Communication

Increased Conversion to 2,4,6-Triarylpyrylium Salt: Aldol Cyclotrimerization of Acetophenone in BMImPF₆ Ionic Liquid

Po-Neng Chuang^{a,b} (莊博能), Tsao-Dong Wu^{a,c} (吳朝棟) and Ling-Kang Liu^{a,c}* (劉陵崗)

^aInstitute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, R.O.C.

^bDepartment of Chemistry, National Central University, Jhongli, Taoyuan 32001, Taiwan, R.O.C.

^cDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan, R.O.C.

Substituted acetophenone 1 in BMImPF₆ ionic liquid, heated at 120 °C for 24 h, produces β -methylchalcone 2, triarylbenzene 3, and triarylpyrylium salt 4. BMImPF₆ catalyzes the self-aldol condensation of 1, whose cyclotrimerization gives an increased conversion to 4 at the expense of 3 normally obtained from the cyclotrimerization of 1 in common organic solvent.

Keywords: Ionic liquid; Acetophenone; Self-aldol condensation.

Room temperature ionic liquids (RTILs), a class of organic salts that melt below 100 °C, are often used as solvent in homogeneous catalysis in order to take advantages of negligible vapor pressure, high thermal stability, tunable polarity, etc. The highly polar nature of RTILs likely increases the life time of a charge-separated transition state during reaction. Seddon et al. found that, employing EMImAl₂Cl₇ melts in the Friedel-Crafts acetylation reaction of naphthalene, the thermodynamically unfavored 1isomer became the major product whereas the thermodynamically favored 2-isomer exhibited only a 2% yield (Scheme I).² Xiao et al. also reported that the Pd-catalyzed Heck arylation reaction of electron rich olefins and aryl halides in BMImBF₄ produced essentially the less common branched products, not the linear ones (Scheme II).³ These results suggested that as media of reactions, RTILs could shift the reaction to follow the more ionic pathways.

Conventionally aldol condensation reactions were performed in organic solvents. In 2002, Mehnert *et al.* started investigation of the aldol condensation reactions employing imidazolium ionic liquid phases treated with aqueous solution of NaOH as the catalyst. Later, piperidine and L-proline in RTIL, respectively, were studied extensively. Also appeared were the pyrrolidine-functionalized ionic liquids for the aldol condensation reactions. Up to the present time, the base catalyzed aldol condensation reactions in ionic liquids have been documented.

Scheme I Friedel-Crafts acetylation reaction of naphthalene

Scheme II Pd-catalyzed Heck arylation reaction of olefin and aryl halide

In this report we wish to present the observation of aldol cyclotrimerization of acetophenone mediated by BMImPF₆, without the addition of base. The cyclotrimerization was found to produce in substantial amounts the 2,4,6-triarylpyrylium salts⁹ in addition to the more familiar 1,3,5-triarylbenzene. That is in sharp contrast to the results of conventional preparation of 1,3,5-triarylbenzene in organic phase with Lewis acid catalyzed aldol cyclocondensation. ^{4,10-12}

Herein substituted acetophenone 1 and hydrophobic BMImPF₆ ionic liquid were mixed well in a round bottomed flask equipped with a condenser and the solution

^{*} Corresponding author. Fax: +886-2-27831237; E-mail: liuu@chem.sinica.edu.tw

stirred and maintained constantly at 120 °C. During the reaction the mixture became increasingly viscous, even solidified. After 24 h, the reaction was stopped and the reaction mixture extracted with Et_2O for 3 times. The combined Et_2O fractions were rotary evaporated and the crude purified with SiO_2 column chromatography. In addition to unused acetophenone, β -methylchalcone 2 and triarylbenzene 3 were obtained (Scheme III, with conversions). Without BMImPF₆ ionic liquid, only acetophenone was recovered after being heated at 120 °C for 24 h. With hydrophilic BMImBr ionic liquid, there was no reaction either.

Scheme III Aldol condensation reaction of acetophenone in BMImPF₆

The reaction mixture after Et_2O extraction was then added with just enough amounts of EtOH in order to keep the ionic liquid in solution. After standing for 24 h, triarylpyrylium PF₆ salt 4 precipitated and the salt was characterized by NMR (1H , ^{13}C , ^{19}F , and ^{31}P) and other analytical methods. In the 1H NMR spectra of 4b, for example, the singlet resonance at δ 9.06 was assigned to the pyrylium ring protons, downfield shifted by 1.3 δ units when compared to the singlet resonance at δ 7.73 assigned to the inner benzene ring protons of 3b, attributable to the highly electron-withdrawing nature of cationic pyrylium.

Because in the above experiments, 2 is a dimeric intermediate of 1 and both 3 and 4 are trimers of 1, it is interesting to look into more details the ratios of conversion on 4a/3a, 4b/3b, and 4c/3c, at ca 0.1, 0.1, and 0.6, respectively. A more electron releasing substituent at 1 favors the production of 4.

Jing *et al.* detailed the treatment of **1** with *p*-tolylsulfonyl acid and a catalytic amount of SnCl₄ in C₅H₁₁OH to produce **3** in good yields without noticing **4**. ¹¹ Alternatively the strategy of Lewis acid promoted cyclotrimerization of acetyl aromatics lead to 1,3,5-triarylbenze formation (100% yield) with conditions of TiCl₄ (1.5 eq), *o*-

C₆H₄Cl₂, 180 °C for 24 h; no 2,4,6-triarylpyrylium formation being indicated. ¹² Obviously the aldol cyclotrimerization reaction of **1** in organic solvents produces mainly **3**; similar reaction in hydrophobic BMImPF₆ produces substantially the ionic **4**, in addition to the neutral **3**.

Though formulated as the PF₆ salt, the anions of **4a-c** were not 100% PF₆, nonetheless. In the ³¹P NMR spectra, **4a-c** exhibited a septuplet at $ca \, \delta$ -145 with ¹ $J_{PF} = 711 \, Hz$ (assigned to PF₆) plus a singlet at $ca \, \delta$ -1.8 (assigned to H₃PO₄) with intensities varying from sample to sample. In the ¹⁹F NMR spectra, **4a-c** exhibited a doublet at $ca \, \delta$ -70 with ¹ $J_{PF} = 711 \, Hz$ (assigned to PF₆) and a singlet at $ca \, \delta$ -147 (assigned to HF) with varying intensity, too. These NMR data suggested existence of the H₂O-HF-P₂O₅ phase system in that PF₆ and H₃PO₄ are likely equilibrated by hydrolysis, ¹³ leading to the existence of fluorides in the system.

Hydrophobic BMImPF₆ ionic liquid was regarded as thermally stable with a thermal decomposition temperature at 349 °C as shown in TGA studies. ¹⁴ However, Kosmulski *et al.* reported that wet spots could be observed in crucibles of TGA after conditioning bmimPF₆ at 200 °C for 10 h, i.e. the thermal decomposition temperature based on fast TGA scans does not imply a long term thermal stability. ¹⁵ In our experiments, the ionic liquid layer after the reaction was also examined with ¹H NMR, whose spectrum revealed two different sets of BMIm peaks. One set of signals was identical to that of BMImPF₆; the other set associated with anion(s) other than PF₆⁻. The PF₆⁻ anions of the BMImPF₆ ionic liquid at 120 °C in the long term presence of 1 must have degraded to produce at least tracing fluorides and PF₅ to catalyze the aldol condensation of 1.

The PF₆ anion has been known to be weakly coordinating. ¹⁶ Gilbert *et al.* reported that in ionic liquids with weakly coordinating anions, tracing water exists as H₃O⁺, not H₂O¹⁷. Under the constraint, the ionic liquids would allow aldol addition followed by slow H₂O elimination. Loh *et al.* observed that L-proline in BMImPF₆ catalyzes aldol reactions in that H₂O elimination products could not be observed within 20 h. ^{7(b)} In line with the slower H₂O elimination steps, a mechanism is proposed in Scheme IV for the production of 4 in BMImPF₆ ionic liquid. A depronated and activated 1 adds to a second molecule of 1 to form the intermediate structure A, which after elimination of H₂O equivalent, results in 2. When 2 is depronated and activated, it adds to a third molecule of 1 to form intermediate structure

Scheme IV Proposed mechanism for aldol cyclotrimerization of acetophenone derivatives in BMImPF₆

B. Similar elimination gives **C** whose dehydration yields the cyclotrimeric product **3**. Alternatively, if the deprotonated and activated **2** adds to structure **A** (accumulated because of the slower elimination step); the outcome changes to intermediate structures **D** then **E**, in that the formation of a remote double bond is followed by its extrusion *via* the 6-membered cyclic transition state¹⁸ to yield the cyclotrimeric product **4**. The polymeric materials found in these reactions is consistent to the extrusion of ArCMe=CH₂.

As the imidazolium cations were spectators only, the same chemistry also worked with other dissolving PF_6 salts. The $NaPF_6$ dissolution in **1** was similarly investigated at 120 °C for 24 h in that the aldol cyclotrimerization reaction also proceeded. The conversion results after the same Et_2O and EtOH workup were given in Scheme V. Noted were the increasing conversions of both **3** and **4** in the $NaPF_6$ studies, presumably the reactive dissolution of $NaPF_6$ in **1** gave high ion concentrations in the mixture and the conversion was seemingly faster than in $BMImPF_6$. To avoid solidification of mixtures in flask, a combination of

Scheme V Aldol condensation reaction of acetophenone derivatives upon dissolution of NaPF₆

1b/NaPF₆/BMImPF₆ (10 mmol/10 mmol/2 mL) was also heated at 120 °C for 24 h. In this case the **4/3** ratio was found to be 1.6, higher than 0.1 with only BMImPF₆ and 0.7 with only NaPF₆.

As a conclusion, the BMImPF₆ ionic liquid mediated aldol cyclotrimerization of acetophenones 1 are PF₅ catalyzed processes with a slow $\rm H_2O$ elimination step; the cyclotrimerization of 1 in BMImPF₆ ionic liquid and the cyclotrimerization of 1 upon reactive dissolution of NaPF₆ in 1 exhibit noted conversion to the trimeric product of 2,4,6-triarylpyrylium salts 4 at the expense of 1,3,5-triarylbenzenes 3.

EXPERIMENTAL SECTION

General procedures

Into a single-neck round-bottomed flask (50 mL) was introduced a stirring bar, substituted acetophenone (50 mmol) and bmimPF₆ (10 mL, 58 mmol), then fitted with a condenser, before the temperature of the mixture being raised and kept at 120 °C for 24 h with constant stirring. After this, the mixture was cooled down to room temperature and quenched by extraction with Et₂O (3 \times 15 mL). The combined Et₂O fractions were rotary evaporated. The crude was purified by SiO₂ column chromatography, eluting with 1:10 Et₂O/hexanes, to recover 1, yield oily 2 and solid 3. Compound 2 slowly solidified upon standing at room temperature. Compound 3 was recrystallized from CH₂Cl₂/ EtOH. The remaining ionic liquid layer was added with just enough amounts of EtOH and let stand for 24 h to give precipitate 4. Conversions are shown in Scheme III. Similarly, acetophenone reaction with NaPF₆ (10 mmol each) was carried out with conversions shown in Scheme V.

Characterization data

2a yellow solid (CAS 495-45-4), mp 56 °C; ¹H NMR (CDCl₃): δ 7.8-7.5 (m, 10H), 7.2 (s, 1H), 2.6 (s, 3H); MS-

WE.P.S.

EI: m/z 222.^{10(b)} **3a** white solids (CAS 612-71-5), mp 168-169 °C; ¹H NMR (CDCl₃): δ 7.77 (s, 3H), 7.68-7.70 (m, 6H), 7.45-7.49 (m, 6H), 7.36-7.39 (m, 3H); MS-EI: m/z 306.¹⁹ **4a** fluorescing yellow powder, ¹H NMR (d⁶-DMSO): δ 9.17 (s, 2H), 8.59-8.61 (m, 6H), 7.86-7.89 (m, 3H), 7.77-7.82 (m, 6H); ¹³C NMR (d⁶-DMSO): δ 170.09, 165.13, 135.13, 134.99, 132.49, 130.00, 129.83, 129.80, 129.11, 128.78, 115.20; ¹⁹F NMR (d⁶-DMSO): δ -69.5 (d, J = 711 Hz); ³¹P NMR (d⁶-DMSO): δ -144.9 (septet, J = 711 Hz); MS-EI: m/z 309 ([M – A]⁺).²⁰

2b yellow solid (CAS 36201-04-4), mp 57-58 °C; ¹H NMR (CDCl₃): δ 7.92 (d, 2H), 7.49 (d, 2H), 7.26 (d, 2H), 7.22 (d, 2H), 7.17 (s, 1H), 2.61 (s, 3H), 2.41 (s, 3H), 2.39 (s, 3H); MS-EI: m/z 250. ^{10(b)} **3b** white solids (CAS 50446-43-0), mp 167-168 °C; ¹H NMR (CDCl₃): δ 7.73 (s, 3H), 7.59 (d, J = 8 Hz, 6H), 7.27 (d, J = 8 Hz, 6H), 2.41 (s, 9H);MS-EI: m/z 348. 19(c) 4b fluorescing yellow powder, ¹H NMR (d⁶-Acetone): δ 9.06 (s, 2H), 8.46-8.54 (m, 6H), 7.60-7.65 (m, 6H), 2.53-2.54 (m, 9H); 13 C NMR (d 6 -DMSO): δ 169.15, 163.79, 146.80, 146.16, 130.43, 129.94, 129.34, 128.48, 126.20, 113.03, 21.40, 21.36; ¹⁹F NMR (d⁶-DMSO): δ -72.8 (d, J = 711 Hz), -147.6; ³¹P NMR (d⁶-DMSO): δ -1.8, -144.9 (septet, J = 711 Hz); MS-EI: m/z351 ($[M - A]^+$).²¹ **2c** yellow solid (CAS 16197-83-4), mp 84-85 °C; 1 H NMR (CDCl₃): δ 7.9-7.8 (m, 8H), 7.1 (s, 1H), 3.8 (s, 6H), 2.5 (s, 3H); MS-EI: m/z 282. ^{10(b)} 3c white solids (CAS 7509-20-8), mp 139-141 °C; ¹H NMR (CDCl₃): δ 7.65 (s, 3H), 7.62 (d, 6H, J = 9.3 Hz), 7.02 (d, 6H, J = 9.3Hz), 3.85 (s, 9H); MS-EI: m/z 396. ^{19(c)} 4c fluorescing orange crystals, ¹H NMR (d⁶-DMSO): δ 8.82 (s, 2H). 8.61-8.64 (d, 2H), 8.50-8.53 (d, 4H), 7.29-7.32 (m, 6H), 3.96-3.98 (m, 9H); 13 C NMR (d⁶-DMSO): δ 167.37, 165.21, 164.41, 161.40, 132.25, 130.39, 124.12, 121.00, 115.15, 110.25, 55.97, 55.83; ¹⁹F NMR (d⁶-DMSO): δ -70.2 (d, J= 711 Hz), -147.6; ³¹P NMR (d⁶-DMSO): δ -144.9 (septet, J= 711 Hz); MS-EI: m/z 399 ([M – A]⁺). ^{10(b)}

Received February 19, 2008.

REFERENCES

(a) Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363-2389.
 (b) Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, Germany, 2003.
 (c) Rogers, R. D.; Seddon, K. R. Ionic Liquids as Green Solvents: Progress and Prospects; ACS Symp. Ser., 856; ACS: Washington, D. C., 2003.
 (d) Handy, S. T. Chem.

- Eur. J. 2003, 9, 2938-2944. (e) Rogers, R. D.; Seddon, K. R. Ionic Liquids: Industrial Applications for Green Chemistry; ACS Symp. Ser., 818; ACS: Washington, D. C., 2002. (f) Dupont, J.; De Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667-3691. (g) Sheldon, R. Chem. Commun. 2001, 2399-2407. (h) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772-3789. (i) Welton, T. Chem. Rev. 1999, 99, 2071-2083.
- Adams, C. J.; Earle, M. J.; Roberts, G.; Seddon, K. R. Chem. Commun. 1998, 2097-2098.
- 3. Mo, J.; Xu, L.; Xiao, J. J. Amer. Chem. Soc. 2005, 127, 751-760.
- (a) Modern Aldol Reactions; Mahrwald, R. Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 1 and 2. (b) March, J.; Smith, M. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th ed.; Wiley: New York, 2001. (c) Evans, D. A. Aldrichimica Acta 1982, 15, 23-32.
- (a) Mehnert, C. P.; Dispenziere, N. C.; Schlosberg, R. H. US Patent 6,552,232,B2, 2003. (b) Mehnert, C. P.; Dispenziere, N. C.; Cook, R. A. Chem. Commun. 2002, 1610-1611.
- Davey, P. N.; Forsyth, S. A.; Gunaratne, H. Q. N.; Hardacre, C.; McKeown, A.; McMath, S. E. J.; Rooney, D. W.; Seddon, K. R. *Green Chem.* 2005, 7, 224-229.
- (a) Cordova, A. Tetrahed. Lett. 2004, 45, 3949-3952. (b)
 Loh, T.-P.; Feng, L.-C.; Yang, H.-Y.; Yang, J.-Y. Tetrahed. Lett. 2002, 43, 8741-8743. (c) Kotrusz, P.; Kmentova, I.; Gotov, B.; Toma, S.; Solcaniova, E. Chem. Commun. 2002, 2510-2511.
- 8. Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J.-P. *Tet-rahedron* **2007**, *63*, 1923-1930.
- Balaban, T. S.; Balaban, A. T. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Thomas, E. J.; Ed.; Georg Thieme Verlag: Stuttgart, Germany, 2003; Vol. 14.
- (a) Bao, C.; Lu, R.; Jin, M.; Xue, P.; Tan, C.; Xu, T.; Liu, G.;
 Zhao, Y. *Chem. Eur. J.* **2006**, *12*, 3287-3294. (b) Ruiz-Guerrero, R.; Cardenas, J.; Bautista, L.; Vargas, M.; Vazquez-Labastida, E.; Salmon, M. *J. Mex. Chem. Soc.* **2006**, *50*, 114-118.
- Jing, X.; Xu, F.; Zhu, Q.; Ren, X.; Yan, C.; Wang, L.; Wang,
 J. Synth. Commun. 2005, 35, 3167-3171.
- Cao, X.-Y.; Liu, X.-H.; Zhou, X.-H.; Zhang, Y.; Jiang, Y.;
 Cao, Y.; Cui, Y.-X.; Pei, J. J. Org. Chem. 2004, 69, 6050-6058.
- 13. Ames, D. P.; Ohashi, S.; Callis, C. F.; Van Wazer, J. R. *J. Am. Chem. Soc.* **1959**, *81*, 6350-6357.
- Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. *Green Chem.* **2001**, *3*, 156-164.
- 15. Kosmulski, M.; Gustafsson, J.; Rosenholm, J. B. Thermo-

- chim. Acta 2004, 412, 47-53.
- 16. Krossing, I.; Raabe, I. Angew. Chem. Int. Ed. 2004, 43, 2066-2090.
- 17. Thomazeau, C.; Olivier-Bourbigou, H.; Magna, L.; Luts, S.; Gilbert, B. *J. Am. Chem. Soc.* **2003**, *125*, 5264-5265.
- 18. To form oligomeric materials. See Barker, S. A.; Riley, T. *J. Chem. Soc.*, *Perkin Trans. I* **1972**, 809-812.
- (a) Kakeya, M.; Fujihara, T.; Kasaya, T.; Nagasawa, A. Organometallics 2006, 25, 4131-4137. (b) Berthiol, F.; Kondolff, I.; Doucet, H.; Santelli, M. J. Organomet. Chem.
- **2004**, *689*, 2786-2798. (c) Tagliatesta, P.; Floris, B.; Galloni, P.; Leoni, A.; D'Arcangelo, G. *Inorg. Chem.* **2003**, *42*, 7701-7703.
- Funston, A.; Kirby, J. P.; Miller, J. R.; Pospisil, L.; Fiedler, J.; Hromadova, M.; Gal, M.; Pecka, J.; Valasek, M.; Zawada, Z.; Rempala, P.; Michl, J. J. Phys. Chem. 2005, A109, 10862-10869.
- 21. Katritzky, A. R.; Zakaria, Z.; Lunt, E. *J. Chem. Soc., Perkin Trans. I* **1980**, 1879-1987.

