

12 March 2002

Chemical Physics Letters 354 (2002) 179-185

www.elsevier.com/locate/cplett

Study of alkyl chain propagation by electron beam dissociation of methyl groups on Cu(110)

Ping Chuang^a, Y.L. Chan^b, Shu-Hua Chien^a, Ruth Klauser^c, T.J. Chuang^{b,d,*}

^a Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC

^b Center for Condensed Matter Sciences, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan, ROC ^c Synchrotron Radiation Research Center, Hsinchu 300, Taiwan, ROC

^d Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan, ROC

Abstract

Electron irradiation on adsorbed methyl groups on Cu(110) at 90 K to produce coadsorbed methylene groups is observed by HREELS. The cross-sections for CH₂(ads) production and CH₃(ads) desorption are determined at 15 eV e-beam energy. In TPD measurements, CH₂(ads) groups mainly react with CH₃(ads) to generate gaseous ethylene, propylene, and butene with desorption peaks centered all at 310 K independent of the CH₂(ads) surface concentration. The product ratio of C₃H₆/C₂H₄ is linearly proportional to the ratio of CH₂(ads)/CH₃(ads). The results suggest that aggregation of the adsorbates and close proximity of the reactants are critical for the chain propagation reaction. © 2002 Published by Elsevier Science B.V.

1. Introduction

The surface chemistry of hydrocarbons on transition metal surfaces has been widely studied to mimic the important aspects of heterogeneous catalysis [1–3]. In a number of prior studies, methylene (CH₂) is suggested to be the key species responsible for the propagation of long chain hydrocarbons from C₁ methyl radicals or methane molecules [4–10]. So far, however, direct evidence to show the participation of CH₂ on a metal surface to form C₃ or higher mass hydrocarbons remains elusive, particularly under the ultrahigh vacuum (UHV) condition. The notable examples

inferring methylene insertion in the production of C_{2+} alkenes include recent works of $CH_3(ads)$ chemisorbed on Cu [4-6] and oxygen-modified Mo surfaces [9,10]. In some cases, CH₂I₂ decomposition was used to generate methylene radicals as a reagent [5,6]. Yet, chemisorbed $CH_2(ads)$ on the surface has never been clearly determined in such studies. Furthermore, the reaction kinetics of CH₂(ads) with CH₃(ads) has rarely been addressed, in particular the effects of their surface concentrations and spatial distributions. The importance to consider the spatial distribution of the reacting particles rather than the averaging surface concentration was well demonstrated by Wintterlin et al. [11] in the CO oxidation reaction. In that study, the investigators took the spatial distribution of oxygen and CO(ads) into account to revise the reaction rate law. Here we report the first

^{*} Corresponding author. Fax: +886-2-2365-5404.

E-mail address: chuangtj@ccms.ntu.edu.tw (T.J. Chuang).

^{0009-2614/02/\$ -} see front matter @ 2002 Published by Elsevier Science B.V. PII: S0009-2614(02)00058-1

spectroscopic evidence of methylene participation in the formation of C_2H_4 , C_3H_6 and C_4H_8 molecules thermally desorbed from Cu(110) with coadsorbed CH₂ and CH₃ radicals and the reaction kinetics. The ratio of C_3H_6/C_2H_4 products is found to increase linearly with surface concentration ratio of CH₂(ads)/CH₃(ads), rather than the average surface concentration of CH₂(ads). This observation is consistent with the methylene insertion mechanism and suggests a reaction kinetics dominated by the site-effect of chemisorption.

2. Experimental

CH₃ radical was generated in the gas phase by pyrolysis of azomethane, and directed by a quartz nozzle source onto the Cu(110) surface [9,10,12-14]. CH₂ radical was produced as a coadsorbate by electron beam induced dissociation of chemisorbed CH₃(ads). e-Beam is known to be effective in cracking surface hydrocarbons [15-17]. The experiments were carried out in a UHV system equipped with HREELS, XPS, AES, TPD and LEED as described previously [14]. The design of the nozzle source for CH₃ and its operation as well as the Cu surface cleaning procedures were presented in details in our prior work. The decomposition of CH₃(ads) to yield CH₂(ads) was done with a defocused low-energy electron beam provided by the LEED optics. The surface hydrocarbons were analyzed by XPS and HREELS, while the thermal reaction products were determined by TPD with a quadrupole mass spectrometer (QMS, UTI-100C).

3. Results and discussion

When the clean Cu(110) surface at 300 K is exposed to the CH₃ source with CH₃N₂CH₃ as the feed gas and the quartz nozzle operated at 1100 K, CH₃(ads) chemisorption is clearly evident by XPS and HREELS. At low exposures, some adsorbed NCH₃ species is also detected due to the decomposition of the parent azomethane molecules impinging along with CH₃ radicals on the surface [18]. Such N-containing species is, however, completely replaced by the incoming CH₃ when the gaseous exposure exceeds 1 L in our arrangement. Fig. 1a shows the HREELS spectrum of CH₃(ads) at 1 monolayer (1 ML) coverage with characteristic vibrational frequencies at 403 cm⁻¹ (v_{M-C}), 1153 cm⁻¹ (δ_s), 1427 cm⁻¹ (δ_{as}), 2806 cm⁻¹ ($2\delta_s$ Fermi resonance), 2900 cm⁻¹ (v_s) and 2960 cm⁻¹ (v_{as}). XPS spectra exhibit a major C(1s) peak at 283.4 eV with a shoulder towards higher binding energy (near 285 eV), indicating the presence of a small amount of CH_x(ads) ($x \le 2$) [14]. In fact, the HREELS spectra also contain some weak

Fig. 1. HREELS spectra of: (a) 1.8 L CH₃/Cu(110) at 300 K, i.e. 1 ML coverage; (b) sample (a) cooled to 90 K and exposed to 68 eV, 0.03 C electrons, and then annealed to various temperatures; (c) 250 K; (d) 300 K; (e) 375 K. The reference spectrum at bottom is from a submonolayer of CH_2I_2 adsorption on Cu(110) at 100 K and then annealed to 230 K to form $CH_2(ads)$ species.

signals that can be attributed to $CH_2(ads)$. At 300 K, the saturation surface coverage does not exceed 1 ML when the exposure is above 1 L, as determined by C(1s) and Cu(2p) XPS signal intensities and by TPD spectra. The sample is then cooled to 90 K and the HREELS spectrum remains unchanged. It is subsequently irradiated by a uniform e-beam operated at 68 eV on the entire sample with a total charge of 0.03 C (Coulomb). After the irradiation, HREELS spectrum reveals that CH₃(ads) vibrational peaks decrease in intensity, while new peaks appear near 443 cm⁻¹ ($v_{\rm M}$ -CH₂), 951 cm⁻¹ (ρ -CH₂), 1314 cm⁻¹ (δ -CH₂), 2879 cm^{-1} (v_s-CH₂) and 2935 cm⁻¹ (v_{as}-CH₂) [14], as displayed in Fig. 1(b). These peaks clearly show the formation of $CH_2(ads)$ from $CH_3(ads)$. There is no significant amount of CH(ads) product which should exhibit its characteristic δ_{CH} vibration near 780 cm⁻¹. No graphitic carbon is produced by ebeam either, since the residual carbon after TPD is very small. The bottom spectrum in Fig. 1 is a reference spectrum for CH₂(ads) obtained by adsorbing a submonolayer of CH_2I_2 on Cu(110) at 90 K and then annealing at 230 K to decompose the molecule into CH_2 radicals and I atoms [5,6]. Clearly, the characteristic vibrational features for $CH_2(ads)$ are very similar in both cases. In addition to the chemical decomposition, the e-beam

(a) 3L CH,/Cu(110) at 300 k

causes some molecular desorption by electronic excitation. The effect can be detected as well by the change of C(1s) spectrum. As the e-beam dosage increases, the intensity ratio of CH₂(ads)/ CH₃(ads) also increases, but the total surface concentration of $CH_2 + CH_3$ decreases. In a previous study of trimethyl indium on GaAs(100) irradiated with an e-beam, the formation of a surface CH₂ species was reported based on the characteristic $\delta(CH_2)$ deformation mode at 1340 cm⁻¹ [19]. In the e-beam study of (CH₃)₃Al adsorbed on GaAs and InSb, the same $\delta(CH_2)$ vibrational feature was also observed at 1340 cm⁻¹ [20]. Therefore, we feel confident in the vibrational assignments of CH₂(ads) and CH₃(ads). The net effects of e-beam irradiation on chemisorbed $CH_3/Cu(110)$ are clearly the partial conversion of CH₃(ads) into CH₂(ads) and the desorption of hydrocarbon radicals. These e-beam induced effects are very similar in the electron energy range of 5-70 eV investigated in the present study.

Figs. 1c, d and e depict the HREELS spectra when the temperature of the e-beam irradiated sample is raised from 90 to 250, 300 and 375 K, respectively. Obviously, $CH_2(ads)$ signals decrease drastically above 350 K, but $CH_3(ads)$ intensities remain relatively strong even at 375 K. Fig. 2a illustrates the typical TPD spectra of CH_3 exposed

(C) 0.153 coul electron-irradiation

310

475

X 2

Fig. 2. TPD spectra monitoring m/e = 14 (CH₄), 27 (C₂H₄), and 41 (C₃H₆) after exposing 3 L CH₃ on Cu(110) at 300 K, resulted in 1 ML coverage (a), then cooled to 90 K for electron irradiation at 15 eV energy of 0.036 C (b) and 0.153 C (c), respectively.

(b) 0.036 coul electron-irradiation

X 2

sample with 1 ML coverage at 300 K and then cooled to 90 K for TPD at a heating rate of 3 K/s to 700 K, without e-beam irradiation. The primary gaseous products as detected by the QMS are CH₄, C₂H₄, C₂H₆ and C₃H₆. This is different from the prior report on $CH_3I/Cu(110)$ with C_2 hydrocarbons being the highest mass species evolved from the system [5]. The TPD spectra exhibit a major peak at 475 K for CH₄, C₂H₄ and C_3H_6 , and a minor one at 395 K. For C_2H_6 , the signal is relatively weak with a desorption peak around 470 K. The molecular entities of these products are determined by measuring the relative signal intensities at various masses, and comparing those with the cracking patterns of our QMS. For instance, mass signals at 14, 15 and 16 amu are used to identify CH₄, 26, 27 and 28 amu for C₂H₄, 29 and 30 amu for C_2H_6 , and 39, 41 and 42 amu for C_3H_6 . The observed C_2H_6 is apparently due to the coupling of two $CH_3(ads)$ radicals. The proximity in production and desorption temperatures for CH_4 , C_2H_4 and C_3H_6 implies similar reaction mechanism for these species. The TPD signals at 395 and 475 K may be due to two kinds of $CH_3(ads)$ chemisorption sites on the corrugated surface, namely the minor and the major binding sites. In prior studies on Cu surfaces by Bent's group [3-6], CH₃(ads) decomposition at elevated temperatures into $CH_2(ads)$ and H(ads) by α elimination was proposed to be the rate-determining step in the formation of CH₄ and C₂H₄. In the suggested scheme, CH₄ was originated from $CH_3 + H$ reaction, while C_2H_4 was generated from $CH_3 + CH_2 \rightarrow C_2H_5 \rightarrow C_2H_4(g) \uparrow +H$ with C_2H_5 as an intermediate species. We find that this scheme is generally operative in our system.

Figs. 2b and c depict the TPD spectra after 1 ML of CH₃(ads) at 90 K is irradiated by e-beam at 15 eV energy with 0.036 and 0.153 C of electrons, respectively. Apart from CH₄, C_2H_4 and C_3H_6 , we also detect some C_4H_8 signal. The desorption temperature of molecular C_2H_4 on Cu(110) has been reported at 190 K with heating rate of 2.5 K/s [21]. A prior study on CH₂I₂/Cu(110) indicated that the combination of CH₂ to form C_2H_4 was at 290–300 K [5]. It was also suggested that CH₂ could react with CH₃ and be desorbed as C_2H_4 at 345 K. Therefore, from our own measurements

and these prior studies, we can assign the small C_2H_4 signal at 150 K to ethylene, which is generated by CH₂ coupling but trapped on the surface at 90 K. Above 200 K, the main reaction channels for CH₂(ads) are bimolecular reaction to form C_2H_4 at 250 K and $CH_2 + CH_3 \rightarrow C_2H_5 \rightarrow$ $C_2H_4(g)\uparrow +H$ at 310 K. For the e-beam irradiated sample, the production and desorption signals for C_3H_6 and C_4H_8 occur mainly also at 310 K. It is suggested that the intermediate $C_2H_5(ads)$ species react further with $CH_2(ads)$ via $C_2H_5 + CH_2 \rightarrow$ $C_3H_7 \rightarrow C_3H_6(g) \uparrow +H$ and $C_3H_7 + CH_2 \rightarrow$ $C_4H_9 \rightarrow C_4H_8(g) \uparrow +H$ in the chain propagation processes. These products all desorb at around 310 K, independent of CH₂(ads) concentration and exhibiting the first-order reaction kinetics. Fig. 3 illustrates in more details the TPD spectra of C2H4 and C₃H₆ with various electron dosages as indicated. The peaks at 310 K clearly show that the amount of C_3H_6 production increases at a faster rate than that of C₂H₄ as a function of e-beam dosage. In both Figs. 2 and 3, the additional signals for CH₄, C₂H₄ and C₃H₆ at 395 and 475 K are due to $CH_3(ads)$ reactions as discussed above for the non-irradiated sample. The weak CH₄ peak at 360 K is attributed to the desorption of H(ads) via the reaction with CH₃. The temperature depen-

Fig. 3. TPD spectra monitoring m/e = 27 (C₂H₄), and 41 (C₃H₆) with various electron dosages at 15 eV energy as indicated.

dence of the HREELS spectra (Fig. 1) is closely correlated with the TPD spectra to support the interpretation.

According to the reaction scheme as discussed above, the surface concentrations of CH₂(ads) and CH₃(ads) after electron irradiation can be calculated from the TPD data. Clearly the formation of every CH₄, C₂H₄, C₃H₆ and C₄H₈ molecule consumes one $CH_3(ads)$. Therefore, by calculating the desorption amount of these four species at 310, 395 and 475 K, we can determine the surface concentration of CH₃(ads). Likewise, the surface concentration of $CH_2(ads)$ can be obtained in the same manner with the addition of extra C_2H_4 peak at 250 K. The desorption amount of each species is calculated by integrating the peak area of TPD spectra corrected with the sensitivity factors of QMS. These factors are in turn calibrated using methane, ethylene, ethane and propylene standard gases. The results of such analysis are plotted in Fig. 4 as a function of electron dosage. Repetitive measurements show that the experimental uncertainty is about $\pm 10\%$. The total surface carbon as a function of e-beam dosage can also be directly measured from the C(1s) XPS signal. The result by XPS is practically the same as that obtained by

Fig. 4. Surface concentrations as a function of electron dosage on $CH_3/Cu(110)$ at 90 K. The relative concentrations of CH_2 (open circles), CH_3 (solid circles) and total carbon (triangle down) are calculated from TPD data. The solid, long dash, and short dash lines are fitting results of $(CH_2 + CH_3)$, CH_3 and CH_2 , respectively.

TPD. Under the e-beam, $CH_3(ads)$ groups may be either desorbed or dissociated. The desorption and dissociation cross-sections can be obtained by fitting the decreases of both $CH_3(ads)$ and total carbon surface concentration (θ) to the following expression:

$$\theta(\gamma) = \theta_0 \mathrm{e}^{-\sigma\gamma},$$

where γ is the electron dosage in Coulomb, and σ the effective cross-section. From the decrease of total surface hydrocarbon $(CH_2 + CH_3)$, top curve in Fig. 4) as a function of γ , we determine the desorption cross-section (σ_p) of CH₃(ads) to be 7.7×10^{-19} cm². Likewise, the total cross-section (σ_t) for both CH₃ desorption and dissociation to form CH₂ is calculated to be 2.17×10^{-18} cm², based on the decreasing signal of CH₃(ads) as a function of γ . In the fitting, the initial surface concentrations (θ_0) of total carbon and CH₃(ads) are taken to be 1.0 and 0.85, respectively. The dissociation cross-section (σ_d) is then obtained by subtracting σ_p from σ_t and found to be 1.4×10^{-18} cm². This value can be compared with the CH₃/Pt(111) system, in which a dissociation cross-section of $< 1 \times 10^{-17}$ cm² was reported with the electron energy at 50 eV [16]. The electron energy effects on cross-sections have also been examined. It is found that in the range of 5–70 eV, the dissociation cross-section increases with electron energy, while the desorption cross-section is quite independent of that factor.

The alkyl chain reaction mechanism can be further elucidated by examining the relation of product ratios and surface composition. In the reaction scheme as mentioned above, the desorption products of C₂H₄, C₃H₆ and C₄H₈ at 310 K are generated by sequential CH₂-insertion reactions. Accordingly, the production rate for ethylene should be proportional to $[CH_2]$ surface concentration, whereas that for propylene should depend on $[CH_2]^2$. Namely, the yield ratio of C_3H_6/C_2H_4 should be proportional to $CH_2(ads)$ concentration. When we plot the ratio of $C_{3}H_{6}/C_{2}H_{4}$ as a function of CH₂(ads), however, it shows a non-linear (actually superlinear) dependence. This means that the conventional kinetic theory used in the gas and liquid phases, in which the reaction rate depends on the average concentration of the reactants, is not applicable in the present system. In considering the formation of C_3H_6 , the lifetime of $C_2H_5(ads)$ intermediate species must be taken into account. Within the transient lifetime of $C_2H_5(ads)$, it can be desorbed as C_2H_4 or react further with $CH_2(ads)$ to form $C_3H_7(ads)$. If $C_2H_5(ads)$ is surrounded by $CH_3(ads)$, C_2H_4 desorption would be favored. On the other hand, if $C_2H_5(ads)$ has $CH_2(ads)$ as its immediate neighbor, then C_3H_6 production would be enhanced. Therefore, it seems reasonable to plot the product ratio of C_3H_6/C_2H_4 as a function of $CH_2(ads)/CH_3(ads)$. This is displayed in Fig. 5, and indeed it shows a good linearity. The result indicates that a high concentration of CH₃(ads) can cause the transient C_2H_5 to be surrounded by CH₃(ads), and this can inhibit the further reaction of C_2H_5 with $CH_2(ads)$. Apparently, $CH_2(ads)$ sitting very nearby the transient species is crucial for the production of higher mass hydrocarbons. Surface diffusion of $CH_2(ads)$ seems to be too slow for the chain propagation reactions.

In further studies of CH₃ on Cu(111) and Cu(110) by LEED, we find that CH₃(ads) groups tend to form two-dimensional (2D) islands on the metal surfaces, even at a small surface coverage $(\theta \ll 1)$. Namely, the chemisorbed radicals prefer to aggregate together rather than spread out uniformly on the Cu surface. Under e-beam irradia-

Fig. 5. The product ratio of C_3H_6/C_2H_4 desorbed at 310 K is plotted as a function of surface concentration ratio of CH_2/CH_3 . CH_2 is produced by irradiation of $CH_3/Cu(110)$ at 90 K with 15 eV electrons.

tion, $CH_2(ads)$ is generated from $CH_3(ads)$ and the two species can coexist in the mixed 2D islands on Cu(110). In such case, the possibility of $CH_2(ads)$ occupying the neighboring sites of a transient species can be proportional to the ratio of $CH_2(ads)/CH_3(ads)$. The good linearity of C_3H_6/C_2H_4 vs $CH_2(ads)/CH_3(ads)$ is consistent with such chemisorption geometry. Furthermore, the peak positions of C_2H_4 , C_3H_6 and C_4H_8 desorption directly correlated with the chain reactions are found to be the same (near 310 K), and independent of the surface concentration of $CH_2(ads)$. This fact provides additional support that it is the nearby $CH_2(ads)$ but not the diffused CH₂(ads) to participate in the formation of propylene and butene products.

4. Summary

Irradiation by low-energy electrons on chemisorbed methyl groups on Cu(110) can induce desorption and molecular dissociation into methylene radicals. These effects are investigated and verified by XPS, TPD and HREELS surface analytical techniques. By controlling the e-beam dosage, we can vary the relative surface concentrations of coadsorbed CH₂(ads) and CH₃(ads) and study their reaction behavior. With this approach, the CH₃(ads) dissociation and desorption cross-sections are determined at 15 eV e-beam energy to be 1.4×10^{-18} and 7.7×10^{-19} cm², respectively. Gaseous C₂H₄, C₃H₆ and C₄H₈ molecules are found to evolve from the surface covered with the two radical species in TPD measurements. The peak desorption temperatures of these products are observed all around 310 K independent of the CH₂(ads) surface concentration. A hydrocarbon chain propagation reaction scheme involving $CH_2(ads)$ insertion and the formation of transient alkyl intermediate species has been extended to account for the observed phenomenon. Further analysis of the C_3H_6/C_2H_4 product ratios as a function of electron dosage reveals that it is linearly proportional to the ratio of $CH_2(ads)/$ $CH_3(ads)$ surface concentrations. By considering the lifetime of transient species in the chain reactions, we conclude that aggregation of the adsorbates in the form of 2D islands and close proximity of the reactants are essential for the generation of high mass products.

Acknowledgements

The authors wish to thank the National Science Council and the Ministry of Education of ROC for the support of this work.

References

- [1] F. Zaera, Chem. Rev. 95 (1995) 2651.
- [2] G.A. Somorjai, Chem. Rev. 96 (1996) 1223.
- [3] B.E. Bent, Chem. Rev. 96 (1996) 1361.
- [4] J.L. Lin, B.E. Bent, J. Vac. Sci. Technol. A 10 (1992) 2202.
- [5] C.M. Chiang, T.H. Wentzlaff, B.E. Bent, J. Phys. Chem. 96 (1992) 1836.
- [6] J.L. Lin, C.M. Chiang, C.J. Jenks, M.X. Yang, T.H. Wentzlaff, B.E. Bent, J. Catal. 147 (1994) 250.

- [7] H.J. Wu, H.K. Hsu, C.M. Chiang, J. Am. Chem. Soc. 121 (1999) 4433.
- [8] R.C. Brady, R. Pettit, J. Am. Chem. Soc. 102 (1980) 6182.
- [9] S.H. Kim, P.C. Stair, J. Am. Chem. Soc. 120 (1998) 8535.
- [10] S.H. Kim, P.C. Stair, J. Phys. Chem. B 104 (2000) 3035.
- [11] J. Wintterlin, S. Volkening, T.V.W. Janssens, T. Zambelli, G. Ertl, Science 278 (1997) 1931.
- [12] X.D. Peng, R. Viswanathan, G.H.J. Smudde, P.C. Stair, Rev. Sci. Instrum. 63 (1992) 3930.
- [13] Y.L. Chan, P. Chuang, T.J. Chuang, J. Vac. Sci. Technol. A 16 (1998) 1023.
- [14] T.J. Chuang, Y.L. Chan, P. Chuang, R. Klauser, J. Electr. Spectr. Relat. phenom. 98&99 (1999) 149.
- [15] X.-L. Zhou, J.M. White, J. Phys. Chem. 96 (1992) 7703.
- [16] D.J. Alberas-Sloan, J.M. White, Surf. Sci. 365 (1996) 212.
- [17] Y.L. Tsai, B.E. Koel, Langmuir 14 (1998) 1290.
- [18] P. Chuang, Y.L. Chan, C.H. Chuang, S.-H. Chien, T.J. Chuang, Appl. Surf. Sci. 169&170 (2001) 153.
- [19] A.A. Aquino, C.P.A. Mulcahy, T.S. Jones, Chem. Phys. Lett. 252 (1996) 159.
- [20] C.P.A. Mulcahy, J. Eggeling, T.S. Jones, Chem. Phys. Lett. 288 (1998) 203.
- [21] C.J. Jenks, A. Paul, L.A. Smoliar, B.E. Bent, J. Phys. Chem. 98 (1994) 572.