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Alntract-A modified Pad& approximation has been proposed to calculate the matrix exponential involved 
in the numerical solution of linear evolution equations. If the exponential matrix has a band structure, 
a factorization method may then be conveniently uned to reduce computation flops. Numerical solutions 
of the heat-conduction equation and time-dependent Schr6dinge.r equation are given as numerical 
examples to illustrate the feasibility. An increase in efficiency and accuracy over conventional methods 
is obtained. 

1. INTRODUCTION 

Mathematical models of many chemical and physical 
problems involve systems of homogeneous linear 
evolution equations of the form, 

x’(2) = Kx(?), x(0) = x, (1) 

where x(t) is an n-dimensional vector and the square 
matrix, K, may be time-dependent. Equation (1) 
arises frequently in the solution of parabolic partial 
differential equations discretized in spatial variables 
such as in the study of time-correlation function For 
spin relaxation (Hwang & Freed, 1975; Hwang, 1984) 
and diffusion-controlled reaction rates in liquids 
(Hwang, 1982). 

The motivation for this work results from our 
efforts to efficiently solve a huge system of equations 
(1) which describe the magnetization attenuation in 
NMR pulsed gradient spin echo experiments. The 
solution of equation (1) can be numerically evaluated 
by a recursive method, 

x(t + At) = exp(K Ar)x(t) = exp(A)x(t) (2) 

where A = K At and time-dependence of K may be 
incorporated piecewise. 

A fundamental step in solving equation (2) is the 
evaluation of exp(A). Many methods have been used 
to compute exp(A), such as matrix eigenvalues 
(Kirchner, 1%7), approximation theory (Saff, 1971), 
differential equations (Ehle & Lawson, 1975), matrix 
characteristic polynomial (Kolodner, 1975), the 
arithmetic-geometric-mean method (Stickel, 1985), 
elimination method (Walz, 1988), and polynomial 
approximation (Tal-Ezer, 1989). Numerous algor- 
ithms for computing exp(A) have been proposed, but 
most of them are of dubious numerical quality, as 
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pointed out in the famous survey article by Moler and 
Van Loan (1978). In practice, consideration of corn- 
putational accuracy and efficiency indicates that some 
of the methods are preferable to others, but that none 
are completely satisfactory when the following at- 
tributes are also concerned: generality, reliability, 
stability, storage requirements, ease of use, and sim- 
plicity. The choice will depend upon the details of 
implementation and upon the particular problem 
being solved. In this paper, we propose a 
method based on a modification of the Pad& approxi- 
mation which allows the formulation of a fast and 
accurate algorithm for the computation of exp(A). 
If A has band structure, a pronounced reduction in 
the amount of computation can be achieved by 
factorization. 

2. PRINCIPLES 

Pad6 approximations have played an important 
role in the development of applied mathematics, and 
they are still widely used in many fields (Baker & 
Graves-Morris, 1981). The series expansion of an 
appropriate Pad& approximation of a function agrees 
on as many terms as possible with its Formal power 
series in ascending order, i.e. up to the sum of 
the degrees of the numerator and denominator. The 
numerator and the denominator of a Pad& 
approximant are then exclusively determined by this 
condition. The (p, q) Pad& approximation to exp(A) 
is defined by: 

R, (4 _ N,,(A) 
DpI (4 ’ 

where 

(P + 4 -iVp! 
XG) = j$o (p + q)_!j! (p _jp Ai (4) 
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where the eigenvalues of A are presumed to be 
negative. Zakian (1970) and Wragg and Davies 
(1975) have considered the various representations of 
these rational approximations (e.g. partial fraction or 
continued fraction) as well as the choice of p and q 
to obtain sufficient accuracy. 

It should be noted that the Padt approximauts are 
normally useful only near the origin (i.e. the norm of 
A, I] A ]I 4 l), as the following identity reveals (Moler 
& Van Loan, 1989): 

exp(A) = R,,(A) + (p + q)! 

(-1)4 [A” + 4 + ‘JD,(A)] 

s I 

X up(1 - u)q exp[A(l - u)] du. (6) 
0 

However, this restriction can be overcome with the 
help of the identity exp(A) = exp[(A/I)‘]. A is scaled 
by I-’ such that R,,(A/I) is a suitable approximation 
to exp(A/I). IF I is a power of two, the computation 
may be efficiently performed by repeated squaring. 
The errors can then be kept negligibly small even 
though the Pad& approximants are not near the 
origin. There are several reasons why the diagonal 
approximants (p = q) are preferred over the off 
diagonal approximants (p # 4). Let n be the order of 
the matrix A. For the case of p < q, it is found that 
about qrr3 flops are required to evaluate R,(A) which 
is of the order p + q3 Furthermore, the same amount 
of computation is needed to compute R,(A) which is 
of the order 2q (2q >p + q). A similar argument can 
be applied to the superdiagonal approximants 
(p z q). To illustrate our scheme with a minimum of 
detail we will focus on the diagonal case, but the 
theory, with minor modification, is also applicable to 
non-diagonal cases. 

It is known that the series expansion of the (q, q) 
diagonal Pade approximant agrees with that of the 
exponential function to order 2q. For example, the 
exponential of a matrix is defined by: 

exp(A) = f. $ 
=I+A+$+$+$+&+&- 

A’ A8 A9 
+e + 4.0320 + 362880 

- -+O(A”), (7) 

and the series expansion of the (3.3) diagonal Pad& 
approximant is 

&,(A) = 
I+ A/2 + AZ/l0 + A3/120 Comparing with equation (7), c = - ljlOO8OO and 
I - AJ2 + A=/10 - A3/120 &,(A) has an order of 8. 

A5 A6 
,I+A+$+;+A’+-+- 

24 120 720 

The advantage of the modified (q, q) diagonal Pad5 
approximation is that it gives a more accurate result 
but requires only sligbtly more calculation. This may 

A' A8 7Ag - - 
+ 4800 + 28800 + 864000 

- + O(A’O). (8) 

To increase the accuracy to the next higher order, 
we defiue the modified diagonal Pad6 approximation 
as 

&4W = R,(A) + G 
44 

A’ (A) CA%+' 
=G+m- (9) 

The coefficient c may be determined by comparing the 
A*+ ’ tern in tbe series expansion of equation (9) 
with equation (7). The interesting result is that 
the accuracy is in fact increased up to the order 
2q + 2. A brief derivation is as follows. After some 
algebraic manipulation from equation (6) one may 
obtain the coefficients Aa+ 1 and A* l 2 in the series 
expansion of R,: 

%(A)= 2 $+&, 
i-o 

l_(-l)4w)2 Aa+L+ 1 
@Iv 1 @I f 111 

(- lYYq!)= __ 
@7Y 1 A%+7 

+ O(Aa+‘). (W 

Now, since the expansion of the added term, 
c Aa + ‘/D,(A)*, is 

we conclude that the modified (q, q) diagonal Pade 
approximation has an order of 2q + 2 if we choose 

(-l)Q(q!)= 
c = (2q + 1)!(2q)!’ (12) 

For example, the series expansion of $,(A) with 
undetermined coefficient c is 

+ (13) 
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Fig. 1. Contour plots of the absolute errors of jexp(x) --R&)1: (a) IexpW-&@)I; (b) IewW- 
R,,(X) 1; (G) 1 exp(x) - R,,(x) I_ These plots are symmetric about the real(x) axis. The absolute errors are 

citi in the figure for every curve. 

be understood by the following example using the 
(q, q) diagonal Pad& approximation, 

x(1 + At) = exp(A)x(t) r &(Ajx(f) 

114) 

which is equivalent to solving 

Dgq(A)x(z + At) = N,(A)x(t). (W 

The numerical evaluation of equation (15) may be 
performed by the following steps: 
(a) Form the product b P N,(A)x(t); 
(b) Form the matrix D.,.,(A); 

Perform the LU-faciorization of D,(A) (E LU), 
where L is a lower triangular matrix, and U is 811 
upper triangular matrix (Moler & Van Loan, 
1989); 
If we let z = Ux, then from equation (15) we have 
Lz = b which can be solved by forward sub&i- 
tution since L is lower triangular; 

(e) Once we have obtained z, the solution, x, can 
then he obtained by solving Ux = z. Since U is 
upper triangular this step requires back substi- 
tution. 

Note that, while in general steps (b) and (c) entail 
0 (nr) operations. steps (a), (d), and (e) require 0 (n 2, 
operations. Moreover, suppose we are solving 
x(t + Ar) = &(A)x(t), which can he expressed by 
the following identity: 

x{f + Ar) = &(A)x(t) 

We recognize that the first term is a conventional 
(q, q) Pad& approximant and can be solved by 
the above steps. The LU-factorization of D,(A), 
which has already been computed, together with 
additional computation of matrix-vector products 
and back-substitutions may then be used to evaluate 
the second term. Since the matrix-vector products 
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Fig. 2. Comparison of accuracy of some rational approximations to exp(x). --Pad& (3,3); 1 I . . Pad& (4.4); 
- modified Pad& (3,3); -. . - Chebyshev rational approximant; and --- geometric convergent 

sequence. 

and back-substitutions require only O(nr) operations 
respectively, the additional amount of computation re- 
quired for the modified diagonal Pad6 approximation 
is about an order smaller than that already incurred 
in computing the diagonal Pad& approximation. 

contour plots of the absolute errors of 
lexp(x)-R33(x)I,lexp(x)-_(x)l, and lexP(x)- 
&(x) 1 for - 3 < Real(x) < 0 and 0 G Imag(x) < 3 are 
given in Fig. 1. For small lx 1, the errors of all these 
three approximants are acceptable. However, the 
errors become pronounced for large 1x1. Aa expected. 
&,(A) is the best of al1 the approximants and about 
100 times more accurate than &(A). &?,,(A) gives 
similar accuracy to &,(A). 

Pad6 approximation is also compared with other 
rational approximations to exponential function, such 
as the Chebyshev rational approximation (Cody et& 
1969) and geometric convergent sequence (!&IT er al., 
1976), in Fig. 2 for x ranging from 0 to -3. These 
models all have approximately the same cut-off order 
( 1 sixth order). It is obvious that for small Ix 1 the 
Pad& approximants are the most accurate. Among the 
three Pa& approximants, the results of their respect- 
ive accuracies are similar to the conclusions drawn for 
Fig. 1. 

In many applications involving linear systems, the 
equations as given in equation (1) may be rearranged 
so that the coefficient matrix K forms a banded 
structure. It often occurs when the fmite difference 
method is used to solve partial differential equations. 
Substantial reductions in computation time can be 
achieved when solving banded systems because the 
triangular factors in LU are also banded. Moreover, 
we can further reduce the operations needed to 
compute the modified diagonal Padt approximation 
by using the factorization method, 

%(A)= fi @+&,A) (I71 
1-i 

where all k, are distinct, nonzero, either real or in 
complex conjugate pairs (Staff 8t Varga, 1975). Be- 
cause D,(A) = N&-A) for the diagonal Pa& ap- 
proximation, we can write the (q, q) diagonal Pade 
approximant I&(A) in complex factorized form, 

where k/’ is the complex conjugate of kj. For example, 

43 (A) = 
I + A/2 + AZ/10 + A’/120 

I-AA/2+AZ/10-A’/120 

x I + (0.1423 + 0.1358i)A 1 I - (0.1423 - 0.1358i)A 

x 

I + (0.1423 - 0.1358;)A 1 I - (0.1423 + 0.135Si)A ’ (19) 
The solution procedure is then to unfold the products 
of equation (18) pair by pair. Each substep of a given 
time step is of the form 

(I - k : A)#’ = (I + k, A)x”’ 

(I - k$ A)#’ = (I + k2A)x(‘) 

(I - kf A)x”’ = (I + ~,A)x’~’ 

(I-k;A)xc*)=(I+kfA)x(@-‘) w 
where x(O) = x(r) and x(r + At) = x(g). 

If A is a band matrix, the factorization method is 
superior to direct evaluation of equation (15). The 
key point is that D,(A) will generally lose its band 
structure and become a nearly full matrix for even 
moderately large q. Suppose A is a band matrix with 
m, = ml = m 4 n where m, is tbe upper bandwidth, 
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Fig. 3. G factor for factorization method with n = 601 (a) real factorization method: @) complex 
factorization method. 

and m, the lower bandwidth. Let ~1 be the flops 
required to execute the FORTRAN statement, 

in equation (15). First, in computing equation (20), 

Y(I) = Y(E) + T x X(I). There are two major advan- 
the flops needed to invert A q times using the factor- 

tages in using factorization over direct computation 
ization method is about q(2nm2 + 3nm)~, while those 
required to invert D,(A) is about (@‘J/3 + n*)~. Thus 
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X 
Fig. 4. Comparison of accuracy in solving heat-conduction equation (21) using several different methods 

as cited in the figure with A4 = 20 and single time step for t = 0.1 s. 

factorization is much more efficient when n 9 m. 
Secondly, the extra computation of explicit formation 
of N,(A), I>,(A), and N,,(A)x(t) is avoided. We call 
the above approach the complex factorization 
method because it generally involves complex arith- 
metic. When the initial values of x and A are real, the 
use of complex arithmetic is not economical. Since 
the complex coefficients occur in conjugate pairs, it is 
possible to rearrange the terms of equation (18) into 
a product with real quadratic and/or real linear 
factors. We may call it the real factorization method. 
This real factorization method should be superior for 
real problems, while being only slightly more difficult 
to implement. 

To describe the efficiency of computation enhanced 
by the factorization method, we define G = u/B, 
where a and /3 are the flops required to solve equation 
(15) using diagonal Pad& approximations without 
and with the factorization method, respectively. 
We consider the matrix band structure for selecting 
appropriate algorithms and subroutines at every 
stage of the computation to minimize both c( and 8. 
The G factor for different diagonal Pad& order q and 
half bandwidth m (=m, = m,) using the real and 
complex factorization method is given in Fig. 3. It is 
clear that G nears optimal when m < 5. This is 
normally the case in general chemical and physical 
problems. 

3. NUMERICAL TESTS AND RESULTS 

To illustrate the gain in efficiency and accuracy 
obtained over conventional methods using the 
modified diagonal Pad6 approximation and factoriz- 
ation method, numerical solutions of the 1-D 
heat-conduction equation and time-dependent 
SchrBdinger equation are given. A similar algorithm 
may be extended to higher dimensions. 

Example 1: Heat-conduction equation 
Now consider solving the normalized 1-D heat- 

conduction equation, 

&+c, t) &4(x, t) 
p=p, O<xil, t>o, (21) at a2 

subject to the boundary conditions 

u(O,r)=u(l,f)=O forall t>O, (22) 

and the initial condition 

u(x, 0) = sin(7cx) for 0 < x < 1. (23) 

We discretize the spatial variable, dividing (0, 1) 
into M equal intervals Ax = 1 JM, and let U,(Z) = 
u(i Ax, 1). We use the three-point central-difference 
approximation for the second derivative, 

a2u(ih90 u v,+,(t)--u,(t)+ u,-,(l) 
ax2 - C&Y . (24) 

Then, since V,(t) = U,(t) = 0, equation (21) is in the 
form of equation (1) with A = M - 1. The matrix A 
is tridiagonal, with diagonal elements -2/(Ax)* and 
sub- and super-diagonal elements ~/(Ax)~. 

Example 2: Time-dependent Schriidinger equation 
We concentrate here upon 1-D quantum-mechan- 

ical scattering (reflection-transmission) phenomena 
as described by the time-dependent SchrBdinger 
equation. Basically, it is a parabolic partial differen- 
tial equation for the evolution of complex wave 
function $. Although this equation can be solved 
accurately in many ways, there is still great interest in 
developing simpler and more accurate algorithms 
(Galbraith ef al., 1984). For the scattering of a wave 
packet by a 1-D potential V(x). the equation has the 
folm. 

ati i--H* at 
where the operator H is defined by, 

H = -&+ V(x). (2’5) 

Here we have chosen units so that Plan&s constant 
R = 1 and the particle mass m = l/2. The initial wave 
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Fig. 5. Comparison of accmwy in solving time-dependent Schriidinger equation (25) using several 
different methods as cited in the figure with A4 = 20 and single time step for t = 0.001 s. 

packet JI (x, t = 0) together with boundary conditions 
+ 4 0 as x + f co is given. Since the underlying 
physical problem requires that the total probability of 
fmding the particle somewhere remains unity, 

s 

+m 
llL12b = 1. (27) _~ 

The formal solution of equation (25) is 

Q(x, r) = exp( - iHt)+ (x, 0) (28) 

which is of the same form as equation (2). On 
replacing H by its finite difference approximation in 
x, we have a complex tridiagonal system to solve. For 
convenience, we represent the initial state of the 
particle which impinges upon the potential by a 
Gaussian wave packet. Thus we put 

Jl(x, 0) = exp(ik,x)exp[-(x - &*/2&. (29) 

We see that this wave packet is centered about x = x0 
with a spread in x governed by a,. The factor 

exp(ik,x) makes our initial wave function move to 
the right with average momentum k,. We appropri- 
ately set the box length = 1, x,, = l/4, co = l/35, and 
k, =x/10. The potential well is V(x)= - l/2 for 
29/M] < x < 32/M). Then the finite difference method 
is applied as in the previous example. 

The accuracy of the various methods is compared 
for solving example 1 in Fig. 4 and for solving 
example 2 in Fig. 5. The methods used were the Pad6 
(3,3), R,,; the Pad6 (4,4), &; the modified Pad& (3,3), 
$3; the Rung*Kutta-F&berg method using 
2nd and 3rd order formulas, NSF,,; and the 
RungeKutta-Fehlberg method using 4th and 5th 
order formdas, RICF,, (Ehle & Lawson, 1975). The 
errors in Figs 4 and 5 are with respect to the exact 
solutions obtained from numericallycalculated 
eigenvalues and eigenvectors, EIG. In solving the 
examples using the Runge-Kutta-Fehlberg method, 
the tolerance in the programs was adjusted to make 
the errors approximately the. same as those obtained 

a! 
20 26 60 35 40 46 60 66 60 

M 
Fig. 6. Comparison of computation flops in solving heatconduction equation (21) using several different 
methods as cited in the tigure with M varying from 20 to 60 and single time step for r = 0.1 s. - treated 
as full matrix; - -- treated as band matrix without real factorization metbod: and . . . . treated as band 

matrix with real factorization method. 
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Fig. 7. Comparison of computation flops in solving time-dependent Schrddinger equation using several 
different methods as cited in the figure with M varying from 20 to 60 and single time step for I = 0.001 s. 
- treated as full matrix; ---treated as band matrix without real factorixation method, and 

. . . . treated as band matrix with complex factorization method. 

using the modified (3,3) Pad& approximation. The 
computation flops needed for these methods with M 
varying from 20 to 60 are compared in Fig. 6 for 
example 1 and in Fig. 7 for example 2. since 
example 1 only involves real arithmetic, we use real 
factorization instead of complex factorization. 

Both Figs 4 and 5 illustrate that the modified Pad6 
(3,3) approximation greatly enhances the accuracy 
compared with the regular Pad& (3,3) by about 100 
times. In fact, the modified Padt (3,3) gives almost 
the same accuracy as Pad& (4,4) which is consistent 
with equations (10) and (11). In general, the modified 
Pad6 (q, q) approximation has an order of 2q + 2. 
Figures 6 and 7 show that, without the factorization 
method, the modi~ed Pad& (3,3) approximation is 
only slightly more tedious than the regular Padt (3,3) 
approximation. But on introducing the factorization 
method, we can effectively reduce the amount of 
computation. It is also noted that, for the same 
accuracy, the Runge-Kutta-Fehlberg method is very 
computationally expensive in these two examples 
given above. Both of the numerical tests illustrate the 
feasibility of our proposed approach in terms of 
efficiency and accuracy. 

4. CONCLUSIONS 

The combination of the modified Pad6 approxi- 
mation with the factorization method is an efficient 
means for the evaluation of matrix exponentials. 
Although we considered only the homogeneous case 
of equation (I), the method is immediately applicable 
to the general linear case, x’(t) = Kx(F) + Y(F), which 
commonly occurs in diffusion problems under a 
time-dependent external field or in the description of 
the Brownian motion by Langevin equation (Myron, 
1986). 

The application of the present algorithm to simu- 
late the spin-echo attenuation of the probe signal in 
intracellular and extracellular diffusion processes 

from pulsed field gradient NMR experiments has 
been successfully carried out in our laboratory. This 
novel approach greatly reduces the computation time 
needed and increases the accuracy. We have also used 
this method to analyze the effect of gradient pulse 
imperfection due to both coil inductance and eddy 
current in the puked field gradient experiments. This 
analysis needs hundreds of matrix exponential com- 
putations in order to achieve the required precision. 
Further modification and application shall be re- 
served for a later occasion. 

Program uuailabiliry-The entire computation described in 
this paper has been carried out with PC-MATLAB version 
3.05, which provides easy access to matrix software devel- 
oped by the LINPACK (Dongarra et al.. 1979) and EIS- 
PACK (Smith er al., 1976) projects. Copies of the program 
can be obtained directly from the authors. A standard 
FORTRAN version of our proposed algorithm is also 
available on request. Please send a diskette and postal return 
costs. 
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