
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 2, FEBRUARY 2000 561

A Generalized Output Pruning Algorithm for
Matrix-Vector Multiplication and Its Application to

Compute Pruning Discrete Cosine Transform

Yuh-Ming Huang, Ja-Ling Wu, and Chi-Lun Chang

Abstract—In this correspondence, a generalized output pruning algo-
rithm for matrix-vector multiplication is proposed. It is shown that for a
given decomposition of the matrix of the transform kernel and the pruning
pattern, the unnecessary operations for computing an output pruning dis-
crete cosine transform (DCT) can be eliminated thoroughly by using the
proposed algorithm

I. INTRODUCTION

Recently, a lot of one-dimensional (1-D) and two-dimensional (2-D)
fast pruning DCT algorithms for computing only the lower frequency
components have been proposed in [1]–[3]. However, to the best of our
knowledge, no known generalized pruning method can be directly ap-
plied to any orthogonal discrete transform (ODT), such as the DCT,
the discrete Fourier transform (DFT), the discrete Hartley transform
(DHT), etc. In this correspondence, a generalized output pruning al-
gorithm for computing matrix-vector multiplication of any order is
presented. It is shown that for a given decomposition of the matrix,
the unnecessary operations can be eliminated thoroughly. An efficient
pruning DCT algorithm can then be derived based on the prescribed
pruning algorithm. Of course, the applicability of the proposed output
pruning algorithm is not limited to the DCT; actually, it can be applied
to all well-known discrete orthogonal transforms, such as the DFT, the
DHT, and the discrete sine transform (DST). However, in this work, the
pruning DCT algorithm is our only focus.

II. GENERALIZED OUTPUT PRUNING ALGORITHM FOR

MATRIX-VECTORMULTIPLICATION

Consider the operation of a general matrix-vector multiplication of
orderN , say,DN = AN�N �BN , and assume only partial multipli-
cation outputsDN [j] (whereDN [j] is thejth entry of the vectorDN ;

1 � j � N ) are required. It follows that we can speed up the afore-
cited computation by pruning the unnecessary operations.

To reduce the computational complexity, we decompose the matrix
AN�N into a product of a sequence of more-sparse matrices of the
same order, that is,AN�N = �k�1

i=0 ciN�N : By the associative prop-
erty of matrix-vector multiplication,DN can be computed recursively
as

B0

N = BN

Bi
N = Ck�i

N�N �Bi�1
N ; 1 � i � k:

DN = Bk
N

(1)

Since there arek stages of matrix-vector multiplication of orderN in
(1), no matter what kind of output pruning pattern is,k � N bits are
required to record whether eachBi;j

N has to be computed or not, where
B

i;j
N is the inner product of thejth row vector ofCk�i

N�N and the output
vectorBi�1

N of the previous stage.
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In this section, a more efficient algorithm for computing output-
pruning matrix-vector multiplication is presented. In this algorithm,
only dlog(k + 1)e � N bits are required to record whether the par-
tial resultsBi;j

N has to be computed or not. In other words, we need an
array, say,M of orderN with each entry ofdlog(k + 1)e bits in size,
to record which operations are required or unnecessary.

If the computation ofDN [j] is necessary, then initially, letM [j] =
0; otherwise, letM [j] = 255 or a large integer. The final value of each
entry ofM will evolve gradually through the computation ofC0

N�N to
that of theCk�1

N�N and will be precomputed and stored with respect to
the characteristics of the concerned matrixCi

N�N described as follows.

A. Encoding Processes

Let T be a control or threshold parameter and its value is set to be
zero initially.

1) If Ci
N�N is a permutation matrix, that is, for any vectorVN

of order N , the result of the matrix-vector multiplication
Ci
N�N � VN is just a position swapping ofVN : In this

case, the entries ofM are unchanged in value but permuted
according to the inverse permutation matrix(Ci

N�N)�1;, and
the value ofT is unchanged.

2) Ci
N�N is a diagonal matrix, that is, all the entries ofCi

N�N

are equal to zero except the diagonal components. In this case,
the values of each entry ofM andT will be unchanged.

3) Ci
N�N is a general diagonal matrix, that is, all the diagonal

components of it are not equal to zero, and no constraint is set
to the nondiagonal components. In this case, the value ofT

will be increased by one. The value ofT (which is denoted
asTt) is used as a threshold for indicating the fact that in the
matrix-vector multiplication stage, say,Ci

N�N � Bk�i�1
N =

Bk�i
N , some output entryBk�i;s

N is unnecessary (i.e.M [s] =
255), whereas the entryBk�i�1;s

N of the input vectorBk�i�1
N

is required to compute some output entryB
k�i;r
N : That is, the

sth input entryBk�i�1;s

N has to be computed correctly be-
fore dealing with the matrix-vector multiplicationCi

N�N �
Bk�i�1

N , but after that, thesth output entryBk�i;s

N is of no use
for later stages. In other words, ifM [r] < Tt; andM [s] =
255, then we setM [s] = Tt:

4) Ci
N�N can be decomposed into a product of a general

diagonal matrix and a permutation matrix, or vice versa. In
this case, the arrayM will be processed by using the merged
methodologies presented in 1) and 3).

5) The other matrix forms that do not belong to those of the above
four types are categorized as type 5). Notice that those ma-
trices discussed in 1)–3) are special subsets of 4). Hence, by
definition, those matrices of type 5) cannot be decomposed
into a product of a general diagonal matrix and a permuta-
tion matrix. Moreover, according to the following corollary,
we will deduce that each matrix of type 5) is a linearly depen-
dent matrix.

Corollary 1: If a matrix of sizeN �N cannot be decomposed into
a product of a general diagonal matrix and a permutation matrix of the
same size, then its determinant is equal to 0.

By corollary 1, we know that for any well-defined discrete transform
matrixAN�N , which is linearly independent, it will never be catego-
rized as a type 5) matrix.

For the sake of convenience, those sets composed of the matrices
discussed in 1)–4) are, respectively, denoted by P, D, GD, and PGD.

As we have obtained the final values for each entry ofM through
the computation ofC0

N�N to that of theCk�1
N�N , then with the help

of M , all the unnecessary operations for the computation ofC0

N�N �
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TABLE I
NUMBERS OFREQUIRED MULTIPLICATIONS AND ADDITIONS FOR THERESULTANT PRUNING DCT ALGORITHMS WITH RESPECT TO

DIFFERENTMATRIX DECOMPOSITIONS ANDDIFFERENTPRUNING PATTERNS

C1

N�N�� � ��C
k�1
N�N�BN can be eliminated thoroughly. Let the final

accumulated value ofT be denoted byTf : This means, among those
matricesCi

N�N 0 � i � k � 1, there areTf matrices that belong to
GD or PGD. In other words, after the matrix decomposition, the value
Tf is precomputable.

Now, let us show how the unnecessary operations for the compu-
tation ofC0

N�N � C1

N�N � � � � � Ck�1
N�N � BN can be eliminated

thoroughly with the aid ofM andT:

B. Decoding Process

First, letT = Tf : The elimination processes for unnecessary opera-
tions are deduced gradually through the computation ofCk�1

N�N �BN

to that of theC0

N�N � Bk�1
N :

1) If Ci
N�N 2 P , then the entries ofM will be swapped ac-

cording to the permutation pattern defined byCi
N�N :

2) If Ci
N�N 2 E, then thejth outputBk�i;j

N needs to be com-
puted only whenM [j] � T ; otherwise, it can be left out for
pruning the unnecessary operations.

3) If Ci
N�N 2 GD, then thejth outputBk�i;j

N needs to be com-
puted only whenM [j] < T ; otherwise, it can be left out for
pruning the unnecessary operations. Furthermore, the value of
T will be decreased by one in this case.

4) If Ci
N�N 2 PGD, it follows thatCi

N�N can be decomposed
into a product of a general diagonal matrixDg and a permuta-
tion matrixPp (or vice versa). Then, the entries ofM will be
permuted according to thePp first, and thejth outputBk�i;j

N

has to be computed only whenM [j] < T ; otherwise, it can
be left out for pruning. Of course, the value ofT will also be
decreased by one in this case.

The above statements described the detailed procedures of the proposed
pruning algorithm. Because the final value ofT , i.e.,Tf , will not be
greater thank. Only dlog(k + 1)e �N bits are required to record the
evolution process ofM:

Corollary 2: Let AN�N(= �k�1
i=0 Ci

N�N) be a linearly indepen-
dent matrix. From the proposed algorithm, it can be deduced that in the
computation ofAN�N �BN ; BN [j] is necessary only whenM [j] �
Tf :

Lemma 1: LetAN�N(= �k�1
i=0 Ci

N�N) be a linearly independent
matrix. Then, all the unnecessary operations can be eliminated thor-
oughly by the above proposed pruning algorithm.

From Lemma 1, for a linearly independent matrixAN�N , we know
that the unnecessary operations can be eliminated thoroughly when
only the partial outputs of the matrix-vector multiplicationAN�N �
BN are required. However, for a special pruning pattern, does there
exist another scheme that can be used to further reduce the number of
required operations. In the next corollary, we show that the number of
required operations cannot be reduced by just utilizing the permutation
technique. Moreover, forCi

N�N 2 PGD, the gain of pruning will not
be changed even if we apply a different decomposition toCi

N�N : his
will be shown in Lemma 2.

Corollary 3: LetAN�N be a linearly independent matrix andPC
be a permutation matrix. For any pruning pattern, on computing of
the following expressionsAN�N �BN ; (AN�NPc) (P

�1

c BN); and
Pc(P

�1

c AN�N)BN , the simplification gains obtained from pruning
the unnecessary operations will be the same.

Lemma 2: Let AN�N be a linearly independent matrix. Based on
the proposed pruning algorithm, the simplification gain will keep un-
changed, even though we apply a different decomposition to the matrix
Ci
N�N (2 PGD).
Therefore, more effective decomposition of the matrixAN�N is

necessary if we want to obtain better simplification gain.

III. A PPLICATION OF THEPROPOSEDOUTPUT PRUNING ALGORITHM

TO THE COMPUTATION OF PRUNING DCT

Since DCT is an orthogonal discrete transform, its transform kernel
matrix must be a linearly independent matrix. That is, the pruning algo-
rithm presented in Section II can be directly applied to derive efficient
pruning DCT algorithms. Moreover, all well-known DCT algorithms
(such as [4]–[6]) and pruning DCT algorithms (such as [1]–[3]) can be
modeled as a matrix-vector multiplication with known decompositions
of the DCT transform kernel matrix.

Since the optimism of the proposed pruning algorithm is decompo-
sition dependent, we cannot only derive effective pruning DCT algo-
rithms but also compare the effectiveness of matrix decomposition cor-
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responding to each existing fast algorithm by checking the complexities
of the so-obtained pruning algorithms.

The following data are obtained by applying the proposed output
pruning algorithm to derive efficient pruning DCT algorithms, based
on the matrix decompositions presented in [1], [5], and [6]. For the
1-D DCT of length 64, Table I lists the numbers of required multipli-
cations and additions for the corresponding pruning DCT algorithms
with respect to different pruning patterns.

The most well-known pruning DCT algorithm presented in [1] gives
the same complexities as listed in the first column of Table I. This fact
verifies the correctness and effectiveness of the proposed pruning algo-
rithm. As for the other two algorithms (or matrix decompositions), the
gain obtained from pruning is less significant. The number of pruned
multiplications is larger in Winograd’s approach, whereas the number
of pruned additions is larger in Lee’s approach. In fact, these charac-
teristics can be observed and explained from their corresponding algo-
rithm structures. In Winograd’s DCT algorithm, the required multipli-
cations are post-processing oriented, whereas in Lee’s DCT algorithm,
the most post-processing oriented operations are additions. That is, if
the complexity of multiplication is the major concern, then the pruning
gain will be more significant when the required multiplications of the
algorithm are nearly post-processing oriented.

IV. CONCLUSIONS

In this correspondence, an index-registration technique is presented
to establish an effective framework for developing efficient pruning al-
gorithms for various ODT’s. Moreover, with the aid of the proposed
technique, an automatic optimal output pruning ODT program gener-
ator can be developed. This is currently under investigation.

REFERENCES

[1] Z. Wang, “Pruning the fast discrete cosine transform,”IEEE Trans.
Commun., vol. 39, pp. 640–643, May 1991.

[2] A. N. Skodras, “Fast discrete cosine transform pruning,”IEEE Trans.
Signal Processing, vol. 42, pp. 1833–1837, July 1994.

[3] C. A. Christopoulos, J. Bormans, J. Cornelis, and A. N. Skodras, “The
vector-radix fast cosine transform: Pruning and complexity analysis,”
Signal Process., vol. 43, pp. 197–205, May 1998.

[4] H. S. Hou, “A fast recursive algorithm for computing the discrete co-
sine transform,”IEEE Trans. Acoust., Speech Signal Processing, vol.
ASSP-35, pp. 1455–1461, Oct. 1987.

[5] B. G. Lee, “A new algorithm to compute the discrete cosine transform,”
IEEE Trans. Acoust., Speech Signal Processing, vol. ASSP-32, pp.
1243–1245, 1984.

[6] E. Feig and S. Winograd, “Fast algorithms for the discrete cosine trans-
form,” IEEE Trans. Signal Processing, vol. 40, pp. 2174–2193, Sept.
1992.

[7] I. W. Selesnick and C. S. Burrus, “Automatic generation of prime length
FFT programs,”IEEE Trans. Signal Processing, vol. 44, pp. 14–24, Jan.
1996.

A Novel Design Technique for Biorthogonal Filterbank
Systems

Youhong Lu and Joel M. Morris

Abstract—In this correspondence, we present a design technique for
the cosine-modulated FIR biorthogonal filter bank systems. The system
achieves perfect reconstruction with a given analysis or synthesis prototype
filter. In particular, if the analysis filter is a good approximation of an ideal
lowpass filter, then so is the synthesis filter, and the difference is a measure
of ideality of the lowpass analysis filter. The advantage of the technique is
that we have more freedom in the choice of prototype filters.

Index Terms—Biorthogonal, cosine modulation, filterbank, Gabor ex-
pansion, perfect reconstruction condition.

I. INTRODUCTION

Multirate analysis and the synthesis filter systems are useful in signal
analysis and representation [1]. There are many techniques for this kind
of system in which the system is designed to satisfy the perfect recon-
struction property, for example, the halfband filter-based technique, the
power complementary-based technique, the lapped lattice-based tech-
nique, and the paraunitary-based technique [1]. The most efficient tech-
niques for implementation of this system, we believe, are the tree-struc-
tured filter bank system [1].

The cosine-modulated analysis and the synthesis filter system
have been studied in depth by many researchers because the design
is simpler and more realizable than that of a general filter bank
system [1]–[14]. Most past and current design techniques set a fixed
relationship between analysis and synthesis filter banks, for example,
hm(k) = fm(N � k � 1), wherehm(k) andfm(k) aremth band
analysis and synthesis filters, respectively, andN is the length of
the filters. The system design problem, therefore, becomes a set
of analysis or synthesis filter design problems. This design usually
requires us to solve a nonlinear equation, and consequently, nonlinear
optimization methods have to be used.

In many applications, a set of desired analysis or synthesis filters
might be required. For example, in echo cancellation based on time-fre-
quency techniques for telecommunication systems, the analysis filters
have to be designed for maximum performance, and the synthesis fil-
ters are then designed based on the designed analysis filters to maintain
smallest distortion [13]; in image processing, modulated-Gaussian fil-
ters are frequently used to extract image features such as edges and
textures. In this work, we mainly discuss the design of the set of syn-
thesis filters for a given desired set of analysis filters. Since the filter
bank system still holds if we exchange the set of analysis filters with
the set of synthesis filters in the system based on our biorthogonal-like
sequence concept [12], this is equivalent to the design of the set of anal-
ysis filters for a given desired set of synthesis filters. We will denote
this filter bank system the biorthogonal filter bank.
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