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1. In the Ni related complexes coordinated with noninnocent ligands, two series of 
complexes were synthesized and characterized by X-ray diffraction and X-ray 
absorption spectroscopy.  In the dithiolene complexes, the Complex 
[Ni(S2C2Me2)2]0, -1, -2

, [Ni(S2C2Ph2)2]0, -1
 and [Ni(S2C2(CN)2)2] -1, -2 were 

synthesized and the Ni LIII,II –edge spectra were displayed in the Figure 1.  The 
results indicated that the formal oxidation state of Ni atom increases with the 
increasing of n value, where n is the charge of [Ni(S2C2R2)2]n (n = 0,-1,-2). For 
other complexes: trans-[Ni(-SC6H4-o-NH-)2]

-, trans-[Ni(-SeC6H4-o-NH-)2]
- and 

cis-[Ni(-TeC6H4-o-NH-)2]
-, the results indicate that: (i) Based on the topological 

analysis, the variation in S, Se and Te atom of ligand does not change the bonding 
characters of Ni-N and the N-C bonds.  However, the covalence of X-C and 
Ni-X (X=S, Se, Te) bonds decrease in the order, S ~ Se >Te.  The covalent 
character in these complexes is therefore in the order of Ni-N > Ni-S ~ Ni-Se > 
Ni-Te.  (ii) The anisotropy in g-values of these complexes from EPR 
measurement as well as the magnetic measurement is consistent with the spin 
located at either the Ni site or one of the ligand site, i.e. L-Ni(III)-L or L-Ni(II)-L* 
with probable (1/2, 0) or (1/2, 1/2) for (total S, sum S of L) as the ground state.  
The spin exchange between Ni and L could be accomplished through Ni-L π bond, 
namely pz -dxz molecular orbitals as realized by DFT calculation. 

2. In the nitrosyl complex, based on the NEXAFS of N K-edge, XANES of Fe 
K-edge and LIII,II-edge spectra, as well as the topological analysis of electron 
densities obtained from experiment and quantum chemical calculation, the 
[(NO)2FeS5][PPN] compound can be described as the {Fe(NO)2}9 with Fe(I) (d7) 
bonded to two NO radical. This result implies that the biomimetic compound 
[(NO)2FeS5][PPN] has the same character as those of low molecular mass of 
DNICs which could store and transport the NO•  . 

3. The powder experiment carried on SPring-8 BL12B2 does not work out as smooth 
as prdicted. For the moment, the powder end station is still under commission.  
The studied on KNiF3 at room temperature shows that: electron density based on 
MEM/Rietveld analysis does provide reasonable results which are the same as 
those from multipole refinement of single crystal data and theoretical calculation. 

4. In the spin crossover related complexes, the trans-[Fe(tzpy)2(NCX)2] (tzpy = 
3-(2-pyridyl)[1,2,3]triazolo[1,5-a]pyridine; X = S(1), Se(2)) has been synthesized 
and structurally characterized as shown in Figure 2. Complex 1 crystallizes in a 
monoclinic cell (P21/c) and 2 in a triclinic one (Pī). FeII atoms in both compounds 
are at inversion centers in the distorted octahedral environment and are both 
coordinated by two equatorial tzpy ligands and two axial NCS- anions. The 
temperature dependent magnetic susceptibility measurement of complex 1 (Figure 



3) shows that it is at high spin state (S = 2) at room temperature and is at low spin 
state (S = 0) below 75K. The T1/2 of 140K is slight higher than that of the solvent 
contained complex, trans-[Fe(tzpy)2(NCS)2]·H2O (T1/2 = 118K). Light-induced 
excited spin state trapping (LIESST) effect was confirmed by Fe K-edge and 
L-edge x-ray absorption spectroscopy at 30 K using green light laser irradiation 
(532 nm). The excited-state structural investigation will be performed soon.  
Another Fe spin crossover complex with btr ligands (Fe(btr)3(ClO4)2 (3) ; btr = 
4,4’-bis-1,2,4-triazole) has also been studied. Two unique Fe sites were found in 
complex 3 from the structurally analysis. Evolution of the electronic configuration 
of complex 3 was investigated by soft X-ray absorption spectroscopy. A two-step 
spin transition is observed in the Fe LIII,II -edge spectra (Figure 5) as well as the 
magnetic susceptibility measurement (Figure 3). One Fe site undergoes an abrupt 
spin transition while the other one remains at HS (high spin) state from 95K to 
197K. Further heating the sample causes the other Fe site to undergo a gradual 
spin transition which is consistent with the SQUID result. 

 
 

 
Fig. 1  The L-edge spectra of [Ni(S2C2Ph2)2]0, -1, [Ni(S2C2(CN)2)2] –2 and 

[Ni(S2C2Me2)2]0, -1 
 

 
Fig. 2  The ORTEP diagrams of trans-[Fe(tzpy)2(NCX)2] (X = S(left), Se(right)) 

with atomic numbering scheme with 30% thermal ellipsoids 
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Fig. 3  Susceptibility measurement of 2    Fig. 4  Susceptibility measurement of 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  Fe L-edge spectra of 3     
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