃, δ) of compounds **3**, **3a** and **4**

С	3	3a	4 [9]
1	132.2 (s)	138.1 (s)	132.4
2	111.1 (d)	112.8(d)	111.7
3	146.4 (s)	150.9 (s)	146.6
4	143.9 (s)	139.2 (s)	143.7
5	114.1(d)	122.6 (d)	114.3
6	121.2(d)	120.7(d)	121.5
7	39.1 (t)	39.4 (t)	35.8
8	46.4 (d)	46.4(d)	43.7
9	73.2 (t)	73.1 (t)	60.5
OMe	55.7 (q)	55.8 (q)	55.7
MeCO,	• •	28.6(q), 169.1(s)	


ORTEP drawing of 3



Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K. Any request should be accompanied by the full literature citation for this communication.

It is noted that a component of fir wood [10], namely 3,4-divanillyltetrahydrofuran, has the structure 3. However, the crystalline 3,4-divanillyltetrahydrofuran, mp 116–117°, has been reported to be an optically active compound, $[\alpha]_D^{25} - 52.2^\circ$ (tetrahydrofuran; c 1.4). The physical properties of this compound and shonanin are obviously different, but the lack of spectral data for the former precludes further comparison.

The occurrence of 9,9'-epoxylignan (3) is significant as the naturally occurring epoxylignans usually have 7,7'and 7,9'-linkages. Besides 3, the known lignans with 9,9'linkage occur as higher oxidative derivatives of lactones and hemiacetals [6, 11–13]. While other lignan compon-

ents of *C. formosana* contain methylenedioxyphenyl subunits, shonanin has 3-methoxyphenol moieties.

EXPERIMENTAL

Calocedrus formosana (Florin) Florin was collected in the Taichung county [8]. Leaves were air-dried and exhaustively extracted with Me₂CO. After removal of solvent, the residue was extracted several times with hexane, followed by with EtOAc. The concentrated EtOAc extractive was chromatographed on a silica gel column with elution by hexane-EtOAc gradients, and purified on a HPLC µ-Porasil column to give shonanin (3). Colourless needle crystals, mp 136-137° (hexane-EtOAc 3:7). $[\alpha]_D^{25} 0^\circ$ (CHCl₃; c 0.73). UV $\lambda_{max}^{CHCl_3}$ nm (log ε): 237 (3.47), 277 (3.72); IR v^{KBr}_{max} cm⁻¹: 3339 (OH), 1604, 1512, 1267, 1242, 1154; EIMS m/z (rel. int.): 344 (48), 189 (20), 139 (39), 138 (100), 137 (92), 123 (30), 122 (23), 107 (25), 106 (40); ¹H NMR (CDCl₃, 300 MHz): δ 2.15 (2H, m, H-8, 8'), 2.53 (4H, m), 3.52 (2H, dd, J = 8.7, 5.7 Hz), $3.80 (6H, s, 2 \times OMe), 3.90 (2H, dd, J = 8.7, 6.6 Hz), 5.61 (2H, s, 2)$ \times OH), 6.48 (2H, d, J = 1.7 Hz, H-2, 2'), 6.56 (2H, dd, J = 8.0, 1.7 Hz, H-6, 6'), 6.78 (2H, d, J = 8.0 Hz). Treatment of shonanin with Ac₂O in pyridine gave a diacetate (3a) as colourless needles, mp 146–147°. IR v_{max}^{KBr} cm⁻¹: 1756, 1604, 1508; EIMS m/z (rel. int.): 428 (18), 387 (30), 386 (92), 345 (46), 344 (100), 137 (54), 136 (28); ¹H NMR (CDCl₃): δ2.21 (2H, m), 2.28 (6H, s, 2 × MeCO₂), 2.57 (2H, dd, J = 13.5, 6.0 Hz), 2.66 (2H, dd, J = 13.5, 8.3 Hz), 3.53 $(2H, dd, J = 8.7, 5.7 \text{ Hz}), 3.77 (6H, s, 2 \times \text{OMe}), 3.92 (2H, dd, J)$ = 8.7, 6.5 Hz), 6.64 (2H, br d, J = 8.5 Hz), 6.65 (2H, br s), 6.90 (2H, br s)br d, J = 8.5 Hz).

Acknowledgements—We are grateful to Professor Yu Wang (Department of Chemistry, National Taiwan University) for the X-ray measurement and to the National Science Council (**R**.O.C.) for financial support.

REFERENCES

- 1. (1975) Flora of Taiwan Vol. 1, p. 538. Epoch, Taiwan.
- 2. Cheng, Y. S. and Lin, K. C. (1970) Chemistry (Chinese) 28.
- 3. Cheng, Y. S. and Lin, K. C. (1971) Chemistry (Chinese) 94.
- Fang, J. M., Jan, S. T. and Cheng, Y. S. (1987) *Phytochemistry* 26, 853.
- Fang, J. M., Hsu, K. C. and Cheng, Y. S. (1989) *Phytochemistry* 28, 1173.
- Hearon, W. M. and MacGregor, W. S. (1955) Chem. Rev. 55, 957.
- Harmatha, J., Budesinsky, M. and Trka, A. (1982) Collec. Czech. Chem. Commun. 47, 644.
- Fang, J. M., Jan, S. T. and Cheng, Y. S. (1985) *Phytochemistry* 24, 1863.
- 9. Fonseca, S. F., Dc Paiva Campello, J. Barata, L. E. S. and Ruveda, E. A. (1978) *Phytochemistry* 17, 499.
- 10. Freudenberg, K. and Knof, L. (1957) Chem. Ber. 90, 2957.
- 11. Whiting, D. A. (1985) Nat. Prod. Rep. 2, 191.
- Grimshaw, J. (1976) in Rodd's Chemistry of Carbon Compounds, 2nd Edn (Coffey, E., ed.) Vol. 3 (Part D) p. 203. Elsevier, Amsterdam.
- Murphy, W. S. (1982) in Rodd's Chemistry of Carbon Compounds (Ansell, M. F., ed.) Vol 3 (Part D) Supplement, p. 129. Elsevier, Amsterdam.