TERPENOIDS FROM CALOCEDRUS FORMOSANA

JIM-MIN FANG, SHYI-TAI JAN and YU-SHIA CHENG*

Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

(Received 27 June 1986)

Key Word Index - Calocedrus formosana; Cupressaceae; wood; 1-oxohinokiol; naphthaldehyde sesquiterpene; naphthoate sesquiterpene; 3,4-dihydro analogues; hinokiol; shonanol.

Abstract—A novel diterpene, 1-oxohinokiol was isolated from the acetone extract of the wood of *C. formosana*. Four novel sesquiterpenes, 5-methyl-8-isopropyl-2-naphthalenecarboxaldehyde, methyl 5-methyl-8-isopropyl-2-naphthalenecarboxylate and their 3,4-dihydro analogues were also isolated. The structural assignments were based on the spectroscopic analysis and confirmed by chemical correlation.

INTRODUCTION

Calocedrus formosana, a member of the Cupressaceae, is an economically important tree indigenous to Taiwan [1]. In a recent study of the constituents of the wood, we found a lignan dihydroanhydride, namely (+)-calocedrin [2]. We report now some novel terpenoid constituents isolated from the wood.

RESULTS AND DISCUSSION

The acetone extract of the wood of C. formosana was subjected to chromatography on silica gel. The terpenoidal components 1 7 were isolated by elution with gradients of hexane-ethyl acetate. Compound 1, M at m/z 212, showed an IR absorption at 1685 cm⁻¹ attributable to a conjugated carbonyl group. The ¹H NMR spectrum of 1 exhibited the resonances of an aromatic methyl group (δ 2.70, s), an aldehyde group (δ 10.20, s), an isopropyl group and five aromatic protons. Compound 1 was recognized as the sesquiterpene 5-methyl-8isopropyl-2-naphthalenecarboxaldehyde; this is the first report of its occurrence in nature although a synthetic sample has been reported [3]. Compound 2, M at m/z 214, also showed the IR absorption (1665 cm 1) of a conjugated carbonyl group. The ¹HNMR spectrum revealed characteristic resonances of an aromatic methyl $(\delta 2.28, s)$, an isopropyl group, an olefinic proton $(\delta 7.64, s)$, an aldehyde proton (δ 9.70, s) and two ortho-aromatic protons. Compound 2 was readily transformed into compound 1 by oxidation with chloranil in refluxing benzene. Thus, the structure of compound 2 was confirmed to be the 3,4-dihydro analogue of 1. Compound 3, M' at m/z 242, was recognized as a methyl ester of an aromatic acid as evidenced by the IR absorption at 1720 cm⁻¹ and the characteristic resonance of a methyl group at δ 3.99 (s) in the ¹H NMR spectrum. The structure of 3 was revealed to be closely related to that of 1 by comparison of their ¹H NMR spectra. Reduction of ester 3 (LiAlH₄, Et₂O, 0°) gave an alcohol product, which was then oxidized by manganese dioxide (hexane, 25°) to afford compound 1. The novel natural sesquiterpene 3 was thus determined to be methyl 5-methyl-8-isopropyl-2-naphthalene carboxylate. Compound 4, M at m/z 244,

was also a methyl ester as revealed by the IR absorption at 1710 cm⁻¹ and the resonance of a methyl group at δ 3.83 (s). By comparison of the ¹H NMR spectrum of 4 with those of 2 and 3, the structure of 4 was inferred to be the 3,4-dihydro analogue of 3. Compound 4 was oxidized to 3 by chloranil, and thus the structural assignment was confirmed.

Y . O

Compound 5, M * at m/z 302, and compound 6, M * at m/z 298, were identified as (+)-hinokiol [4] and (+)-shonanol [5], respectively, by the evidence of the optical rotations and their spectroscopic properties. Compound 7, M * at m/z 316, $[\alpha]_D^{25} + 130^\circ$ (c 0.68, acetone), was isolated as colourless crystals, mp 228-229°. The IR spectrum of 7 exhibited absorptions at 1710 and 3540 cm⁻¹ attributable to the carbonyl and hydroxyl groups. The ¹H NMR spectrum of 7 revealed five methyl groups appearing at δ 1.10 (s), 1.13 (s), 1.20 (d, J = 7 Hz), 1.23 (d, J = 7 Hz) and 1.55 (s). The signals at δ 6.83 (s) and 6.97 (s) were attributable to the resonances of two paraaromatic protons. Based on the above data, compound 7

was inferred to have the abietane-type structure related to those of hinokiol and shonanol. Treatment of 7 with a catalytic amount of p-toluenesulphonic acid in refluxing benzene yielded a dehydration product (77%), which was identified as (+)-shonanol by comparison of the physical and spectroscopic properties (mp, [α], TLC, IR, MS and ¹H NMR). Therefore, compound 7 was determined to be (+)-1-oxohinokiol with a C-3 hydroxyl group at the β -position. The corresponding resonance of the axial proton occurred at δ 3.70 (dd, J = 10, 5 Hz).

EXPERIMENTAL

Plant material. Calocedrus formosana (Florin) Florin was collected in the campus of the National Taiwan University. The skinned and air-dried wood (600 g) from branches 6-8 cm in diam, was selected for study. After extraction × 3 with Me₂CO, the combined extracts were concd in vacuo to give 20 g of residue. Components were separated by CC on silica gel (230 g) and elution with hexane- EtOAc gradients.

5-Methyl-8-isopropyl-2-naphthalenecarboxaldehyde (1). R_f 0.42 (EtOAc hexane, 2:98). UV $\lambda_{\text{max}}^{\text{CHC}_3}$ nm (ϵ): 251 (16:580), 294 (6470), 301 (5490), 350 (2890), 357 (2970). IR $v_{\text{max}}^{\text{logal}}$ cm $^{-1}$: 2715, 1685. MS m/z (rel. int.): 212 [M] $^+$ (54), 197 (100), 154 (21). $^{-1}$ H NMR (CDCl₃, 400 MHz): δ 1.43 (6H, d, J = 6.8 Hz), 2.70 (3H, s), 3.84 (1H, septet, J = 6.8 Hz), 7.42 (1H, d, J = 7.2 Hz, H-7), 7.46 (1H, d, J = 7.2 Hz, H-6), 7.98 (1H, dd, J = 8.8, 1.2 Hz, H-3), 8.13 (1H, d, J = 8.8 Hz, H-4), 8.66 (1H, d, J = 1.2 Hz, H-1), 10.20 (1H, s, CHO).

3,4-Dihydro-5-methyl-8-isopropyl-2-naphthalenecarboxaldehyde (2). R_f 0.41 (EtOAc-hexane 2:98). UV $\lambda_{\rm max}^{\rm CHC_3}$ nm (ϵ): 241 (6270), 311 (12990). IR $\nu_{\rm max}^{\rm max}$ cm $^{-1}$: 2720, 1665, 1620. MS m/z (rel. int.); 214 [M] * (65), 199 (100), 171 (50), 143 (65), 128 (35). 1 H NMR (CDCl₃, 400 MHz): δ 1.28 (6H, d, J = 7 Hz), 2.28 (3H, s), 2.52 (2H, dd, J = 8, 8 Hz, H-3), 2.79 (2H, dd, J = 8, 8 Hz, H-4), 3.36 (1H, septet, J = 7 Hz), 7.12 (1H, d, J = 8 Hz, H-7), 7.18 (1H, d, J = 8 Hz, H-6), 7.64 (1H, s, H-1), 9.70 (1H, s, CHO).

Methyl 5-methyl-8-isopropyl-2-naphthalenecarboxylate (3).

 R_f 0.45 (EtOAc hexane, 2:98). UV $\lambda_{\rm max}^{\rm CHCl_3}$ nm (c): 248 (13810), 292 (4240), 302 (3600), 330 (1840), 342 (2010). IR $\nu_{\rm max}^{\rm nost}$ cm⁻¹: 1720. MS m/z (rel. int.): 242 [M] * (60), 227 (100), 211 (7), 195 (5), 183 (3), 168 (26), 153 (16). ¹H NMR (CDCl₃, 400 MHz): δ 1.40 (6H, d, J = 6.7 Hz), 2.68 (3H, s), 3.83 (1H, septet, J = 6.7 Hz), 3.99 (3H, s, CO₂CH₃), 7.37 (1H, d, J = 7.5 Hz, H-7), 7.40 (1H, d, J = 7.5 Hz, H-6), 8.05 (1H, d, J = 8.7 Hz, H-4), 8.09 (1H, dd, J = 8.7, 1.7 Hz, H-3), 8.93 (1H, d, J = 1.7 Hz, H-1).

Methyl 3,4-dihydro-5-methyl-8-isopropyl-2-naphthalene-carboxylate (4). R_f 0.42 (EtOAc-hexane, 2:98). UV $\lambda_{max}^{CHCl_1}$ nm (c). 240 (6330), 301 (11 460). IR ν_{max}^{neal} cm -1: 1710, 1630. MS m/z (rel. int.): 244 [M] * (93), 229 (100), 213 (23), 212 (28), 201 (15), 197 (43), 185 (15), 169 (48), 154 (28), 143 (40). ¹H NMR (CDCl₃, 400 MHz): δ 1.25 (6H, d, J = 7 Hz), 2.26 (3H, s), 2.55 (2H, dd, J = 8, 8 Hz, H-3), 2.78 (2H, dd, J = 8, 8 Hz, H-4), 3.34 (1H, septet, J = 7 Hz), 3.83 (3H, s, CO₂CH₃), 7.08 (1H, d, J = 8 Hz, H-7), 7.12 (1H, d, J = 8 Hz, H-6), 7.91 (1H, s, H-1).

(+)-1-Oxohinokiol (7). Colourless crystals, mp 228 229°, $[\alpha]_D^{25} + 130°$ (c 0.68; Me₂CO). R_f 0.27 (hexane Me₂CO, 7:3). UV λ_{max}^{EIOH} nm (ϵ): 203 (16 190), 281 (2900). $1R_f v_{max}^{KBr}$ cm $^{-1}$: 3540, 3300, 1710. MS m/z (rel. int.): 316 [M] ° (100), 301 (43), 243 (93). 1 H NMR (CDCl₃, 90 MHz): δ 1.10 (3H, s), 1.13 (3H, s), 1.20 (3H, d, J = 7 Hz), 1.23 (3H, d, J = 7 Hz), 1.55 (3H, s), 3.18 (1H, m), 3.70 (1H, dd, J = 10, 5 Hz, H-3), 6.83 (1H, s), 6.97 (1H, s).

Acknowledgement The authors wish to thank the National Science Council (ROC) for financial support.

REFERENCES

- 1. Flora of Taiwan (1975) Vol. 1, p. 538. Epoch, Taiwan.
- Fang, J. M., Jan, S. T. and Cheng, Y. S. (1985) Phytochemistry 24, 1863.
- 3. Reddy, N. P. and Rao, G. S. K. (1982) Indian J. Chem. 21B, 885.
- 4. Cheng, Y. S. and Lin, K. C. (1971) Chemistry (Chinese) 94.
- Matsumoto, T., Imai, S., Kawashima, H. and Mitsuki, M. (1981) Bull. Chem. Soc. Jpn. 54, 2099.