Coordination Polymers Constructed from $\left[\mathrm{Mn}(\mathbf{N})(\mathbf{C N})_{4}\right]^{2-}$: Synthesis, Structures, and Magnetic Properties

Jun-Fang Guo, ${ }^{[a]}$ Wai-Fun Yeung, ${ }^{[a]}$ Song Gao, ${ }^{*}{ }^{[b]}$ Gene-Hsiang Lee, ${ }^{[\mathrm{cc]}}$ Shie-Ming Peng, ${ }^{[\mathrm{cc}]}$ Michael Hon-Wah Lam, ${ }^{[\text {a] }}$ and Tai-Chu Lau* ${ }^{\text {[a] }}$

Keywords: Heterometallic complexes / Coordination polymers / Cyanido ligands / Manganese / Magnetic properties

The dimetallic complexes $\left[\{\mathrm{Ni}(\right.$ cyclen $)\}\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\}$ $\left.\mathrm{CH}_{3} \mathrm{OH}\right]_{n}$ (cyclen $=$ 1,4,7,10-tetraazacyclododecane) (1), $\left[\{\mathrm{Cu}(\text { cyclen })\}\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\}\right]_{n}(2)$, and $\left[\left\{\mathrm{Mn}\left(5,5^{\prime}-\mathrm{Me}_{2} \text { salen }\right)\right\}_{2}-\right.$ $\left.\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\} \cdot \mathrm{CH}_{3} \mathrm{OH}\right]_{n}\left[5,5^{\prime}-\mathrm{Me}_{2}\right.$ salen $=N_{1} N^{\prime}$-bis $\left(5,5^{\prime}\right.$-di-methylsalicylidene)-o-ethylenediimine] (3) have been synthesized and structurally characterized. Compounds $\mathbf{1}$ and 2

Abstract

have one-dimensional chain structures, while compound 3 has a two-dimensional sheet-like network structure. Magnetic studies of $\mathbf{1}$ and $\mathbf{3}$ show that there is no significant magnetic coupling between the paramagnetic metal centers. (© Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

Hexacyanometalates $\left\{\left[\mathrm{M}(\mathrm{CN})_{6}\right]^{n-}, \mathrm{M}=3 \mathrm{~d}\right.$ metal $\}$ have long been used as building blocks for Prussian Blue (PB)type compounds, many of which have remarkable properties. ${ }^{[1,2]}$ In 1998, Wieghardt reported the synthesis of the high-valent cyanido nitrido complexes $\left[\mathrm{M}^{\mathrm{V}}(\mathrm{N})(\mathrm{CN})_{x}\right]^{2-x}(\mathrm{M}$ $=\mathrm{Cr}, \mathrm{Mn} ; x=4,5),{ }^{[3,4]}$ which may serve as building blocks for new coordination polymers. Indeed, in 2003 Miller reported a series of coordination polymers with the general formula $\left[\mathrm{M}^{\mathrm{II}}\left\{\mathrm{Cr}^{\mathrm{V}}(\mathrm{N})(\mathrm{CN})_{4}\right\}\right] \cdot \mathrm{MeCN}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Cr}, \mathrm{Mn}, \mathrm{V}, \mathrm{Fe}\right.$, $\mathrm{Co}, \mathrm{Ni}, \mathrm{V})$ using $\left[\mathrm{Cr}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$ as the building block. ${ }^{[5]}$ $\left[\mathrm{V}^{\mathrm{II}}\left\{\mathrm{Cr}^{\mathrm{V}}(\mathrm{N})(\mathrm{CN})_{4}\right\}\right] \cdot \mathrm{MeCN}$ is an antiferromagnet at $T_{\mathrm{c}}=$ 10.0 K and $\left[\mathrm{M}^{\mathrm{II}}\left\{\mathrm{Cr}^{\mathrm{V}}(\mathrm{N})(\mathrm{CN})_{4}\right\}\right] \cdot \mathrm{MeCN}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$, Co and Ni) are weak ferromagnets (canted antiferromagnets). However, the crystal structures of these polymers have not been reported.

We have also been working on coordination polymers based on $\left[\mathrm{Cr}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$, although our attempts at growing crystals of polymers suitable for X-ray crystallography have also been unsuccessful. We thus turned our attention to the building block $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$, which is isostructural with $\left[\mathrm{Cr}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$. Although the Mn^{\vee} center is diamagnetic, it may still combine with paramagnetic metal centers to form compounds with interesting structural and magnetic properties. For example, the single molecule magnet (SMM) $\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{24} \mathrm{Co}_{9} \mathrm{~W}_{5} \operatorname{Re}(\mathrm{CN})_{48}\right]$ has been constructed using

[^0]the diamagnetic building block $\left[\operatorname{Re}(\mathrm{CN})_{8}\right]^{3-}$ in conjunction with paramagnetic metal ions, ${ }^{[6]}$ and $\left[\left\{\mathrm{Ni}(\mathrm{tn})_{2}\right\}_{2}\{\mathrm{Co}-\right.$ $\left.\left.(\mathrm{CN})_{6}\right\} \mathrm{NO}_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (tn = 1,3-diaminopropane), which has a two-dimensional grid-like structure, exhibits $\mathrm{Ni}^{\mathrm{II}} \cdots \mathrm{Ni}^{\mathrm{II}}$ ferromagnetic interactions through the diamagnetic NC -Co-NC bridges. ${ }^{[7]}$ Herein we report the synthesis and structures of three new coordination polymers based on $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$, namely $\left[\{\mathrm{Ni}(\right.$ cyclen $)\}\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\} \cdot$ $\left.\mathrm{CH}_{3} \mathrm{OH}\right]_{n} \quad$ (1), $\quad\left[\{\mathrm{Cu}(\text { cyclen })\}\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\}\right]_{n} \quad$ (2), and $\left[\left\{\mathrm{Mn}\left(5,5^{\prime}-\mathrm{Me}_{2} \text { salen }\right)\right\}_{2}\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\} \cdot \mathrm{CH}_{3} \mathrm{OH}\right]_{n}$ (3). The magnetic properties of $\mathbf{1}$ and $\mathbf{3}$ are also reported.

Results and Discussion

Synthesis and IR Spectra

The reaction of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and cyclen with $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2^{-}}$ $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{[3]}$ in methanol and $\mathrm{H}_{2} \mathrm{O}$ results in the formation of $\left[\{\mathrm{Ni}(\text { cyclen })\}\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\} \cdot \mathrm{CH}_{3} \mathrm{OH}\right]_{n}$ (1). The IR spectrum of $\mathbf{1}$ shows v_{CN} absorptions at $\tilde{v}=2135(\mathrm{~s})$ and 2114(m) cm^{-1}.

The reaction of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and cyclen with $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2^{-}}$ $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in methanol and water results in the formation of $\left[\{\mathrm{Cu}(\text { cyclen })\}\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\}\right]_{n}$ (2). The IR spectrum of 2 shows three peaks at $\tilde{v}=2142(\mathrm{~m}), 2124(\mathrm{~m})$ and $2107(\mathrm{~s}) \mathrm{cm}^{-1}$, which are attributed to cyanide stretches.

The reaction of $\left[\mathrm{Mn}\left(5,5^{\prime}-\mathrm{Me}_{2}\right.\right.$ salen $\left.)\right] \mathrm{PF}_{6}{ }^{[8]}$ with $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2^{-}}$ $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in methanol yields the complex $\left[\left\{\mathrm{Mn}\left(5,5^{\prime}-\mathrm{Me}_{2} \text { salen }\right)\right\}_{2}\left\{\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right\} \cdot \mathrm{CH}_{3} \mathrm{OH}\right\}_{n}$ (3). The IR spectrum of 3 shows one v_{CN} stretch at $2140(\mathrm{~m}) \mathrm{cm}^{-1}$.

In all three compounds the cyanide stretches occur at higher frequencies than in $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (\tilde{v} $=2126$ and $2115 \mathrm{~cm}^{-1}$), which indicates coordination of the cyanide to a second metal.

X-ray Crystal Structures

Selected bond lengths and angles for compounds 1-3 are listed in Tables 1, 2, and 3, respectively.

Table 1. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $1 .{ }^{[a]}$

Ni1-N1	$2.0882(16)$	Ni1-N6	$2.1094(15)$
Ni1-N5	$2.127(2)$	Ni1-N7	$2.131(2)$
Mn1-N4	$1.512(2)$	Mn1-C2	$1.977(3)$
Mn1-C1	$1.9785(19)$	Mn1-C3	$1.984(3)$
N1-C1	$1.150(2)$		
N1-Ni1-N1\#1	$91.17(8)$	N1-Ni1-N6\#1	$83.74(6)$
N1-Ni1-N6	$174.91(6)$	N6\#1-Ni1-N6	$101.35(9)$
N1-Ni1-N5	$98.85(7)$	N6-Ni1-N5	$81.94(6)$
N1-Ni1-N7	$98.81(6)$	N6-Ni1-N7	$82.08(6)$
N5-Ni1-N7	$154.66(10)$	N4-Mn1-C2	$100.02(13)$
N4-Mn1-C1	$101.65(5)$	C2-Mn1-C1	$85.95(5)$
C1\#2-Mn1-C1	$156.33(11)$	N4-Mn1-C3	$100.28(13)$
C2-Mn1-C3	$159.71(11)$	C1-Mn1-C3	$89.97(5)$
N1-C1-Mn1	$172.31(16)$	C1-N1-Ni1	$153.04(14)$

[a] Symmetry transformations used to generate equivalent atoms: \#1 $x,-y+1, z ; \# 2 x,-y, z$.

Table 2. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $2{ }^{[a]}$

$\mathrm{Cu}-\mathrm{N} 1$	$2.127(5)$	$\mathrm{Mn}-\mathrm{C} 4$	$2.014(6)$
$\mathrm{Cu}-\mathrm{N} 6$	$1.989(6)$	$\mathrm{Mn}-\mathrm{C} 2$	$2.016(6)$
$\mathrm{Cu}-\mathrm{N} 7$	$2.033(6)$	$\mathrm{Mn}-\mathrm{N} 2 \# 1$	$2.291(5)$
$\mathrm{Cu}-\mathrm{N} 8$	$2.057(6)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.154(7)$
$\mathrm{Cu}-\mathrm{N} 9$	$2.033(6)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.145(7)$
$\mathrm{Mn}-\mathrm{N} 5$	$1.538(5)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.152(7)$
$\mathrm{Mn}-\mathrm{C} 3$	$1.987(6)$	$\mathrm{N} 4-\mathrm{C} 4$	$1.148(7)$
$\mathrm{Mn}-\mathrm{C} 1$	$1.992(5)$		
N6-Cu-N1	$99.6(2)$	$\mathrm{C} 3-\mathrm{Mn}-\mathrm{C} 1$	$168.3(2)$
N7-Cu-N1	$115.1(2)$	$\mathrm{N} 5-\mathrm{Mn}-\mathrm{C} 4$	$93.5(3)$
N8-Cu-N1	$113.2(2)$	$\mathrm{C} 3-\mathrm{Mn}-\mathrm{C} 4$	$90.1(2)$
N9-Cu-N1	$95.9(2)$	$\mathrm{C} 1-\mathrm{Mn}-\mathrm{C} 4$	$89.2(2)$
N6-Cu-N7	$86.8(3)$	$\mathrm{N} 5-\mathrm{Mn}-\mathrm{C} 2$	$93.4(2)$
N6-Cu-N8	$146.7(3)$	$\mathrm{C} 3-\mathrm{Mn}-\mathrm{C} 2$	$88.9(2)$
N6-Cu-N9	$86.2(3)$	$\mathrm{C} 1-\mathrm{Mn}-\mathrm{C} 2$	$90.4(2)$
N7-Cu-N8	$84.2(2)$	$\mathrm{C} 4-\mathrm{Mn}-\mathrm{C} 2$	$173.2(2)$
N7-Cu-N9	$148.9(2)$	$\mathrm{N} 5-\mathrm{Mn}-\mathrm{N} 2 \# 1$	$178.2(2)$
N9-Cu-N8 8	$85.3(2)$	$\mathrm{C} 3-\mathrm{Mn}-\mathrm{N} 2 \# 1$	$85.4(2)$
N5-Mn-C3	$95.6(2)$	$\mathrm{C} 1-\mathrm{Mn}-\mathrm{N} 2 \# 1$	$82.94(19)$
N5-Mn-C1	$96.1(2)$	$\mathrm{C} 4-\mathrm{Mn}-\mathrm{N} 2 \# 1$	$85.0(2)$
C2-Mn-N2\#1	$88.18(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu}$	$133.6(4)$
N1-C1-Mn	$176.7(5)$	N2-C2-Mn	$170.3(5)$
C2-N2-Mn\#2	$172.9(4)$		

[a] Symmetry transformations used to generate equivalent atoms: $\# 1 x-1 / 2,-y+1 / 2,-z ; \# 2 x+1 / 2,-y+1 / 2,-z$.

Table 3. Selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for 3. ${ }^{[a]}$

Mn1-N2	$1.515(5)$	Mn2-O1	$1.8899(19)$
Mn1-C	$1.977(3)$	Mn2-N3	$2.004(2)$
Mn1-O2	$2.402(5)$	Mn2-N1	$2.252(3)$
N1-C1	$1.148(4)$		
N2-Mn1-C	$98.32(9)$	O1A-Mn2-N1	$90.20(9)$
N2-Mn1-O2	$180.000(1)$	O1-Mn2-N1	$94.32(9)$
C1B-Mn1-C1	$88.80(3)$	N3-Mn2-N1	$87.94(9)$
C1-Mn1-C1A	$163.36(18)$	N3A-Mn2-N1	$86.91(9)$
C-Mn1-O2	$81.68(9)$	N1-Mn2-N1D	$173.21(14)$
C1-N1-Mn2	$159.0(2)$	N1-C1-Mn1	$178.6(3)$

[a] Symmetry transformations used to generate equivalent atoms: $\# 1-x+1 / 2, y, z ; \# 2-x+1 / 2,-y+1 / 2, z ; \# 3 x,-y+1 / 2, z ; \# 4 x$ $+1 / 2, y-1 / 2,-z+1 / 2$.

The crystal structure (Figure 1) of $\mathbf{1}$ shows that it has a one-dimensional zig-zag chain structure with each $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$ unit connected to two $[\mathrm{Ni}(\text { cyclen })]^{2+}$ units through its trans cyano groups. Each $\mathrm{Ni}^{\mathrm{II}}$ center is octahedrally coordinated to the four nitrogen atoms of cyclen and two nitrogen atoms of cyano groups in a cis configuration. The $\mathrm{Ni}-\mathrm{N}$ (cyclen) [2.1094(15)-2.131(2) \AA] and $\mathrm{Ni}-\mathrm{N}$ (cyanido) bond lengths [2.0882(16) \AA] in compound $\mathbf{1}$ are comparable to those in $[\mathrm{Ni}(\text { cyclen })]_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{[9]}$ The $\mathrm{Ni}-\mathrm{N} \equiv \mathrm{C}$ unit is bent with an angle of $153.04(14)^{\circ}$. The bridging $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$ unit remains as a slightly distorted square pyramid. The $\mathrm{Mn}-\mathrm{C}$ [1.977(3)-1.984(3) Å] and $\mathrm{Mn}-\mathrm{N}$ (nitrido) $[1.512(2) \AA$] bond lengths are similar to those of the monomeric complexes $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right]$. $2 \mathrm{H}_{2} \mathrm{O}[\mathrm{Mn}-\mathrm{C}=1.982 \AA, \mathrm{Mn}-\mathrm{N}(\text { nitrido })=1.507(2) \AA]^{[3]}$ and $\left[\mathrm{Rh}(\mathrm{en})_{3}\right]\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad\left[\mathrm{Mn}-\mathrm{C}^{\text {cis }}=1.985(6)-\right.$ 2.001(7) $\AA, \mathrm{Mn}-\mathrm{N}($ nitrido $)=1.499(8) \AA]{ }^{[4]}$ The $\mathrm{C} \equiv \mathrm{N}$ bond lengths $[1.150(2)-1.156(4) \AA]$ are also similar to that of the monomeric complex [1.159(2)-1.162(2) \AA]. The $\mathrm{Mn}-\mathrm{C} \equiv \mathrm{N}$ angles for terminal $\left[179.1(3)-179.3(3)^{\circ}\right]$ and bridging cyano groups $\left[172.3(16)^{\circ}\right]$ are close to linear.

Figure 1. An ORTEP view of compound $\mathbf{1}$ with the atom-labeling scheme. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms and solvated methanol molecules have been omitted for clarity.

Each 1D zig-zag chain stacks with another 1D chain to form a double chain structure with an intermolecular closest $\mathrm{Ni} \cdots \mathrm{Ni}$ distance of $5.147 \AA$; the intrachain $\mathrm{Ni} \cdots \mathrm{Ni}$ distance is $9.035 \AA$ (Figure 2).

Figure 2. A view of the 1D chains in 1. Hydrogen atoms and solvated methanol molecules have been omitted for clarity.

The crystal structure of 2 (Figure 3) shows that the $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$ units are linked together by cyanido bridges to form an $\operatorname{Mn}(\mathrm{N})(\mathrm{CN})_{3}-(\mu-\mathrm{CN})-\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{3} 1 \mathrm{D}$ zigzag chain with a C2-Mn-N2A bond angle of $88.18(18)^{\circ}$. Each manganese atom is also connected to a $[\mathrm{Cu} \text { (cyclen) }]^{2+}$ unit through one of its cyano groups. The manganese atom
has a distorted octahedral environment and is coordinated to four cyanido carbon atoms in the equatorial plane, one terminal nitrido ligand, and one cyanido nitrogen atom. The $\mathrm{Mn}-\mathrm{C}[1.987(6)-2.106(6) \AA], \mathrm{Mn} \equiv \mathrm{N}[1.538(5) \AA]$, and $\mathrm{C} \equiv \mathrm{N}$ bond lengths [1.145(7)-1.154(7) \AA] are comparable to those in compound $\mathbf{1}$ and $\left[\mathrm{Rh}(\mathrm{en})_{3}\right]\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}$. ${ }^{[4]}$ The $\mathrm{Mn}-\mathrm{N}$ (cyanido) bond length is 2.291(5) \AA. The Mn$\mathrm{C} \equiv \mathrm{N}$ angles for terminal $\left[173.1(5)-175.7(5)^{\circ}\right]$ and bridging cyano groups $\left[170.3(5)-176.7(5)^{\circ}\right]$ and the $\mathrm{Mn}-\mathrm{N} \equiv \mathrm{C}$ angle [172.9(4) ${ }^{\circ}$] are close to linear. The copper center has a distorted square-pyramidal geometry and is coordinated to the four nitrogen atoms of a cyclen ligand with a cyanido nitrogen atom in the apical position. The average $\mathrm{Cu}-\mathrm{N}$ (cyclen) ($2.028 \AA$) and $\mathrm{Cu}-\mathrm{N}($ cyanido) [2.127(5) \AA] bond lengths in compound 2 are comparable to those found in $\mathrm{Cu}(\mathrm{cy}$ -

Figure 3. An ORTEP view of compound $\mathbf{2}$ with the atom-labeling scheme. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
clen $)\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{2}$ [2.003 and 2.10(3) \AA respectively]. ${ }^{[10]}$ The $\mathrm{Cu}-\mathrm{N} \equiv \mathrm{C}$ unit is bent, with an angle of $133.6(4)^{\circ}$. The shortest interchain $\mathrm{Cu} \cdots \mathrm{Cu}$ distance between adjacent chains is $6.707 \AA$ and the shortest intrachain $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is $7.627 \AA$ (Figure 4).

The X-ray structure of 3 shows that each $\left[\mathrm{Mn}^{\mathrm{V}}(\mathrm{N})\right.$ -$\left.(\mathrm{CN})_{4}\right]^{2-}$ unit is coordinated to four $\left[\mathrm{Mn}^{\mathrm{III}}\left(5,5^{\prime}-\mathrm{Me}_{2}-\right.\right.$ salen) $]^{+}$units through the cyano groups to form a 2 D sheetlike network structure (Figures 5 and 6). Each Mn^{\vee} center has a distorted octahedral environment comprising four carbon atoms from cyanido ligands, one terminal nitrido ligand, and one oxygen atom of a methanol molecule (dis-

Figure 5. An ORTEP view of compound $\mathbf{3}$ with the atom-labeling scheme. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Figure 4. A view of the 1D zig-zag chain in 2.
ordered). The average $\mathrm{Mn}-\mathrm{C}[1.977(3) \AA$, the $\mathrm{Mn} \equiv \mathrm{N}$ $[1.515(5) \AA]$, and the $\mathrm{C} \equiv \mathrm{N}$ bond lengths $[1.148(4) \AA$] at the Mn^{V} center are comparable to those in compounds 1 and 2. The $\mathrm{Mn}-\mathrm{O}$ (methanol) bond trans to the nitrido ligand is elongated, with a length of $2.402(5) \AA$. The $\mathrm{Mn}-\mathrm{C} \equiv \mathrm{N}$ angles $\left[178.6(3)^{\circ}\right]$ for the bridging cyano groups are close to linear. The $\mathrm{Mn}^{\mathrm{III}}$ ions are coordinated equatorially by the $\mathrm{N}_{2} \mathrm{O}_{2}$ donors of the tetradentate Schiff base ligand [Mn2$\mathrm{O} 1=1.8899(19) \AA$ and $\mathrm{Mn} 2-\mathrm{N} 3=2.004(2) \AA$] and axially by two cyanido nitrogen atoms of $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}[\mathrm{Mn} 2-$ $\mathrm{N} 1=2.252(3) \AA$] , which gives rise to a distorted octahedral coordination geometry. The bridging cyanido ligands coordinate to the $\mathrm{Mn}^{\mathrm{III}}$ ions in a bent fashion with $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 2$ angles of $159.0(2)^{\circ}$. The N1-Mn2-N1D unit is nearly linear [173.21(14) $\left.{ }^{\circ}\right]$. The shortest intralayer $\mathrm{Mn}^{\mathrm{III}} . . \mathrm{Mn}^{\mathrm{III}}$ distance is $7.189 \AA$ and the shortest interlayer $\mathrm{Mn}^{\mathrm{III} . . .} \mathrm{Mn}^{\mathrm{III}}$ distance is $10.431 \AA$.

Figure 6. A view of the 2D sheet-like network in 3. Hydrogen atoms have been omitted for clarity.

Magnetic Properties

The magnetic behavior of $\mathbf{1}$ was studied in the temperature range $2-300 \mathrm{~K}$. (Figure 7) The $\chi_{\mathrm{m}} T$ value at 300 K is $1.19 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, which is slightly larger than the expected uncoupled value of $1.00 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ for a high-spin $\mathrm{Ni}^{\mathrm{II}}$ center in an octahedral environment. The molar magnetic susceptibility data of compound $\mathbf{1}$ can be fitted using the Curie-Weiss law $\left[\chi_{\mathrm{m}}=C /(T-\theta)\right]$ in the temperature range $2-300 \mathrm{~K}$, which gives $C=1.19 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ and $\theta=$ -0.02 K . This value of C is also consistent with non-interacting $\mathrm{Ni}^{\mathrm{II}}$ systems ($C_{\text {calcd. }}=1.19 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$) and the very small Weiss constant of -0.02 K again suggests that there is no significant magnetic coupling between $\mathrm{Ni}^{\mathrm{II}}$ ions. The field dependence of the magnetization at about 2.0 K for $\mathbf{1}$ is shown in Figure 8. The $M(H)$ curve is consistent with the paramagnetic state of the $\mathrm{Ni}^{\mathrm{II}}$ ions $(S=1 ; g=2)$ and reaches $2.12 N \beta \mathrm{~mol}^{-1}$ at 50 kOe , which is close to the expected saturation value of $2.0 N \beta \mathrm{~mol}^{-1}$.

of Inorganic Chemistr

Figure 7. Temperature dependence of $\chi_{\mathrm{M}} T$ (circles) and $\chi_{\mathrm{M}}{ }^{-1}$ (squares) for compound 1.

Figure 8. Field dependence of the magnetization for compound $\mathbf{1}$.

The magnetic behavior of $\mathbf{3}$ was also studied in the temperature range $2-300 \mathrm{~K}$ (Figure 9). The $\chi_{\mathrm{m}} T$ value at 300 K is $6.04 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, which is slightly larger than the expected uncoupled value of $6.00 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ for two uncoupled high-spin $\mathrm{Mn}^{\text {III }}$ centers with $S=2$ and one diamagnetic Mn^{V} center with $S=0$. The plot of $\chi_{\mathrm{m}}{ }^{-1}$ vs. T for complex 3 obeys the Curie-Weiss law well in the $15-300 \mathrm{~K}$ range, with a Curie constant of $6.04 \mathrm{~cm}^{3} \mathrm{Kmol}^{-1}$ and a small Weiss constant of 0.03 K . The value of C is consistent with non-interacting $\mathrm{Mn}^{\text {III }}$ systems $\left(C_{\text {calcd. }}=\right.$ $6.04 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$) and the very small Weiss constant of 0.03 K also suggests that there is no significant magnetic coupling between the $\mathrm{Mn}^{\text {III }}$ centers through the diamagnetic $\left[\mathrm{Mn}^{\mathrm{V}} \mathrm{N}(\mathrm{CN})_{4}\right]^{2-}$ bridges. The $\chi_{\mathrm{m}} T$ vs. T curve decreases below 15 K , most probably because of a zero-field splitting effect, which is characteristic for $\mathrm{Mn}^{\mathrm{III}}$. The field dependence of the magnetization at about 2.0 K for 3 is

Figure 9. Temperature dependence of $\chi_{M} T$ (circles) and $\chi_{M}{ }^{-1}$ (squares) for compound 3.
shown in Figure 10. The $M(H)$ curve reaches $6.15 N \beta \mathrm{~mol}^{-1}$ at 50 kOe , which is smaller than the expected saturation value of $8.0 N \beta \mathrm{~mol}^{-1}$ for the sum of two $\mathrm{Mn}^{\text {III }}$ magnetic moments ($S_{\text {total }}=S_{\mathrm{Mn}}+S_{\mathrm{Mn}}=4 ; g=2.0$).

Figure 10. Field dependence of the magnetization for compound 3.

The magnetic behavior of $\mathbf{2}$ was not investigated since the $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are very long and no significant magnetic coupling between $\mathrm{Cu}^{\mathrm{II}}$ centers was expected.

Conclusions

The square-pyramidal $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$ ion is a useful building block for the construction of coordination polymers with interesting structures. In principle, both the cyano and nitride groups can function as bridging ligands. However, only cyanido bridging is observed in the three compounds described here, which suggests that the nitrido ligand in $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right]^{2-}$ is not nucleophilic. Although paramagnetic centers bridged by diamagnetic metal units may also exhibit interesting magnetic behavior, no significant magnetic interaction between the paramagnetic metal centers in compounds $\mathbf{1}$ and $\mathbf{3}$ is observed.

Experimental Section

Materials and Physical Measurements: All chemicals and solvents were of reagent grade and were used as received. $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}[\mathrm{Mn}-$ $\left.(\mathrm{N})(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Mn}\left(5,5^{\prime}-\mathrm{Me}_{2}\right.\right.$ salen $\left.)\right]\left(\mathrm{PF}_{6}\right)$ were synthesized by literature methods. ${ }^{[3,8]}$ Elemental analyses were performed with a Vario EL III Elemental analyzer. IR spectra were recorded with a Nicolet 360 spectrophotometer with KBr pellets in the 400 $4000 \mathrm{~cm}^{-1}$ region.

Preparation of $\left[\{\mathrm{Ni}(\text { cyclen })\}\left\{\mathbf{M n}(\mathrm{N})(\mathbf{C N})_{4}\right\} \cdot \mathrm{CH}_{3} \mathbf{O H}\right]_{n}$ (1): A methanol solution $(20 \mathrm{~mL})$ of $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}$, 0.11 mmol) was added to 10 mL of an aqueous solution of $\mathrm{Ni}\left(\mathrm{CH}_{3}-\right.$ $\mathrm{COO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(28 \mathrm{mg}, 0.11 \mathrm{mmol})$ and cyclen $(19.5 \mathrm{mg}, 0.11 \mathrm{mmol})$. The resulting red solution was allowed to stand in the dark at room temperature $\left(23^{\circ} \mathrm{C}\right)$. After three weeks, the red block crystals were filtered, washed with a little ice-cold water, and then with diethyl ether. Yield: $30 \mathrm{mg}(52 \%) . \mathrm{C}_{13} \mathrm{H}_{24} \mathrm{MnN}_{9} \mathrm{NiO}$ (436.06): calcd. C 31.86, H 6.17, N 25.72 ; found C 32.16, H 6.02, N 25.63 . IR (KBr): $\tilde{\mathrm{v}}=2135$ and $2114 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{N}}\right)$.

Preparation of $\left[\{\mathrm{Cu}(\text { cyclen })\}\left\{\mathrm{Mn}(\mathrm{N})(\mathbf{C N})_{4}\right\}\right]_{n}$ (2): $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}[\mathrm{Mn}(\mathrm{N})$ $\left.(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(50 \mathrm{mg}, \quad 0.051 \mathrm{mmol}), \quad \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \quad(12.8 \mathrm{mg}$, $0.051 \mathrm{mmol})$ and cyclen $(8.83 \mathrm{mg}, 0.051 \mathrm{mmol})$ were placed in three separate $10-\mathrm{mL}$ sample tubes in a $150-\mathrm{mL}$ beaker. The sample tubes and beaker were carefully filled with methanol to minimize turbulence and the beaker was then wrapped with paraffin film. Welldefined red, needle-shaped crystals were obtained after leaving the beaker undisturbed at room temperature for two weeks; these were collected, washed with methanol, and dried in air. Yield: 8 mg (35%). $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{CuMnN}_{9}$ (408.85): calcd. C 35.22 , H 4.93, N 30.83 ; found $\mathrm{C} 35.46, \mathrm{H} 5.34, \mathrm{~N} 30.62$. IR (KBr): $\tilde{\mathrm{v}}=2142,2124$, $2107 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{N}}\right)$.

Preparation of $\left[\left\{\mathrm{Mn}\left(5,5^{\prime}-\mathrm{Me}_{2} \text { salen }\right)\right\}_{2}\left\{\mathbf{M n}(\mathrm{~N})(\mathrm{CN})_{4}\right\} \cdot \mathbf{C H}_{3} \mathrm{OH}\right]_{n}(\mathbf{3})$: A solution of $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(50 \mathrm{mg}, 0.056 \mathrm{mmol})$ in 10 mL of methanol was added to a solution of $\left[\mathrm{Mn}\left(5,5^{\prime}-\mathrm{Me}_{2^{-}}\right.\right.$ salen) $\mathrm{PF}_{6}(55.8 \mathrm{mg}, 0.112 \mathrm{mmol})$ in 15 mL of methanol. The dark brown cubic crystals obtained by slow evaporation of the resulting solution were collected, washed with $\mathrm{CH}_{3} \mathrm{CN}$, and dried in air. Yield: $20 \mathrm{mg}(38 \%) . \mathrm{C}_{41} \mathrm{H}_{40} \mathrm{Mn}_{3} \mathrm{~N}_{9} \mathrm{O}_{5}$ (903.64): calcd. C $54.50, \mathrm{H}$

Table 4. Summary of the crystallographic data for $\mathbf{1 - 3}$.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Formula	$\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{MnN}_{9} \mathrm{NiO}$	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{CuMnN}_{9}$	$\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{Mn}_{3} \mathrm{~N}_{9} \mathrm{O}_{5}$
Formula mass	436.06	408.85	903.64
Crystal system	monoclinic	orthorhombic	tetragonal
Space group	$C 2 / m$	$P 2_{1} 2_{1} 2_{1}$	$P 4 / n c c$
$a[\AA]$	$18.0492(9)$	$7.6274(1)$	$14.2573(3)$
$b[\AA]$	$9.0353(5)$	$12.8092(2)$	$14.2573(3)$
$c[\AA]$	$13.4953(7)$	$17.0868(3)$	$20.0449(5)$
$a\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[{ }^{\circ}\right]$	$125.088(1)$	90	90
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$V\left[\AA^{3}\right]$	$1800.86(16)$	$1669.40(4)$	$4074.54(16)$
Z	4	4	4
$D_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.608	1.627	1.473
$T[\mathrm{~K}]$	$150(2)$	$150(2)$	$150(2)$
$\mu\left[\mathrm{mm}^{-1}\right]$	1.769	2.043	0.971
$F(000)$	904	836	1856
Data/restraints/parameters	$2205 / 0 / 136$	$3800 / 0 / 208$	$2353 / 1 / 142$
GOF on F^{2}	1.046	1.043	1.023
$R 1, w R 2[I>2 \sigma(I)]$	$0.0307,0.0777$	$0.0523,0.1296$	$0.0441,0.1146$
$R 1, w R 2($ all data $)$	$0.0337,0.0795$	$0.0678,0.1374$	$0.0731,0.1270$

4.46, N 13.95; found C 54.29, H 4.54, N 14.10. IR (KBr): $\tilde{v}=$ $2140 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{N}}\right)$.

Magnetic Measurements: Magnetic measurements for all crystalline samples were performed with a Quantum Design MPMS-XL5 SQUID magnetometer. All experimental magnetic data were corrected for the diamagnetism of the sample holders and of the constituent atoms (Pascal's tables).
X-ray Structure Determination: The crystal structures were determined with a Bruker Smart APEX CCD area-detector diffractometer (1) and a NONIUS KappaCCD diffractometer ($\mathbf{2}$ and 3) using graphite-monochromated $\operatorname{Mo}-K_{\alpha}$ radiation ($\lambda=$ $0.71073 \AA$) at 150 K . The structures were solved by direct methods with SHELXL-97 ${ }^{[11]}$ and refined by full-matrix least-squares on F^{2}. Hydrogen atoms were added geometrically and refined as riding atoms with a uniform value of $U_{\text {iso }}$. Final crystallographic data and values of $R 1$ and $w R$ are listed in Table 4. The methanol solvent in complex 3 was disordered.
CCDC-653542 (1), -653541 (2) and -653540 (3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

The work described in this paper was supported by grants from the National Natural Science Foundation of China (NSFC) and the Research Grants Council (RGC) of Hong Kong Joint Research Scheme (N_CityU 107/03, 20318001), NSFC (20221101 and 20490210), and the City University of Hong Kong (9610020).
[1] a) K. R. Dunbar, R. A. Heintz, Prog. Inorg. Chem. 1997, 45, 283-391; b) M. Ohba, H. Okawa, Coord. Chem. Rev. 2000, 198, 313-328.
[2] See, for example: a) V. Gadet, T. Mallah, I. Castro, M. Verdaguer, J. Am. Chem. Soc. 1992, 114, 9213-9214; b) T. Mallah, S. Thiebaut, M. Verdaguer, P. Veillet, Science 1993, 262, 1554 1557; c) W. R. Entley, G. S. Girolami, Inorg. Chem. 1994, 33, 5165-5166; d) W. R. Entley, G. S. Girolami, Science 1995, 268, 397-400; e) O. Kahn, Nature 1995, 378, 667-668; f) S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, M. Verdaguer, Nature 1995, 378, 701-703; g) M. Verdaguer, Science 1996, 272, 698-699; h) O. Sato, T. Lyoda, A. Fujishima, K. Hashimoto, Science 1996, 272, 704-705; i) Ø. Hatlevik, W. E. Buschmann, J. Zhang, J. L. Manson, J. S. Miller, Adv. Mater. 1999, 11, 914-918; j) S. M. Holmes, G. S. Girolami, J. Am. Chem. Soc. 1999, 121, 55935594; k) A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier dit Moulin, M. Verdaguer, J. Am. Chem. Soc. 2000, 122, 6648-6652; 1) C. Cartier dit Moulin, F. Villain, A. Bleuzen, M. A. Arrio, P. Sainctavit, C. Lomenech, V. Escax, F. Baudelet, E. Dartyge, J. J. Gallet, M. Verdaguer, J. Am. Chem. Soc. 2000, 122, 6653-6658.
[3] J. Bendix, K. Meyer, T. Weyhermüller, E. Bill, N. MetzlerNolte, K. Wieghardt, Inorg. Chem. 1998, 37, 1767-1775.
[4] J. Bendix, R. J. Deeth, T. Weyhermüller, E. Bill, K. Wieghardt, Inorg. Chem. 2000, 39, 930-938.
[5] S. R. Marshall, J. Bendix, A. Rodchanarowan, J. S. Miller, Polyhedron 2003, 22, 2515-2520.
[6] D. E. Freedman, M. V. Bennett, J. R. Long, Dalton Trans. 2006, 2829-2834.
[7] H. Z. Kou, J. K. Tang, D. Z. Liao, S. Gao, P. Cheng, Z. H. Jiang, S. P. Yan, G. L. Wang, B. Chansou, J. P. Tuchagues, Inorg. Chem. 2001, 40, 4839-4844.
[8] K. Srinivasan, P. Michaud, J. K. Kochi, J. Am. Chem. Soc. 1986, 108, 2309-2320.
[9] W. F. Yeung, H. K. Kwong, T. C. Lau, S. Gao, L. Szeto, W. T. Wong, Polyhedron 2006, 25, 1256-1262.
[10] W. F. Yeung, W. T. Wong, J. L. Zuo, T. C. Lau, J. Chem. Soc. Dalton Trans. 2000, 629-631.
[11] G. M. Sheldrick, SHELX-97, Göttingen University, Germany, 1997.

Received: July 31, 2007
Published Online: October 31, 2007

[^0]: [a] Department of Biology and Chemistry, City University of Hong Kong,
 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
 [b] Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
 [c] Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

