行政院國家科學委員會專題研究計畫 成果報告

大鼠腎小球支持細胞表現 fractalkine 之訊息傳遞機轉及其 病態生理角色之探討(2/2)

計畫類別: 個別型計畫

計畫編號: NSC91-2314-B-002-335-

執行期間: 91 年 08 月 01 日至 92 年 12 月 31 日

執行單位: 國立臺灣大學醫學院內科

計畫主持人: 陳永銘

報告類型: 完整報告

處理方式: 本計畫可公開查詢

中 華 民 國 93年4月27日

行政院國家科學委員會補助專題研究計畫成果報告

大鼠膈細胞表現 fractalkine 的訊息傳遞機轉和病態生理角色(2/2)

Signal transduction mechanisms and pathophysiologic roles of fractalkine expression by rat mesangial cells (2/2)

計畫類別: 個別型計畫 整合型計畫

計畫編號: NSC 91-2314-B-002-335

執行期間:91/08/01~92/12/31

計畫主持人: 陳永銘

本成果報告包括以下應繳交之附件:

赴國外出差或研習心得報告一份 赴大陸地區出差或研習心得報告一份 出席國際學術會議心得報告及發表之論文各一份 國際合作研究計畫國外研究報告書一份

執行單位:國立台灣大學醫學院內科

中華民國 92 年 4 月 26 日

中文題目: 大鼠膈細胞表現 fractalkine 的訊息傳遞機轉和病態生理角色 (2/2)

英文題目: Signal transduction mechanisms and pathophysiologic roles of fractalkine

expression by rat mesangial cells (2/2)

計劃編號:NSC 91-2314-B-002-335

執行期限:91/08/01~92/12/31

主持人: 陳永銘 主治醫師 (*e mail*: ymchen@ha.mc.ntu.edu.tw; *fax*: 2322-2955)

執行機關:國立台灣大學醫學院內科

中文摘要

背景: Fractalkine 可以促進腎小球疾病中單核球的侵潤和聚集。本研究探 fractalkine 在實驗型 anti-Thy1 腎小球腎炎的時序性表現,以及阻斷 fractalkine 系統對 anti-Thy1 腎小球腎炎的療效。

方法: 大鼠 anti-Thy1 腎小球腎炎的誘發方式同吾人先前報告。 實驗動物分成三大組, A 組接受每日 PBS 靜注治療 (days 1-5), B 組接受每日 PBS 靜注治療 (days 1-2) 和商業用 polyclonal rabbit anti-rat fractalkine 抗體 (days 3-5), C 組接受每日 polyclonal rabbit anti-rat fractalkine 抗體 (days 1-5)。 動物在第五日殺死, 分別觀察蛋白尿 (BioRad 方法),腎小球硬化 (H&E 染色),發炎細胞浸潤 (免疫組化染色),以及腎小球基質蛋白的基因表現程度 (北方和西方墨點染色)。腎小球內 fractalkine mRNA 以北方墨點染色檢查,尿液和腎小球內的 fractalkine 蛋白則以西方墨點染色偵測。

結果: A 組大鼠在第五天呈顯著蛋白尿排泄,同時可見明顯的腎小球硬化,發炎細胞浸潤,以及腎小球基質蛋白 (type 1 and 3 collagen 和 fibronectin) 的基因表現。 此外, A 組大鼠在第三至五天可觀察到腎小球內有 fractalkine 的基因和蛋白表現增加,且尿液中亦有游離型 fractalkine 的排泄。 然而, 無論是 B 或 C 組動物, 施打商業用 anti-fractalkine 抗體後並不能減輕腎炎大鼠之蛋白尿排泄、腎小球硬化、發炎細胞浸潤、或基質蛋白的基因表現。

結論:使用商業用 polyclonal rabbit anti-rat fractalkine 抗體並不能減緩大鼠 anti-Thy1 腎小球腎炎的嚴重度。

英文摘要

Background. Fractalkine is a CX_3C chemokine for mononuclear cells that has been implicated in the recruitment and accumulation of monocytes seen in glomerular diseases. This study investigated the sequential expression of fractalkine in rat anti-Thy1 nephritis, and the effect of fractakine blockade on the severity of anti-Thy1 nephritis.

Methods. Rat anti-Thy1 glomerulonephritis was induced as described previously. Group A rats received monoclonal anti-Thy1 antibodies and daily 1X PBS injection; group B rats received monoclonal anti-Thy1 antibodies and daily 1X PBS injection (days 1-2) and rabbit anti-rat fractalkine injection (days 3-5); group C rats received monoclonal anti-Thy1 antibodies and daily rabbit anti-rat fractalkine injection (days 1-5). Fractalkine mRNA and protein were analyzed by Northern and Western blotting. Renal histomorphology was examined by H&E staining, glomerular macrophage and T cell infiltration were studied by immunohistochemical staining.

Results. Group A rats showed an appreciable increase in urinary protein excretion, glomerulosclerosis, and matrix gene expression at days 5 of the nephritis, when compared with normal control rats. In addition, the nephritic rats showed an increase in glomerular fractalkine gene expression during days 1 to 5 of the disease. A parallel in crease in glomerular fractalkine protein expression was also seen during days 3 to 5. Urinary fractalkine excretion could be seen during days 3 to 5 of the nephritis. The administration of rabbit anti-rat fractalkine antibodies, whether between days 3 and 5 (group B), or during days 1 and 5 (group C), did not affect the severity of the nephritis. **Conclusion.** The present data shows that fractalkine is upregulated during the course of anti-Thy1 nephritis. However, blocking fractalkine activity with a commercially-available polyclonal antibody did not ameliorate the severity of the disease.

計劃緣由

近來在血管內皮細胞上所發現的 CX₃C 趨化激素— fractalkine, 兼具黏 附和趨化作用,其標的細胞是具有 fractalkine 受器的單核球和 T 淋巴球 [1]。 Feng 等人發現腎小球內皮細胞在實驗型新月狀腎炎模式誘發後可表現 fractalkine, 給與 anti-fractalkine 受器 antibody 可顯著減少新月體形成,降低 蛋白尿,並改善腎功能 [2]。我們發現除了內皮細胞之外,腎小球支持細胞 (mesangial cell, 簡稱 MC) 在發炎激素或生長因子刺激下,也會產生 fractalkine [3], 然而腎小球支持細胞衍生的 fractalkine 是否與內皮細胞製造的 fractalkine 具有同樣的功能,目前並不清楚。因此我們擬於體外和體內分別檢視腎小球支 持細胞衍生的 fractalkine 是否也具有趨化作用。 體外實驗主要以腎小球支持 細胞的 cultured conditioned media,利用 TransWell 培養皿進行 chemotaxis assay, J774.A1 單核球細胞株將被檢視是否具有 fractalkine 受器 (CX3CR1), 若有,將被用來當做標的細胞 ,,而 neutralizing anti-fractalkine 多株抗體 (購 自 R&D Systems) 將用來證明本 assay 中 fractalkine 的生物特定性。除此之 外,我們也將探討 fractalkine 是否具有刺激單核球產生 CC 趨化激素 (如 MCP-1, RANTES) 的能力;體內實驗則在大鼠 anti-Thy1 疾病進行,這是一種急 性腎小球支持細胞增生型腎炎模式,大約從誘發後第三天起,腎小球內逐漸出 現腎小球支持細胞增生和細胞外基質沈積的現象 [4]。為了檢驗腎小球支持細 胞所衍生的 fractalkine 在體內吸引單核白血球的能力,我們擬在 anti-Thy1 腎 炎誘發之後不同時間投與 neutralizing anti-rat fractalkine 多株抗體 (因需要量 大,除了使用 R&D Systems 公司的商業用抗體外, 也將嘗試自行製造),為了 能夠區分是阻斷內皮細胞,或是腎小球支持細胞所產生的 fractalkine,實驗動 物將分成五組,第一組是正常對照組;第二組是未施打抗體之腎炎組;第三組 是於腎炎誘發同時開始給與 neutralizing anti-fractalkine 抗體 (每日一次共兩 天),主要阻斷內皮細胞所產生的 fractalkine;第四組是於腎炎誘發後第三至第 五天給與 neutralizing anti-fractalkine 抗體 (每日一次共三天), 主要阻斷腎小球 支持細胞所產生的 fractalkine;第五組則是於腎炎誘發後連給五天 neutralizing anti-fractalkine 抗體 (每日一次共五天) , 阻斷包括內皮細胞和腎小球支持細胞 產生的 fractalkine。這些實驗動物在腎炎誘發後滿五天被殺死,然後比較各組 之間腎小球內單核白血球數目和蛋白尿嚴重度,以判斷腎小球支持細胞所產生 的 fractalkine 所可能扮演的病態生理角色。

探討 fractalkine 在實驗型 anti-Thy1 腎小球腎炎的時序性表現以及其所 扮演的病態生理角色。

結果

A 組腎炎大鼠 (僅接受每日 PBS 靜注治療) 在第五天呈顯著蛋白尿排泄 $(102.4\pm20.1~(\text{mean}\pm\text{standard}\ \text{error}\ \text{of}\ \text{mean})\ \text{mg/day}$; 正常鼠每日尿蛋白排泄量為 $5.7\pm0.9~\text{mg/day}$, P<0.01),同時可見明顯的腎小球硬化,發炎細胞浸潤,以及腎小球 type 1 and 3 collagen (α 1) 和 fibronectin 的 mRNA 表現。 除此此外, A 組大鼠在第三至五天可觀察到腎小球內有 fractalkine 的 mRNA 和固定型蛋白表現增加,且尿液中亦有游離型 fractalkine 的排泄。 然而, 無論是 B (days 1-2,每日靜注 PBS, days 3-5 每日靜注 anti-fractalkine 抗體) 或 C (days 1-5,每日靜注 anti-fractalkine 抗體) 組動物, 施打商業用 anti-fractalkine 抗體 (up to $100~\mu\text{g/day}$) 後並不能減輕腎炎大鼠之蛋白尿排泄 (第五天, B 組大鼠 $(107.2\pm40.1~\text{mg/day};\ \text{C}\ \text{组大鼠}\ 103.5\pm9.9~\text{mg/day}$ 、腎小球硬化比例、發炎細胞浸潤程度、或基質蛋白的基因表現。

計劃成果自評

- 1. 我們發現 fractalkine 在 anti-Thy1 腎小球腎炎模式中表現增加,可能與腎小球內單核球浸潤有關 (這部份結果發表在 Chen Y-M, Hu-Tsai M-I, Lin S-L, Tsai T-J, Hsieh B-S: Expression of CX3CL1/fractalkine by mesangial cells *in vitro* and in acute anti-Thy1 glomerulonephritis in rats. *Nephrol Dial Transplant* 18:2505-2514, 2003).
- 2. 本研究顯示商業用 rabbit anti-rat fractalkine 抗體無法改善 anti-Thy1 腎小球腎炎嚴重度。 吾人認為這主要與所使用的抗體效價或濃度太低有關,做 in vitro study 可能還好 [3], in vivo 就沒辦法 (太貴,無法用高量)。 我們雖也曾嘗試以 E. coli-based expression system 去合成 recombinant fractalkine,希望能夠當成足以產生抗體的抗原, 但做了很久都無法成功,或許應該嘗試其它 expression system。
- 3. 我們認為這些結果並不能完全否定 fractalkine 在腎小球腎炎致病過程中可能扮演的致病角色。 Feng 等人曾報告 fractalkine system 在 crescentic GN 確有致病角色 [2] , 而在動物蛋白質負荷過度模式中使用阻斷 fractalkine 抗體也可以降低腎間質單核球浸潤程度 [5]。 此外 , fractalkine 或其受器 在若干人類腎臟疾病 , 包括血管炎、急性移植腎排斥、以及各種腎小球腎炎 , 也被報告有表現增加的現象 [6,7]。 因此 , 我們未來可能朝自行合成抗體 , 或是改用其他動物 (如 mouse) 或疾病 (如糖尿病) 模式 , 來進一步檢視 fractalkine system 在腎臟疾病所扮演的的病態生理角色。

參考文獻

1. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Ross D, Greaves DR, Zlotnik A, Schall TJ: A new class of membrane-bound chemokine with a CX₃C motif. *Nature* 385:640-644, 1997.

- 2. Feng L, Chen S, Garcia GE, Xia Y, Siani MA, Botti P, Wilson CB, Harrison JK, Bacon KB: Prevention of crescentic glomerulonephritis by immunoneutralization of the fractalkine receptor CX₃R1. *Kidney Int* 56:612-620, 1999.
- 3. Chen Y-M, Lin S-L, Chen C-W, Chiang W-C, Tsai T-J, Hsieh B-S: Tumor necrosis factor-α stimulates fractalkine production by mesangial cells and regulates monocyte transmigration: Down-regulation by cAMP. *Kidney Int* 63:474-486, 2003.
- 4. Chen Y-M, Chien C-T, Hu-Tsai M-I, Wu K-D, Tsai C-C, Wu M-S, Tsai T-J: Pentoxifylline attenuates experimental mesangial proliferative glomerulonephritis. *Kidney Int* 56: 932-943, 1999.
- 5. Donadelli R, Zanchi C, Morigi M, et al: Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kB- and p38 mitogen-activated protein kinase-dependent pathways. *J Am Soc Nephrol* 14:2426-2446, 2003.
- 6. Cockwell P, Chakravorty SJ, Girdlestone J, Savage CO: Fractalkine expression in human renal inflammation. *J Pathol* 196:85-90, 2002.
- 7. Segerer S, Hughes E, Hudkins KL, et al: Expression of the fractalkine receptor (CX3CR1) in human kidney diseases. *Kidney Int* 62:488-495, 2002.