

S0031-9422(96)00198-7

DITERPENES AND RELATED CYCLOADDUCTS FROM TAIWANIA CRYPTOMERIOIDES

WANG-HONG LIN, JIM-MIN FANG and YU-SHIA CHENG*

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, R. O. C.

(Received in revised form 9 January 1996)

Key Word Index—Taiwania cryptomerioides; Taxodiaceae; leaves; diterpenes.

Abstract—Seven new compounds were isolated from the leaves of *Taiwania crypomerioides*. Taiwaniaquinone D and taiwaniaquinone E are diterpenes having a six-five-six fused ring skeleton. Taiwaniadduct A is a [4 + 2] cycloaddition product of β -myrcene and taiwaniaquinone A. Taiwaniadduct B and taiwaniadduct C are isomers derived from [4 + 2] cycloadditions of *trans*-ozic acid and taiwaniaquinone A. Taiwaniadduct D is formally an ene reaction product of taiwaniadduct B. Taiwaniadduct E is a [5 + 2] cycloaddition product of taiwaniaquinone A and *trans*-ozic acid. The structure determination of these new compounds was based on spectral analyses and chemical transformation. A crystalline compound, prepared by bismethylation of taiwaniadduct D, was analysed by X-ray diffraction to establish the stereochemistry.

INTRODUCTION

Taiwania cryptomerioides Hayata is an endemic evergreen species with thick linear-triangular leaves and elongate ovoid cones. The chemical constituents of this plant have been investigated extensively [1–3]. Various sesquiterpenes, lignans and bisflavones have been found in the leaves and wood. Four diterpenes (taiwaniaquinones A–C and taiwaniaquinol A) and one norditerpene (taiwaniaquinol B) having the unusual 6-5-6 fused ring skeleton were recently isolated [4]. We now report on a further two diterpenes, 1 and 2, of this type and five related terpenes (3–7) derived from the combination of taiwaniaquinone A with a monoterpene, β -myrcene, or a diterpene, *trans*-ozic acid.

RESULTS AND DISCUSSION

The acetone extract of the leaves of *T. cryptomerioides* was concentrated and taken up in chloroform. The soluble part was concentrated and

subjected to chromatography to give compounds 1-7.

Compound 1 gave rise to a molecular ion $[M]^+$ at m/z 328.168 consistent with a molecular formula $C_{20}H_{24}O_4$. The ¹H and ¹³C NMR spectra (Table 1) indicated an aldehyde group [$\delta_{\rm H}$ 10.38 (s) and $\delta_{\rm C}$ 194.1 (d)] and two ketone groups [δ_{c} 185.1 (s) and 177.2 (s)]. The carbonyl groups were conjugated with olefinic double bonds as inferred from the IR absorptions at 1691 and 1630 cm^{-1} as well as the presence of six olefinic carbon signals at $\delta_{\rm C}$ 176.6 (s), 152.2 (s), 147.7 (s), 147.1 (s), 134.4 (s) and 123.2 (s). Proton resonances for three methyl groups occurred at δ 1.14 (s), 1.28 (s) and 1.44 (s), whereas those for an isopropyl group occurred at δ 1.18 (d), 1.19 (d) and 3.15 (sept). Compound 1 was given the trivial name taiwaniaquinone D, and its structure was finally elucidated by means of HMBC and HMQC. Treatment of taiwaniaquinone B (or taiwaniaquinone C) with AlCl₃ in CH₂Cl₂ yielded a dehydration product which was identified as taiwaniaquinione D (Scheme 1).

Scheme 1. Chemical synthesis of taiwaniaquinone D.

^{*}Author to whom correspondence should be addressed.

		1		2
	$\delta_{ m c}$	$\delta_{ m H}$	δ_{c}	δ _н
1	35.2	2.40 (br d, 13.0)*†	34.3	2.22 (br d, 12.0), 1.58 (m)
2	18.3	1.68 (m), 1.94 (m)	19.2	1.75(m), 1.62(m)
3	43.3	1.72 (m), 1.26 (m)	41.2	1.45 (m), 1.22 (m)
4	38.0		33.7	
5	176.6		62.4	2.13 (d, 11.6)
6	194.1	10.38 (s)	174.2	
7	134.4		47.0	3.61(d, 11.6)
8	147.1		148.5	
9	147.7		151.6	
10	55.9		48.0	
11	177.2		181.2	
12	152.2		151.1	
13	123.2		124.7	
14	185.1		185.2	
15	24.0	3.15 (sept, 7.1)	24.0	3.10 (sept, 7.0)
16	19.9	1.19 (d, 7.1)	19.8	1.14(d, 7.0)
17	19.9	1.18 (d, 7.1)	19.7	1.17(d, 7.0)
18	33.7	1.14 (s)	32.0	0.82(s)
19	25.6	1.28 (s)	21.4	1.03 (s)
20	21.3	1.44 (s)	19.9	1.10 (s)
CO ₂ CH ₃			52.3	3.73 (s)

Table 1. ¹³C and ¹H NMR spectral data of compounds 1 and 2 (CDCl₃, δ in ppm)

*The signal of the other proton was too weak to be assigned.

[†]Coupling constants (J in Hz) in parentheses.

Compound 2 $(C_{21}H_{28}O_5)$ exhibited characteristic spectroscopic properties of a p-quinone moiety, i.e. UV absorption at 431 nm, IR absorption at 1635 cm⁻¹ and NMR at δ 185.2 (s), 181.2 (s), 151.6 (s), 151.1 (s), 148.5 (s) and 124.7 (s). A methyl ester group was inferred from the IR absorption at 1735 cm^{-1} , the proton resonance at δ 3.73 (s), and the carbon signals at δ 174.2 (s) and 52.3 (q). Compound 2 is named taiwaniaquinone E, and its structure is similar to that of taiwaniaquinone A, except for the aldehyde group in the latter structure being replaced with a methoxycarbonyl group. The proton and carbon resonances were assigned according to the HMBC and HMQC spectra. The stereochemistry was established from NOE studies. Thus, irradiation of H-18 (δ 0.82) caused an 11% enhancement of H-5 (δ 2.13) and irradiation of H-20 (δ 1.10) caused a 15% enhancement of H-7 (δ 3.61).

Compound 3 was given the trivial name taiwaniadduct A, and its structure was determined by chemical and spectral methods. The exact mass of the molecular ion $[M]^+$ (m/z 466.309) indicated a molecular formula $C_{30}H_{42}O_4$. The proton and carbon signals (Table 2) were assigned according to the HMBC and HMQC

spectra. Triterpene **3** was presumably derived from the [4 + 2] cycloaddition of the monoterpene, β -myrcene, and the diterpene, taiwaniaquinone A (Scheme 2). The stereochemistry was deduced from NOE studies. For example, irradiation of H-6 (δ 9.94) caused an 8%

Taiwaniaquinone A

β-Myrcene

enhancement of H-1' (δ 2.34), indicating that the monoterpene moiety and the aldehydr group were on the same face. The Diels–Alder reaction [5, 6] between taiwaniaquinone A and β -myrcene was promoted by a Lewis acid Eu(fod)₃ to give a single product identical to **3**. The reaction occurred in a regio- and stereospecific manner, i.e. β -myrcene attacked the less hindered α -face of taiwaniaquinone A to form C8-C1' and C9-C10' bonds. The 10-methyl group of taiwaniaquinone A presumably hindered a β -face approach by β -myrcene. The regio-isomer with C8-C10' and C9-C1' bonds was not formed, becuase it would exert severe repulsion between the 13-isopropyl and 3'-alkyl groups.

Terpenes 4 (taiwaniadduct B) and 5 (taiwaniadduct C) were not readily purified. Compounds 4m and 5m obtained by bismethylation of 4 and 5 (CH_2N_2 , Et_2O) were purified by HPLC and their structures were determined by spectroscopic methods (IR, MS, HRMS, and ¹H, ¹³C, HMBC and HMQC NMR). Compounds 4m and 5m were isomers giving rise to molecular ions [M]⁺ at 660.439 attributable to the molecular formula $C_{42}H_{60}O_6$. The ¹H and ¹³C NMR spectra of 4m showed the characteristic resonances (Table 2) of an

aldehyde group $[\delta_{\rm H} 9.60 (d)$ and $\delta_{\rm C} 205.4 (d)]$, a methyl ester $[\delta_{\rm H} 3.56 (s), \delta_{\rm C} 51.8 (q)$ and 178.9 (s)], conjugated ketones $[\delta_{\rm C} 198.6 (s)$ and 201.3 (s)], a methoxy group $[\delta_{\rm H} 3.91 (s)]$, a terminal double bond $[\delta_{\rm C} 108.7 (t)$ and 146.8 (s)], a trisubstituted double bond $[\delta_{\rm C} 120.4 (d)$ and 144.2 (s)], as well as for a tetrasubstituted double bond $[\delta_{\rm C} 141.3 (s)$ and 159.0 (s)]. The regio- and stereochemistry of **4m** was supported by the NOESY spectrum. H-5 (δ 1.57) had NOE correlations with H-6 (δ 9.60) and H-12' (δ 3.10), whereas H-7 (δ 3.10) had a correlation to H-20 (δ 0.63), whereas the NOESY spectrum of **5m** showed the correlations of H-6 (δ 9.50) to H-12' (δ 2.20), H-5 (δ 1.79) to H-14' (δ 5.55) and H-7 (δ 3.14) to H-20 (δ 0.73).

Compounds 4 and 5 were presumably derived from [4+2] cycloadditions of the labdane diterpene, *trans*ozic acid, and taiwaniaquinone A (Scheme 3). Compound 4 had the linkages at C8-C15' and C9-C12', whereas compound 5 had the alternative linkages at C8-C12' and C9-C15'. The stereochemistry shown in 4 and 5 is consistent with cycloadditions of two components occurring at the less hindered faces and following the endo-selectivity of conventional Diels-Alder reactions.

Scheme 3. Formation of compounds 4 and 5.

			I aDIC 2.		ndmon m		м, с ш	(md		
		3		4m		Sm		6m		7m
	δ _c	δ _H	δ _c	δ _H	δ _c	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$
_	32.7	1.55 (m), 1.68 (m)	34.8	1.88 (m)*	32.0	*	31.3	1.42 (m), 1.58 (m)	35.1	1.54 (m), 2.30n(m)
5	18.7	$1.56 \ (m)^*$	18.3	*	18.0	*	18.3	1.46 (m)*	18.3	1.48 $(m)^*$
e	41.5	1.15 (m)	41.5 (<i>m</i>)	0.96 (m),	41.4	1.38 (m), 1.10 (m)	41.7	0.86 (m), 1.32 (m)	41.0	1.08 (m), 1.38 (m)
		1.44 (m)		1.30 (m)						
4	33.9		33.7		33.8		34.2		33.6	
5	52.9	2.08 (d, 12.9)†	54.2	1.57 (d, 13.1)	54.5	1.79 (d, 12.7)	52.5	1.44 (m)	56.6	2.08 (m)
9	204.3	9.94 (d, 4.1)	205.4	9.60 (d, 4.6)	204.9	9.50 (d, 4.2)	72.7	3.99 (m)	204.4	9.87 (d, 5.5)
7	56.4	3.44 (dd, 12.9, 4.1)	56.2	$3.10 \ (m)$	58.7	3.14 (dd, 12.7, 4.2)	41.6	2.99 (t, 9.0)	52.5	3.31 (dd, 13.4, 5.5)
8	60.9		60.8		64.7		65.7		68.1	
6	63.4		65.9		60.2		66.0		143.7	
10	49.4		51.4		51.5		53.3		47.3	
Ξ	198.5		198.6		199.3		198.0		142.9	
12	155.4		159.0		160.1		159.6		193.9	
13	131.4		141.3		144.0		140.9		66.2	
14	201.3		201.3		202.3		201.2		198.8	
15	25.4	3.17 (sept, 7.0)	26.4	3.10 (m)	25.3	3.30 (sept, 7.0)	25.7	3.10 (m)	27.1	2.16 (m)
16	18.8	$1.14 \ (d, 7.0)$	20.6	1.16 (d, 7.0)	20.1	1.22 (d, 7.0)	19.2	$1.08 \ (d, \ 7.0)$	17.9	0.96(d, 7.0)
17	19.6	1.16 (d, 7.0)	19.3	1.07 (d, 7.0)	20.2	1.16 (d, 7.0)	20.4	1.15 (d, 7.0)	17.9	1.00 (d, 7.0)
18	35.6	0.77(s)	35.7	0.69 (s)	35.3	0.75 (s)	37.0	0.84 (s)	34.5	0.78 (s)
19	21.9	0.85 (s)	21.9	0.75(s)	21.9	0.78 (s)	22.8	0.75 (s)	21.7	0.85 (s)
20	19.6	0.73 (s)	20.1	0.63 (s)	22.3	0.73 (s)	20.2	0.60 (s)	19.6	(s) 66.0

Table 2. ^{13}C and ^{1}H NMR data of compounds 3 and 4m–7m (CDCl_3, δ in ppm)

1660

WANG-HONG LIN et al.

Diterpenes from Taiwania cryptomerioides

1,	33.1	2.05 (m)	37.3	1.63 (m)*	37.3	*	37.7	1.42 (m)*	38.0	1.04 (m), 1.66 (m)
		2.34 (br d, 13.5)								
2'	120.6	5.39 (br d)	19.0	*	19.3	*	19.4	*	19.3	1.66 (m)*
3,	140.6		36.7	1.41*	36.9	1.44 (m), 1.50 (m)	36.7	1.48 (m)*	36.7	1.46 (m)*
4'	36.5	1.92 (m)	47.5		47.7		47.6		47.5	
5'	25.4	(<i>m</i>) 86.1	50.0	1.75 (m)	50.1	1.85 (<i>m</i>)	50.1	1.80 (m)	49.5	1.86 (m)
e,	123.5	4.95 (br s)	26.0	*	25.9	1.12 (m)*	26.8	1.14 (m), 1.36 (m)	26.4	1.07 (m), 1.32 (m)
7' i	131.8		37.6	$2.25 (m)^*$	37.8	(<i>m</i>) (<i>m</i>)	37.8	1.86 (m)	37.3	1.86 (m), 2.22 (m)
						2.25 (br d, 12.6		2.25 (br d, 12.0)		
8'	25.5	1.63 (s)	146.8		147.9		146.6		148.0	
9'	17.6	1.56 (s)	53.8	*	55.6	1.62 (<i>m</i>)	53.0	1.96 (m)	56.6	1.66 (m)
10′	34.7	2.23 (d. 14.2)	38.7		40.3		38.6		38.7	
		2.67 (d, 14.2)								
11,			26.7	*	26.6	1.28 (m)*	28.0	1.10 (m), 1.64 (m)	22.6	2.12 (m), 1.94 (m)
12'			40.3	3.10 (m)	49.5	2.20 (dd, 10.6, 3.9)	39.7	3.10 (m)	133.3	5.19 (br s)
13′			144.2		137.6		147.0		132.4	
14'			120.4	5.47 (br d, 6.3)	124.9	5.55 (br s)	46.5	2.60 (br s)	47.5	2.88 (t, 9.0)
15'			31.7	1.98 (m), 2.29 (m)	27.1	2.38 (br d, 18.0)	33.9	2.10 (br d, 12.0)	30.4	1.36 (m), 2.08 (m)
						2.84 (dd, 18.0, 6.8)		2.16 (br d, 12.0)		
16'			24.4	1.73 (s)	24.0	1.61 (s)	113.9	4.66 (s), 4.90 (s)	14.5	1.55 (s)
17'			108.7	4.58 (s), 4.87 (s)	107.0	4.62 (br s), 4.30 (br s)	108.8	4.78 (s), 4.90 (s)	107.8	4.73 (s), 4.36 (s)
18′			178.9		179.0		179.0		178.8	
19′			16.3	1.02 (s)	16.5	1.04 (s)	16.4	1.03 (s)	16.4	1.05 (s)
20'			15.0	0.52 (s)	14.4	0.48 (s)	15.7	0.57 (s)	14.5	0.65 (s)
CO ₂ CH ₃			51.8	3.56(s)	51.9	3.61 (s)	51.8	3.57 (s)	51.7	3.57 (s)
OCH,			59.8	3.91 (s)	60.2	3.90 (s)	59.4	3.85 (s)		
*The signal o †Coupling cou	of one or nstants (J	both protons was too we in Hz) in parentheses.	eak to be assign	ned.						

1661

Scheme 4. Formation of compound 6 and ORTEP drawing of compound 6m.

Terpene **6** was treated with CH_2N_2 to give a crystalline bismethylated compound, **6m** ($C_{42}H_{60}O_6$), the structure of which was determined by an X-ray diffraction study along with other spectroscopic methods (IR, MS, and ¹H, ¹³C, HMBC and HMQC NMR). The NOESY spectrum also supported the assigned stereochemistry. Compound **6**, namely taiwaniadduct D, was presumably derived from the ene reaction (allyl-carbonyl coupling, for reviews see refs 7 and 8) of **4** (Scheme 4). The newly formed chiral centres had the (6*S*, 14'*R*)-configuration.

Terpene 7 was treated with CH₂N₂ to give the corresponding methyl ester, 7m, having a molecular ion $[M]^+$ at m/z 646.423 attributable to the molecular formula $C_{41}H_{58}O_6$. The structure of **7m** was determined by detailed analysis of the IR, MS, and ¹H, ¹³C, HMBC and HMQC NMR spectra. H-14' was in the proximity of the aldehyde group as indicated by the NOESY spectrum. The stereochemistry was similarly assigned: NOE correlations of H-6 (δ 9.87) to H-5 $(\delta 2.08)$, H-7 $(\delta 3.31)$ to H-20 $(\delta 0.99)$, and H-12' $(\delta 5.19)$ to H-14'($\delta 2.88$) were observed. Compound 7, namely taiwaniadduct E, appeared to be derived from the [5+2] cycloaddition [9] between taiwaniaquinone A and trans-ozic acid with the formation of linkages at C8-C14' and C13-C15' (Scheme 5). The alternative [5+2] cycloaddition with the linkages at C8-C15' and C13-C14' was unfavourable presumably due to the severe repulsion between the isopropyl group at C-13 and the methyl group at C-13'.

In summary, diterpenes 1 and 2 having a 6-5-6 fused ring skeleton were found in *T. cryptomerioides*, in addition to the previously reported analogs from this plant source. Compounds 3-7 were derived from taiwaniaquinone A, β -myrcene and *trans*-ozic acid via [4 + 2] cycloaddition, [5 + 2] cycloaddition or an ene reaction. Since the enzymes for these reactions are not known in biological systems [10], compounds 3-7 are probably artefacts. It is, however, rather uncommon that combinations of taiwaniaquinone A with β -myrcene or *trans*-ozic acid occurred during the separation procedure.

EXPERIMENTAL

General. HPLC: Hibar Lichrosorb Si 60 column (10 μ m, 25 cm × 1 cm i.d.); TLC: Merck silica gel 60F sheets.

Plant material. The dried leaves (1.75 kg) of *T. cryptomerioides* were exhaustively extracted with Me₂CO (71 × 3). The combined extracts were concd to *ca* 0.81, and taken up with CHCl₃ (0.81×3). The CHCl₃-soluble portion was concd (55 g) and subjected to silica-gel CC. The portion obtained from elution of EtOAc-hexane (5–40%) was further subjected to flash chromatography and HPLC with elution of EtOAc-hexane (5–30%) or EtOAc-CH₂Cl₂ (10%) to give compounds 1 (42 mg), 2 (26 mg), 3 (256 mg), 4 (298 mg), 5 (45 mg), 6 (311 mg) and 7 (256 mg). Acids 4–7 were further transformed into their corresponding methyl ester derivatives 4m–7m, which were purified by HPLC.

Taiwaniaquinone D (1). Red gum, $[\alpha]_D^{22} - 4.9^\circ$ (CHCl₃; c 2.1). TLC (5% EtOAc in hexane) R_f 0.34.

Scheme 5. Formation of compound 7.

IR $\nu_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$: 3361, 1691, 1630; UV $\lambda_{\text{max}}^{\text{MeOH}} \text{ nm}(\varepsilon)$: 477 (756), 340 (6410), 226 (12 655); EIMS (70 eV) m/z (rel. int.): 328 [M]⁺ (36), 300 (20), 285 (58), 259 (100), 231 (14), 215 (8), 173 (6). HR-MS for $C_{20}H_{24}O_4$ requires: 328.1675. Found: 328.1678.

Taiwaniaquinone E (2). Yellow solid, mp: 79–81°, $[\alpha]_{22}^{22} - 204^{\circ}$ (CHCl₃; *c* 1.3). TLC (5% EtOAc in hexane) R_f 0.25. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3383, 1735, 1635; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (*e*): 431 (542), 341 (7911), 228 (15488); EIMS (70 eV) m/z (rel. int.): 360 [M]⁺ (30), 300 (100), 285 (30), 244 (10), 231 (22), 217 (18), 189 (12). HR-MS for C₂₁H₂₈O₅ requires: 360.1937. Found: 360.1940.

Taiwaniadduct A (3). Solid, mp: $128-129^{\circ}$, $[\alpha]_{20}^{20}$ -106.3° (CHCl₃; c 12.8). TLC (5% EtOAc in hexane) R_f 0.27. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3347, 1711, 1640; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 345 (4091), 290 (7017); EIMS (70 eV) m/z (rel. int.): 466 [M]⁺ (12), 449 (4), 384 (2), 300 (100), 257 (5), 231 (20), 217 (4). HR-MS for $C_{30}H_{42}O_4$ requires: 466.3085. Found: 466.3094.

Taiwaniadduct B (4). Compound 4 (298 mg) was treated with CH₂N₂ in Et₂O to give the bismethylated compound 4m (282 mg). Solid, mp: 158–160°, $[\alpha]_D^{25}$ -15.6° (CHCl₃; c 14.1). TLC (5% EtOAc in hexane) R_f 0.1. IR ν_{max}^{KBr} cm⁻¹: 1713, 1657; UV $\lambda_{max}^{\text{McOH}}$ nm (ε): 304 (2309), 288 (2614), 204 (14 630); EIMS (70 eV) m/z (rel. int.): 661 [M + 1]⁺ (7), 660 [M]⁺ (1.5), 601 (1.5), 494 (40), 412 (7), 259 (15), 246 (100). HR-MS for C₄₂H₆₀O₆ requires: 660.4392. Found: 660.4391.

Taiwaniadduct C (5). Compound 5 (45 mg) was treated with CH₂N₂ in Et₂O to give the bismethylated compound **5m** (40 mg). Solid, mp: 156–157°, $[\alpha]_D^{28}$ –82.3° (CHCl₃; *c* 2.0). TLC (5% EtOAc in hexane) *R*₁ 0.1. IR ν_{max}^{KBr} cm⁻¹: 1715, 1658; UV λ_{max}^{McOH} nm (ε): 282 (5053), 202 (13 800); EIMS (70 eV) *m*/*z* (rel. int.): 660 [M]⁺ (10), 600 (5), 494 (18), 410 (25), 316 (85), 247 (50), 121 (100). HR-MS for C₄₂H₆₀O₆ requires: 660.4392. Found: 660.4390.

Taiwaniadduct D (6). Compound 6 (311 mg) was treated with CH_2N_2 in Et_2O to give the bismethylated compound 6m (288 mg). Crystals from MeOH-

CH₂Cl₂ (1:9), mp: 210.5–212.0°, $[\alpha]_{D}^{25}$ –60.1° (CHCl₃; c 14.4). TLC (5% EtOAc in hexane) R_f 0.1. IR ν_{max}^{KBr} cm⁻¹: 3512, 1710, 1658; UV λ_{max}^{MeOH} nm (ε): 279 (8858), 202 (20 431). FAB (+) 661.7 [M + 1]⁺. HR-MS for C₄₂H₆₀O₆ requires: 660.4392. Found: 660.4343.

Taiwaniadduct E (7). Compound 7 (256 mg) was treated with CH₂N₂ in Et₂O to give the monomethylated compound 7m (222 mg). Solid, mp: 114– 116°, $[\alpha]_D^{25}$ +25.3° (CHCl₃; c 11.1). TLC (5% EtOAc in hexane) R_f 0.1. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3418, 1753, 1721, 1668, 1627; UV $\lambda_{\text{max}}^{\text{KOP}}$ nm (ε): 286 (7661), 202 (27 140). FAB (+) 647.3 [M+1]⁺. HR-MS for C₄₁H₅₈O₆ requires: 646.4235. Found: 646.4225.

Acknowledgement—We thank the National Science Council for financial support.

REFERENCES

- Kamil, M., Ilyas, M., Rahman, W., Hasaka, N. Okigawa, M. and Kawano, N. (1981) J. Chem. Soc., Perkin Trans. 1 553.
- 2. Kuo, Y.-H., Chen, W.-C. and Lin, Y.-T. (1987) Chem. Express 2, 105.
- 3. Fang, J.-M. and Cheng, Y.-S. (1992) J. Chin. Chem. Soc. (Taipei) 39, 647.
- 4. Lin, W.-H., Fang, J.-M. and Cheng, Y.-S. (1995) *Phytochemistry* **40** 871.
- Majetich, G. and Zhang, Y. (1994) J. Am. Chem. Soc. 116, 4979.
- Trost, B. M., O'Krongly, D. and Bellatire, J. L. (1980) J. Am. Chem. Soc. 102, 7595.
- Hoffmann, H. M. R. (1969) Angew. Chem., Int. Ed. Engl. 8, 556.
- 8. Oppolzer, W. (1981) Pure Appl. Chem. 53, 1181.
- Walls, F., Padilla, J., Joseph-Nathan, P., Giral, F. and Romo, J. (1965) *Tetrahedron Letters* 1577.
- Oikawa, H., Katayama, K., Suzuki, Y. and Ichihara, A. (1995) J. Chem. Soc., Chem. Commun. 1321.