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The propagation of elastic transient waves in a multi-layered medium subjected to
in-plane loadings is investigated in this study. One of the objectives of this study is to
develop an e¬ective analytical method for determining transient full- eld solutions
in the layered medium. A matrix method is developed by expanding the matrix solu-
tion obtained directly from the boundary-value problem in the integral transform
domain into a power series of the phase-related re®ection and transmission matrix
which characterizes the multiple re®ections and transmissions of all waves in every
layer. The transient response of the multi-layered medium is decomposed into in nite
wave groups in which the waves are either re®ected by, or transmitted through, the
interfaces. The connection between the proposed matrix method and the general-
ized ray method is established for the layered medium in the transform domain. The
matrix representation of the solution enables us to calculate the transient response of
the layered medium without tracing the ray path manually. The obtained analytical
solution can easily be applied to numerical calculations. The double inverse trans-
form is performed based on Cagniard’s method and the theoretical transient solution
for a layered half-space subjected to an in-plane dynamic force will be presented in
part II. An experimental set-up that simulates the plane stress condition for a layered
half-space was established to obtain the dynamic displacement response. The exper-
imental result agrees well with the theoretical solution. The proposed methodology
in this study can be extended to solve more complicated problems such as waves
propagating in three-dimensional space.

Keywords: multi-layered medium; wave propagation;
transient analysis; dynamic loadings

1. Introduction

Wave propagation in layered media has been studied extensively because of its wide
technological applications. One of the basic models in theoretical seismology is that of
N homogeneous layers welded on top of a half-space. A large amount of the study on
modern seismology focuses on calculating the response of such a medium to sudden
disturbances due to sources located either on the surface or inside the medium. In
a deterministic formulation, it possesses a developed and rather systematic method-
ology. Thomson (1950) and Haskell (1953) proposed a transfer matrix method to
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determine the dispersion relation for the propagation of seismic waves within the
Earth modelled by a number of uniform layers. In the Thomson{Haskell matrix for-
mulation, the displacement-traction vector at the top surface of a layer is related
to that at the bottom surface by a transfer matrix, and thus is carried cross the
interface continuously through the entire stack by the product of transfer matrices.
The unknown variables in the displacement-traction vector at each layer are then
determined by reformulating the matrix product to satisfy the boundary conditions
at both ends. Gilbert & Backus (1966) described a general method, the propagator
technique, that systematized the transfer matrix method for a general strati cation
in elastic parameters. Similar to the transfer matrix method, the re®ectivity method
was developed by Fuchs (1968) and Fuchs & M�uller (1971). The re®ection and trans-
mission of plane waves at layered media were treated  rst, followed by the synthesis
of point source wave  elds, and the theoretical seismograms were calculated by recur-
sive methods. Based on the propagator technique and re®ectivity method, Kennett
& Kerry (1979) proposed a re®ection matrix method, which can be used to construct
the entire response in terms of re®ection and transmission matrices, in analysing the
excitation induced by general sources in a strati ed medium. The re®ectivity method
was extended later by M�uller (1985). A uni ed framework was presented by Kennett
(1983) for all classes of seismic phenomena in strati ed media. On the other hand,
Ma & Huang (1996) derived the transfer relation as the general representations of the
responses between each layer, instead of the displacement-traction vector, to deter-
mine the transient wave propagating in a layered medium. A stochastic formulation
of the problem better describes physical reality, but on the other hand complicates
mathematical treatment of particular tasks. In the literature there exist a number
of papers (see Ziegler 1977; Scott 1985) where some problems of stochastic wave
propagation in layered elastic media are analysed.

Propagation of elastic or viscoelastic harmonic waves through a strati ed medium
was investigated by Kotulski (1990) and Caviglia & Morro (1994). The modelling
has been made more realistic by letting the material be anisotropic (Nayfeh 1991,
1995) or porous (Lauriks et al . 1991). The transition matrix formulation of acoustic
scattering from an arbitrary number of scatterers was derived by Peterson & Str�om
(1974). The resulting total transition matrix was expressed in terms of the individual
transition matrices and in terms of functions which describe the con guration of the
scatterers.

In determining the transient waves in a plate, the methods that start with a
given boundary-value problem were proposed by Mencher (1953), Knopo¬ (1958)
and Davids (1959) with the application of the Bromwich expansion. The transient
wave solution for a two-layered solid (a layer overlaying a half-space) was obtained
by Pekeris et al . (1965). The solutions were  rst expressed in an algebraic form
and then expanded into a series, with each term representing a wave propagating in
the medium. The expansion requires the evaluation of a 4 £ 4 determinant for the
plate and a 6 £ 6 determinant for the two-layered medium. Since the complexity of
solutions increases as the number of boundary conditions rises, the direct Bromwich
expansion becomes complicated in the application of the ray theory to media with
many layers.

Spencer (1960) proposed the method of generalized rays to obviate the necessity
for solving the tedious boundary-value problem by constructing the solution from
the application of the results of simpler problems. In his approach, the Laplace-

Proc. R. Soc. Lond. A (2000)



Transient elastic waves propagating in a multi-layered medium. I 1357

transformed solution of two canonical problems involving the re®ection and trans-
mission of arbitrary source incident waves at a single interface was considered. The
results of these canonical problems were then combined to form an individual gener-
alized ray which is an integral representation of waves along a prescribed ray path.
The method leads to an in nite series of the generalized ray integral constructed
in the Laplace transform domain by assembling the source function, re®ection and
transmission coe¯ cient, the receiver function and the phase function. The inverse
of the ray integral was found in a closed form by applying the Cagniard method
(Cagniard 1939). Since the transient response for the layered medium is exact up to
the arrival time of the next ray, only a  nite number of rays will be involved in the
early-time solution. The theory of generalized rays was cast to determine the tran-
sient response of a plate by Ceranoglu & Pao (1981), of a multi-layered medium by
M�uller (1968a,b, 1969), and the theory was reviewed by Pao & Gajewski (1977). For
the long-time response at a receiver in the layered medium, however, the di¯ culty
arises in determining a large number of generalized ray paths along which the rays
arrived at the receiver.

In this paper the authors will show how the generalized ray solutions for a multi-
layered medium can be constructed directly by solving the corresponding boundary-
value problems, with the aid of the integral transform technique and the matrix
Bromwich expansion. The wave  eld for each layer of the multi-layered medium will
be represented in the double Laplace transform domain by two kinds of  eld vector,
one for the waves propagating in the direction of increasing y and the other in the
direction of decreasing y. The phase-related receiver matrix for each layer that relates
the  eld vector to the response functions (displacement, stress, etc.) was obtained.
The interface and boundary conditions were applied to obtain the system of equa-
tions for determining the global  eld vector that is a stack of the  eld vectors in each
layer. The global  eld vector is thus expressed in a closed matrix form, instead of
the algebraic form in Pekeris’s solution. By rearranging the coe¯ cient matrix in a
special form consisting of the diagonal, lower-triangle and upper-triangle parts, and
extracting the diagonal part from it, the matrix Bromwich expansion was applied
to obtain the global phase-related re®ection and transmission matrix which charac-
terizes the multiple re®ections and transmissions of waves in every layer. After the
application of the matrix Bromwich expansion, the solution in the transform domain
will be obtained in an in nite matrix series form given by assembling the phase-
related receiver matrix, re®ection and transmission matrix and source vector. This
approach leads itself to ray interpretation. The transient response can be obtained
by the application of Cagniard’s method for Laplace inversion. With aids of the
proposed method, the phase function that is determined manually in the theory of
generalized ray can be determined automatically by the phase-related matrices and
vectors. Furthermore, the matrix formulation presented in this study is particularly
suitable for the numerical computation.

2. Statement of the problem

Consider an initially undisturbed multi-layered medium consisting of n layers sepa-
rated by parallel planes, as depicted in  gure 1. Each layer is assumed homogeneous
and isotropic, and the discontinuity condition is considered at the interfaces. All
quantities related to a speci ed ith layer are su¯ xed by a superscript or subscript i
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in parentheses. For plane strain problems, the Cartesian coordinate system is chosen
so that the response is a function of (x; y; t). Uniformly distributed line loadings
parallel to the z-axis are applied either at interfaces or within layers. Since responses
for the medium subjected to dynamic loadings which are located within layers can
be obtained by introducing arti cial interfaces at the applied-loading locations, we
consider all applied loadings that are located at interfacial or lateral surfaces of the
multi-layered medium. The boundary conditions on the top and bottom layers of the
medium can be written as

¼ (1)
yy (x; 0; t) = ¼ [0]

yy(x; t);

¼ (1)
xy (x; 0; t) = ¼ [0]

xy(x; t);

¼ (n)
yy (x; ¡ hn; t) = ¼ [n]

yy (x; t);

¼ (n)
xy (x; ¡ hn; t) = ¼ [n]

xy (x; t);

9
>>>>=

>>>>;

(2.1)

for ¡ 1 < x < 1, where

hn =
nX

i = 1

h(i);

in which h(i) is the thickness of the ith layer. Loadings applied at the interface
y = ¡ hi between two adjacent layers yield the traction and displacement disconti-
nuity conditions

u(i)(x; ¡ hi; t) ¡ u(i+ 1)(x; ¡ hi; t) = u[i](x; t);

v(i)(x; ¡ hi; t) ¡ v(i+ 1)(x; ¡ hi; t) = v[i](x; t);

¼ (i)
yy (x; ¡ hi; t) ¡ ¼ (i+ 1)

yy (x; ¡ hi; t) = ¼ [i]
yy(x; t);

¼ (i)
xy (x; ¡ hi; t) ¡ ¼ (i+ 1)

xy (x; ¡ hi; t) = ¼ [i]
xy(x; t);

9
>>>>=

>>>>;

(2.2)

i = 1; 2; 3; : : : ; n ¡ 1, where the superscripts i in parentheses (i.e. (i) and (i+ 1)) denote
the  eld quantities in the ith layer and the (i + 1)th layer, respectively. Furthermore,
in equations (2.1) and (2.2), the applied loading at the interface i is distinguished
from the  eld quantities by attaching a superscript i in a bracket (i.e. [i]).

To simplify the expression, an applied displacement-traction vector t[i] (for
i = 0; 1; : : : ; n) at the n + 1 planes is de ned,

t[0] =
³

¼
[0]
yy ¼

[0]
xy

´
; t[n] =

³
¼

[n]
yy ¼

[n]
xy

´

and

t[i] =
³

u[i] v[i] ¼
[i]
yy ¼

[i]
xy

T́

for i = 1; 2; : : : ; n ¡ 1: (2.3)

If there is no discontinuity at the interface i, the applied displacement-traction vector
at this interface will vanish, i.e.

t[i] =
¡
0 0 0 0

¢T
: (2.4 a)

When a concentrated vertical force is applied at the interface, the discontinuity is
given by

t[i] =
¡
0 0 ¡ f(t) ¯ (x) 0

¢T
: (2.4 b)
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Figure 1. Con¯guration and coordinate system of an n-layered medium.

The discontinuity caused by a concentrated horizontal force is then

t[i] =
¡
0 0 0 ¡ f(t) ¯ (x)

¢T
: (2.4 c)

For a glide edge dislocation or a horizontal slip fault suddenly generated at time
t = 0 along the interface i, the problem can be represented by assuming (Boore et
al . 1971)

t[i] =
¡
¡ bH(t)H(x) 0 0 0

¢T
; (2.4 d)

where b denotes the magnitude of Burger’s vector. The solutions for various types of
dynamic loadings can be obtained by a linear superposition.

3. Formulations in double transform domain

In absence of body forces, the two-dimensional equations of motion expressed in
terms of two displacement potentials ¿ and Á are (Achenbach 1973)

@2 ¿

@x2
+

@2 ¿

@y2
= s2

L

@2 ¿

@t2
; (3.1 a)

@2Á

@x2
+

@2Á

@y2
= s2

T

@2Á

@t2
; (3.1 b)

where

s L =

r
»

¶ + 2 ·
=

1

cL

; sT =

r
»

·
=

1

cT

:

Here » is the mass density of the material, ¶ and · are elastic constants of Laḿe,
and sL and sT are slownesses of longitudinal and transverse waves, respectively.
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Displacement components are given in terms of the two potentials by

u =
@¿

@x
+

@Á

@y
; (3.2 a)

v =
@¿

@y
¡ @Á

@x
; (3.2 b)

where u and v are the displacements in the x- and y-directions, respectively. On
invoking Hooke’s law and equation (3.2), the stress components are

¼ xx = ·

µ
(s2

T ¡ 2s2
L )

@2 ¿

@t2
+ 2

µ
@2 ¿

@x2
+

@2Á

@x@y

¶¶
;

¼ yy = ·

µ
(s2

T ¡ 2s2
L )

@2 ¿

@t2
+ 2

µ
@2 ¿

@y2
¡ @2Á

@x@y

¶¶
;

¼ xy = ·

µ
2

@2 ¿

@x@y
+

@2Á

@y2
¡ @2Á

@x2

¶
:

9
>>>>>>>=

>>>>>>>;

(3.3)

We will seek expressions for the  eld variables by applying the one-sided Laplace
transform over time t and the two-sided Laplace transform over spatial coordinate
x. The de nition of a function f(x; y; t) in the double Laplace transform domain is
given by

f̂(y; ¹ ; p) =

Z 1

¡1
e¡p¹ x

Z 1

0

f(x; y; t)e¡pt dt dx; (3.4 a)

where p is a positive real number, large enough to ensure the convergence of the
integral, and ¹ is a complex variable. The inverse formulation is given by

f(x; y; t) =
¡ p

4 º 2

Z ¹ 1 + 1 i

¹ 1¡1 i

ep¹ x

Z p1 + 1 i

p1¡1 i

f̂(y; ¹ ; p)ept dp d ¹ : (3.4 b)

By applying the double Laplace transform according to the de nition given by (3.4 a),
equations (3.1 a) and (3.1 b) become two ordinary di¬erential equations with the
following general solutions,

^¿ (y; ¹ ; p) = ¿ ¡( ¹ ; p)e + p® Ly + ¿ + ( ¹ ; p)e¡p® Ly ; (3.5 a)

Á̂(y; ¹ ; p) = Á¡( ¹ ; p)e + p® Ty + Á + ( ¹ ; p)e¡p® Ty ; (3.5 b)

where

® L =
q

s2
L ¡ ¹ 2 and ® T =

q
s2

T ¡ ¹ 2:

The condition Re ® L 0 (Re ® T 0) is satis ed by providing branch cuts along
s L jRe ¹ j < 1 (sT jRe ¹ j < 1), Im ¹ = 0, and choosing the branch of positive
square roots. The unknown functions ¿ ¡, Á¡, ¿ + and Á + are four  eld coe¯ cients of
each layer, to be determined by boundary conditions. The  eld coe¯ cients expressed
in (3.5 a) and (3.5 b) with subscript ` ¡ ’ denote the waves propagating in the direc-
tion of decreasing y (downgoing waves) and those with subscript `+’ are the waves
propagating in the direction of increasing y (upgoing waves).
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For convenience, the  eld coe¯ cients in (3.5) are arranged into two column matri-
ces,

c¡ =
¡
¿ ¡ Á¡

¢T
(3.6 a)

and

c + =
¡
¿ + Á +

¢T
; (3.6 b)

for downgoing and upgoing waves, respectively. From (3.2) and (3.3), and introduc-
ing the displacement vector u =

¡
û v̂

¢T
and traction vector f =

¡
^¼ yy ^¼ xy

¢T
, the

displacement-traction vector and  eld coe¯ cient matrices in transform domain are
related as follows,

Ã
u(y)

f(y)

!
=

Ã
M11(y) M12(y)

M21(y) M22(y)

! Ã
c¡

c+

!
; (3.7)

where

M11(y) = p

·
¹ e¡p® Ly ® Te¡p® Ty

® L e¡p® Ly ¡ ¹ e¡p® Ty

¸
; (3.8 a)

M12(y) = p

·
¹ ep® Ly ¡ ® Tep® Ty

¡ ® L ep® Ly ¡ ¹ ep® Ty

¸
; (3.8 b)

M21(y) = · p2

·
(s2

T ¡ 2 ¹ 2)e¡p® Ly ¡ 2 ¹ ® Te¡p® Ty

2¹ ® L e¡p® Ly (s2
T ¡ 2¹ 2)e¡p® Ty

¸
; (3.8 c)

M22(y) = · p2

·
(s2

T ¡ 2 ¹ 2)ep® Ly +2 ¹ ® Tep® Ty

¡ 2¹ ® L ep® Ly (s2
T ¡ 2 ¹ 2)ep® Ty

¸
: (3.8 d)

Response functions, such as displacement and stress components, can be obtained by
multiplying each of the four  eld coe¯ cients with suitable transfer functions in double
transform domain and then adding each of their contributions. The phase-related
receiver matrices M11(y), M12(y), M21(y) and M22(y) facilitate the expression of
response functions.

4. Waves propagating in a multi-layered medium

On invoking boundary and discontinuity conditions in (2.1) and (2.2) and applying
the double Laplace transform, a system of equations are developed to determine the
 eld matrices c(i)

¡ and c(i)
+ for each layer as follows,

³
M

(1)
21 (0) ¡ M

(1)
22 (0)

´ Ã
c

(1)
¡

c(1)
+

!
= t̂[0] at top surface y = 0;

³
M

(n)
21 ( ¡ hn) ¡ M

(n)
22 ( ¡ hn)

´ Ã
c(n)

¡

c
(n)
+

!
= t̂[n] at bottom surface y = ¡ hn;

9
>>>>>=

>>>>>;

(4.1)
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Ã
M (i)

11 ( ¡ hi) M (i)
12 ( ¡ hi) ¡ M (i + 1)

11 ( ¡ hi) ¡ M (i + 1)
12 ( ¡ hi)

M
(i)
21 ( ¡ hi) M

(i)
22 ( ¡ hi) ¡ M

(i + 1)
21 ( ¡ hi) ¡ M

(i + 1)
22 ( ¡ hi)

!
0

BBBB@

c
(i)
¡

c(i)
+

c
(i+ 1)
¡

c
(i+ 1)
+

1

CCCCA
= t̂[i]

at interface y = ¡ hi; i = 1; 2; : : : ; n ¡ 1;

9
>>>>>>>=

>>>>>>>;

(4.1cont.)

where t̂[i] indicates the transformed applied displacement-traction vector t[i] as
de ned in (2.3). Introducing a global  eld vector c (4n elements) for the multi-
layered medium,

c =

Ãµ
c

(1)
+

c
(1)
¡

¶T µ
c

(n)
+

c
(n)
¡

¶T!T

; (4.2)

and the global boundary displacement-traction vector t̂ (4n elements), which is
stacked by the applied loadings t̂[i] at all interfaces and boundaries, can be expressed
by

t̂ =
³

t̂[0]T

t̂[1]T

t̂[n¡1]T

t̂[n]T
T́

: (4.3)

Equation (4.1) can be rewritten in the transformed domain in a more compact form
as

Mc = t̂; (4.4)

where the coe¯ cient matrix M is a 4n £ 4n matrix with bandwidth 11 given by

M = D + L + U =

2

666666666664

D0 U0

L1 D1 U1

L2 D2
. . .

. . .
. . .

. . .

. . . Dn¡2 Un¡2

Ln¡1 Dn¡1 Un¡1

Ln Dn

3

777777777775

: (4.5)

In (4.5), the components of the diagonal matrix D are given by

D0 = M
(1)
21 (0);

Di =

"
M

(i)
12 ( ¡ hi) ¡ M

(i+ 1)
11 ( ¡ hi)

M
(i)
22 ( ¡ hi) ¡ M

(i+ 1)
21 ( ¡ hi)

#
; i = 1; 2; : : : ; n ¡ 1;

Dn = M (n)
22 ( ¡ hn);

9
>>>>>=

>>>>>;

(4.6)
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the non-zero block elements of upper triangular matrix U are

U0 =
³

¡ M (n)
22 (0) 02£2

´
;

Ui =

Ã
¡ M (i+ 1)

12 ( ¡ hi) 02£2

¡ M (i+ 1)
22 ( ¡ hi) 02£2

!
; i = 1; 2; : : : ; n ¡ 2;

Un¡1 =

Ã
¡ M (n)

12 ( ¡ hn¡1)

¡ M (n)
22 ( ¡ hn¡1)

!
;

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(4.7)

and the non-zero blocks for lower triangular matrix L are

L1 =

Ã
M (1)

11 ( ¡ h1)

M
(1)
21 ( ¡ h1)

!
;

Li =

Ã
02£2 M (i)

11 ( ¡ hi)

02£2 M (i)
21 ( ¡ hi)

!
; i = 2; 3; : : : ; n ¡ 1;

Ln =
³

02£2 M
(n)
21 ( ¡ hn)

´
:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(4.8)

Note that the diagonal block matrix D is a non-singular matrix. The stacked matrix
equation can be solved directly by

c = M ¡1 t̂: (4.9)

Once the global  eld vector c is obtained, the response functions in each layer
can be determined immediately. By arranging the response functions in each layer
into a response vector, this vector can be related to the globe  eld vector with
a phase-related receiver matrix Rcv . For example, if the response functions for u,
v, ¼ yy and ¼ xy in each layer are concerned, the response vector should be de ned
as

b̂(y; ¹ ; p) =

0

BBBB@

0

BBBB@

û(1)(y)

v̂(1)(y)

^¼ (1)
yy (y)

^¼
(1)
xy (y)

1

CCCCA

T 0

BBBB@

û(2)(y)

v̂(2)(y)

^¼ (2)
yy (y)

^¼
(2)
xy (y)

1

CCCCA

T 0

BBBB@

û(n¡1)(y)

v̂(n¡1)(y)

^¼ (n¡1)
yy (y)

^¼
(n¡1)
xy (y)

1

CCCCA

T 0

BBBB@

û(n)(y)

v̂(n)(y)

^¼ (n)
yy (y)

^¼
(n)
xy (y)

1

CCCCA

T1

CCCCA

T

:

(4.10)

Thus the global  eld vector is related to the response vector by

b̂(y; ¹ ; p) = Rcv (y)M ¡1t̂; (4.11)
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where the global phase-related receiver matrix is given by (in view of equation (3.8))

Rcv (y) =

2

6666666666666664

M
(1)
11 (y) M

(1)
12 (y)

M (1)
21 (y) M (1)

22 (y)

M
(2)
11 (y) M

(2)
12 (y)

M
(2)
21 (y) M

(2)
22 (y)

. . .

M (n)
11 (y) M (n)

12 (y)

M
(n)
21 (y) M

(n)
22 (y)

3

7777777777777775

:

(4.12)

Note that the elements of the phase-related receiver matrix Rcv are independent of
the loading conditions t̂. Furthermore, they change correspondingly if the response
function vector changes. The ®exibility in choosing Rcv and b̂ facilitates the solution
for a multiple receiver system.

With the transformed solution at hand, the inverse transform should be performed
to obtain the transient solution in time domain. The inverse transform method was
discussed in some detail in the book written by Ewing et al . (1957). The inversion
of Laplace transform involves a summation of residues which are in nite in number.
Hence the accuracy of the  nal value depends on the number of terms taken in the
series.

As an alternative way to solve the problem, the theory of generalized ray was
designated to calculate the early response of the multi-layered medium by a di¬erent
approach obviating the solving of the boundary-value problem. The relations between
this method and the boundary-value problem, however, are obscure. In the method
of generalized ray, the transient response of the layered medium is decomposed into
an in nite number of rays which arrive at the receiver along a generalized ray path in
sequence. Solutions based on generalized ray theory is completed with the application
of Cagniard’s method. Since the transient response for the layered medium is exact
up to the arrival time of the next ray, only a  nite number of rays are involved in the
early-time solution. For the long-time response at a receiver in the layered medium,
however, di¯ culty arises in determining the large number of generalized ray paths
along which the rays arrived at the receiver. Therefore, an e¬ective method will be
provided here to obtain the ray solution directly from the boundary-value problem
for the layered medium.

The coe¯ cient matrix M is rewritten in an alternative form by extracting the
diagonal block matrix D out of the expression as

M = D(I ¡ R); (4.13)

where R is given by

R = ¡ D¡1(L + U ); (4.14)
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or, alternatively,

R =

2

666666666664

02£2 ¡ D¡1
0 U0

¡ D¡1
1 L1 04£4 ¡ D¡1

1 U1

¡ D¡1
2 L2 04£4

. . .

. . .
. . .

. . .

. . .

04£4 ¡ D¡1
n¡2Un¡2

¡ D¡1
n¡1Ln¡1 04£4 ¡ D¡1

n¡1Un¡1

¡ D¡1
n Ln 02£2

3

7777777775

: (4.15)

From (4.9) and (4.13), the global  eld vector c is then obtained by

c = (I ¡ R)¡1s; (4.16)

where the source vector s is given by

s = D¡1t̂; (4.17 a)

or, in a component form,

s =

0

BBBBBBB@

D¡1
0 t̂[0]

D¡1
1 t̂[1]

...

D¡1
n¡1t̂[n¡1]

D¡1
n t̂[n]

1

CCCCCCCA

: (4.17 b)

To examine the localized source e¬ect, a typical loading t[i] is applied at the
interface y = ¡ hi separating the ith and (i + 1)th layers. Source waves generated
directly by the applied loading are propagating in these two layers as if they are
propagating in two joint half-spaces as shown in  gure 2. Since only the outgoing
waves from the interface are generated, the  eld coe¯ cient vectors

c
(i)
¡ and c

(i + 1)
+

for incoming waves will vanish. The interface condition in the transformed domain
yields

Ã
M

(i)
12 ( ¡ hi) ¡ M

(i + 1)
11 (¡ hi)

M
(i)
22 ( ¡ hi) ¡ M

(i + 1)
21 (¡ hi)

! Ã
c

(i)
+

c
(i+ 1)
¡

!
= t̂[i]: (4.18)
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medium (i)

medium (i+1)
interface (i)

y hi= -
( )c 0

1
-
+i

( )c 0 +
i

** **

Figure 2. Waves generated by an interfacial loading.

Therefore, the non-zero  eld coe¯ cient vectors c
(i)
+ and c

(i+ 1)
¡ are obtained as

Ã
c

(i)
+

c
(i+ 1)
¡

!
= D¡1

i t̂[i]; (4.19)

where the coe¯ cient matrices Di are exactly the same as that given in (4.6). The
physical meaning of the source vector s in (4.17) now becomes clear. Each element
of the vector represents the source waves generated by the applied loadings. In com-
parison with the source function designated for the theory of generalized ray, the
source vector s is phase related.

By the expansion of the inversion matrix of (I ¡ R) in (4.16) into a power matrix
series of R, we obtain

c =

1X

i= 0

Ris: (4.20)

The response vector b̂ in (4.11) can be expressed as

b̂(y; ¹ ; p) = Rcv (y)

1X

i= 0

Ris: (4.21)

The convergence of the series will be ensured in the following section by considering
the physical meaning of R.

5. The phase-related re° ection and transmission matrix

Following the basic idea of the method of generalized ray which was proposed by
Spencer (1960), the boundary-value problem for a single interface between two half-
spaces (as shown in  gure 3) is considered to construct the re®ected and transmitted
coe¯ cients of the two media adjacent to the interface. The waves which are prop-
agating toward the interface (i) from the upper medium (i) will be considered  rst
and are shown in  gure 3a. The downgoing incident  eld vector in the medium (i)
is denoted as c

(i)
0¡. When the downgoing waves arrive at the interface, the upgo-

ing re®ected waves in the medium (i) and the downgoing transmitted waves in the
medium (i + 1) will be generated. The re®ected and transmitted  eld vectors are
denoted as

c(i)
1+ and c(i+ 1)

1¡ ;
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medium (i)

medium (i+1)
interface (i)

y hi= -
( )c1

1
-
+i

( )c1+
i( )c0 -

i(a)

medium (i)

( )c1
1

-
+i

medium (i+1)
interface (i)

y hi= -
( )c0

1
+
+i

( )c1+
i

(b)

Figure 3. Re° ection and transmission of waves by a single interface. (a) Incident wave in the
direction of decreasing y. (b) Incident wave in the direction of increasing y.

respectively. Note that additional subscripts 0 and 1 for the  eld vectors indicate the
incident waves and the re®ected or transmitted waves, respectively.

The continuity condition at interface (i) yields
Ã

M (i)
11 ( ¡ hi) M (i)

12 ( ¡ hi)

M
(i)
21 ( ¡ hi) M

(i)
22 ( ¡ hi)

! Ã
c(i)

0¡
c

(i)
1+

!
=

Ã
M (i + 1)

11 ( ¡ hi)

M
(i + 1)
21 ( ¡ hi)

!
(c

(i + 1)
1¡ ): (5.1)

Solving for (5.1), the re®ected and transmitted  eld vectors are expressed in terms
of the incident  eld vector as follows,

Ã
c

(i)
1+

c(i+ 1)
1¡

!
= ¡ D¡1

i Li

µ
0

c
(i)
0¡

¶

=

µ
0 Ri=i + 1

0 Ti=i + 1

¶ µ
0

c(i)
0¡

¶
; (5.2)

where the matrices Di and Li are the same as those given in (4.6) and (4.8), respec-
tively. The term ¡ D¡1

i Li is exactly the same as the element at the ith level of
the matrix R as given in (4.15). The phase-related re®ection matrix Ri=i + 1 at the
interface (i) (y = ¡ hi) is expressed as

Ri=i + 1 =

"
Rppe¡2p®

(i)
L hi Rspe¡p(®

(i)
L + ®

(i)
T )hi

Rpse¡p( ®
(i)
L + ®

(i)
T )hi Rsse¡2p®

(i)
T hi

#
; (5.3)

the phase-related transmission matrix Ti=i + 1 is

Ti=i + 1 =

"
Tppe¡p(®

(i)
L

¡ ®
(i+1)
L )hi Tspe¡p( ®

(i)
T

¡ ®
(i+1)
L )hi

Tpse¡p(®
(i)
L ¡ ®

(i+1)
T )hi Tsse¡p(®

(i)
T ¡ ®

(i+1)
T )hi

#
: (5.4)
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The functions Rpp, Rps, Rsp and Rss are referred to the generalized re®ection coe¯ -
cients. Likewise, Tpp, Tps, Tsp and Tss are generalized transmission coe¯ cients. They
are expressed as

Rpp =
rpp

¢
; Rsp =

rsp

¢
; Rps =

rps

¢
; Rss =

rss

¢
;

Tpp =
tpp

¢
; Tsp =

tsp

¢
; Tps =

tps

¢
; Tss =

tss

¢
;

9
>=

>;
(5.5)

where

¢ = ¡ ((A2
(i + 1) + 4¹ 2 ® L (i+ 1) ® T(i+ 1))( ¹

2 + ® L (i) ® T(i))·· 2

+ (s2
T(i)s

2
T(i + 1)( ® L (i) ® T(i + 1) + ® L (i + 1) ® T(i))

¡ 2 ¹ 2(A(i) ¡ 2 ® L (i) ® T(i))(A(i+ 1) ¡ 2® L (i+ 1) ® T(i + 1)))··

+ (A2
(i) + 4 ¹ 2 ® L (i) ® T(i))( ¹

2 + ® L (i+ 1) ® T(i+ 1))); (5.6)

in which

·· =
· (i + 1)

· (i)

; A(i) = s2
T(i) ¡ 2¹ 2:

In (5.5), the numerators in the expression of the generalized re®ection coe¯ cients
are given by

rpp = ¡ (A2
(i+ 1) + 4 ¹ 2 ® L (i + 1) ® T(i+ 1))( ¹

2 ¡ ® L (i) ® T(i))·· 2

¡ (s2
T(i)s

2
T(i+ 1)( ® L (i+ 1) ® T(i) ¡ ® L (i) ® T(i+ 1))

¡ 2 ¹ 2(A(i) + 2 ® L (i) ® T(i))(A(i+ 1) ¡ 2 ® L (i+ 1) ® T(i+ 1)))··

¡ (A2
(i) ¡ 4¹ 2 ® L (i) ® T(i))( ¹

2 + ® L (i+ 1) ® T(i + 1)); (5.7 a)

rps = 2¹ ® L (i)[(A
2
(i+ 1) + 4 ¹ 2 ® L (i+ 1) ® T(i + 1))·· 2

¡ (A(i) ¡ 2¹ 2)(A(i+ 1) ¡ 2® L (i+ 1) ® T(i + 1))·· ¡ 2A(i)( ¹
2 + ® L (i+ 1) ® T(i+ 1))];

(5.7 b)

rsp = ¡ 2¹ ® T(i)[(A
2
(i+ 1) + 4 ¹ 2 ® L (i + 1) ® T(i+ 1))·· 2

¡ (A(i) ¡ 2¹ 2)(A(i+ 1) ¡ 2® L (i+ 1) ® T(i + 1))·· ¡ 2A(i)( ¹
2 + ® L (i+ 1) ® T(i+ 1))];

(5.7 c)

rss = ¡ (A2
(i+ 1) + 4 ¹ 2 ® L (i + 1) ® T(i+ 1))( ¹

2 ¡ ® L (i) ® T(i))·· 2

¡ (s2
T(i)s

2
T(i+ 1)( ® L (i) ® T(i+ 1) ¡ ® L (i+ 1) ® T(i))

¡ 2 ¹ 2(A(i) + 2 ® L (i) ® T(i))(A(i+ 1) ¡ 2 ® L (i+ 1) ® T(i+ 1)))··

¡ (A2
(i) ¡ 4¹ 2 ® L (i) ® T(i))( ¹

2 + ® L (i+ 1) ® T(i + 1)); (5.7 d)

and the numerators in the expression of generalized transmission coe¯ cients are

tpp = 2s2
T(i) ® L (i)((A(i+ 1) ® T(i) + 2 ¹ 2 ® T(i+ 1))·· + (A(i) ® T(i+ 1) + 2 ¹ 2 ® T(i))); (5.8 a)

tps = 2 ¹ s2
T(i) ® L (i)((A(i+ 1) ¡ 2 ® L (i+ 1) ® T(i))·· ¡ (A(i) ¡ 2 ® L (i+ 1) ® T(i))); (5.8 b)

tsp = ¡ 2 ¹ s2
T(i) ® T(i)((A(i + 1) ¡ 2® L (i) ® T(i + 1))·· ¡ (A(i) ¡ 2® L (i) ® T(i+ 1))); (5.8 c)

tss = 2s2
T(i) ® T(i)((A(i + 1) ® L (i) + 2 ¹ 2 ® L (i+ 1))·· + (A(i) ® L (i + 1) + 2¹ 2 ® L (i))): (5.8 d)
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By setting ¢ equal to zero in (5.6), i.e.

¢ = 0; (5.9)

we have the characteristic equation for Stoneley waves at the interface of two dissim-
ilar isotropic solids. If the medium (i + 1) is a vacuum, the transmission coe¯ cients
are zero and the re®ection coe¯ cients at a free surface will be obtained by setting
·· = 0 in (5.5). The characteristic equation for the Stoneley wave in (5.9) reduces to
that for the Rayleigh wave. As another limiting case, if medium (i+1) is a rigid body,
the displacement of medium (i +1) is zero at the interface. The re®ection coe¯ cients
are obtained by taking the limit ·· ! 1 in (5.5), while the transmission coe¯ cients
are absent.

In view of (5.2), the phase-related re®ected matrix Ri=i + 1 characterizes the trans-
fer relations between the incident and the re®ected wave  elds. If there is an incident
pressure wave (in the ith layer) propagating toward the interface between the ith
and (i + 1)th layer, the coe¯ cient of re®ected pressure wave can be obtained imme-
diately by multiplying the coe¯ cient of incident pressure wave with [Ri=i + 1]11. The
coe¯ cient of the re®ected shear wave can be obtained from the incident coe¯ cient
by multiplying [Ri=i + 1]12. Similarly, if the incident wave is a shear wave, the coe¯ -
cients of re®ected pressure and shear waves can be constructed by multiplying the
coe¯ cient of incident shear wave with [Ri=i + 1]21 and [Ri=i + 1]22, respectively.

The phase-related transmission matrix Ti=i + 1 dominates the transfer relations
between the incident and the transmitted wave  elds. The wave potentials for the
transmission waves can be obtained easily by multiplying the coe¯ cients of incident
wave potentials with correspondent elements in Ti=i + 1. The physical interpretation
will be discussed in detail in the second part of this paper through an example of a
two-layered medium.

Suppose there is an incident wave, represented by a  eld vector c(i+ 1)
0+ , which

travels in the direction of increasing y as shown in  gure 3b. In other words, there is
a source wave c

(i+ 1)
0+ propagating upward toward the interface (i). By the application

of the continuity conditions at the interface, the re®ected  eld vector c(i+ 1)
1¡ and the

transmitted one c(i)
1+ are expressed in terms of incident  eld vector as follows

Ã
c

(i)
1+

c(i+ 1)
1¡

!
= ¡ D¡1

i Ui

Ã
c(i+ 1)

0+

0

!

=

µ
Ti+ 1=i 0
Ri+ 1=i 0

¶ Ã
c

(i + 1)
0+

0

!
;

9
>>>>=

>>>>;

(5.10)

where Di and Ui are given in (4.6) and (4.7), respectively. The phase-related re®ected
matrix Ri+ 1=i becomes

Ri+ 1=i =

"
Rppe¡2p®

(i+1)
L hi Rspe¡p( ®

(i+1)
L + ®

(i+1)
T )hi

Rpse¡p(®
(i+1)
L + ®

(i+1)
T )hi Rsse¡2p®

(i+1)
T hi

#
; (5.11)

the phase-related transmission matrix Ti+ 1=i is

Ti + 1=i =

"
T ppep(®

(i)
L

¡ ®
(i+1)
L )hi T spep( ®

(i)
T

¡ ®
(i+1)
L )hi

T psep(®
(i)
L ¡ ®

(i+1)
T )hi T ssep(®

(i)
T ¡ ®

(i+1)
T )hi

#
: (5.12)
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For the incident wave propagating in the direction of increasing y, the re®ection and
transmission coe¯ cients are given by

Rpp = Rpp; Rss = Rss; Tpp = T pp; Tss = T ss;

Rps = ¡ Rps; Rsp = ¡ Rsp; Tps = ¡ T ps; Tsp = ¡ T sp:

¾
(5.13)

The phase-related re®ection and transmission coe¯ cient matrices Ri+ 1=i and Ti + 1=i

characterize the solution of re®ected and transmitted waves which are generated by
the interface (i) for incident waves that are propagating in the medium (i + 1).

By stacking all the localized phase-related re®ection and transmission matrices for
each single interface, a globe re®ection and transmission matrix can be constructed
to characterize the waves propagating in the multi-layered medium. The  eld vector
c1 generated by the incident  eld vector s (the source waves) is thus given by

c1 = Rs; (5.14)

where the global phase-related re®ection and transmission matrix R is exactly the
same form as that given in (4.15), and can be rewritten in terms of the local re®ection
and transmission matrices as follows:

R =

2

6666666666666666666664

0 R1=0

R1=2 0 0 T2=1

T1=2 0 0 R2=1

R2=3 0 0 T3=2

T2=3 0 0 R3=2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Rn¡1=n 0 0 Tn=n¡1

Tn¡1=n 0 0 Rn=n¡1

0 0 Rn=n + 1 0

3

7777777777777777777775

:

(5.15)

Note that the  eld vector c1 represents all the scatter waves induced by the source
waves that are re®ected by, or transmitted through, the interface once. The scatter
waves represented by c1 become the succeeding incident waves for the medium, and
the secondary scatter waves (which are represented by c2 = Rc1) will be generated
and considered as the incident waves for the next group of waves. The complete
wave  eld in the layered medium are thus decomposed into an in nite number of
wave groups which are generated in successive order.

A synthesis of all wave groups generated by source waves in sequence leads to the
total wave  eld in the layered medium, i.e.

c =

1X

i= 0

Ris:

This result is exactly the same as the one given in (4.20). The term Ris represents
a group of waves which is either re®ected by, or transmitted through, the interface i
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times. Since the sum of re®ection and transmission coe¯ cients in each row of matrix
R is less than or equal to unity, all the eigenvalues of matrix R are allocated in
a unit circle in the complex plane. The convergence of the matrix series is ensured.
However, this expansion is applicable to practical problems, since only  rst few terms
out of in nite sum are relevant for any given time of interest.

In the layered-medium problem, the solution for interface loading conditions is now
decomposed into in nite groups of waves, each represented by a term in the in nite
matrix series in (4.20). The phase-related re®ection and transmission matrix R char-
acterizes the multiple re®ections of all waves within the medium, and the source
vector s speci es the source waves generated by the applied loadings at the interface
and lateral surfaces. For the response quantities of the layered medium, such as dis-
placement and stress components at a receiver, equation (4.21) gives the solution by
multiplying the solution of displacement potential in the transformed domain with
the phase-related receiver matrix Rcv that is adjustable and is determined by the
response function we are interested.

The source vector s, the re®ection and transmission matrix R and the receiver
matrix Rcv are independent of each other. When the loading conditions are changed,
the expressions of R and Rcv will still be the same. The independence of Rcv , R
and s implies that only the source vector s should be constructed in solving di¬erent
problems. In the next section, the proposed method will be extended to solve the
problem with a loading that is applied in the interior of the layered medium.

6. The interior source problem

In this section, the transient response of the layered medium subjected to dynamic
loadings which are located within layers instead of at the interface will be con-
sidered. The solution can be obtained by introducing arti cial interfaces at the
applied-loading locations. In this way, the size of matrix R will be increased. As
an alternative, the solution can be constructed easily by modifying the source vec-
tor s presented in (4.20) in considering the physical meaning of the re®ection and
transmission matrix R in (5.15).

Since the representation of the source waves in the in nite domain depends on
the location of receiver, the source term in the matrix solution should be separated
from the summation and will be denoted as a vector s ¤

0 in the following expression.
The source emits waves propagate in two directions, which will become the incident
waves in the successive re®ection and transmission by the interfaces. The source
vector s in (5.14) includes the waves in both directions and is denoted by s ¤ in order
to distinguish between the source function of interface loading and body loading.
The succeeding re®ected or transmission waves are thus obtained by multiplying the
matrix R with s ¤ . For example, the transformed solution for a body source at level
y = ¡ hsi

in the ith layer is expressed as follows

b̂(y; ¹ ; p) = Rcv (y)s ¤
0 + Rcv (y)

1X

i= 1

Ris ¤ ; (6.1)

where s ¤
0 is de ned as

s ¤
0 = (0; 0; : : : ; 0; s(i)

+ ( ¡ hsi
); : : : ; 0)T for ¡ hi > y > ¡ hsi

> hi; (6.2 a)

s ¤
0 = (0; 0; : : : ; s(i)

¡ ( ¡ hsi
); 0; : : : ; 0; 0)T for ¡ hi > ¡ hsi

> y > hi (6.2 b)
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Table 1. The source functionsa in in¯nite domain at y = ¡hs

types of loading F (p)b ¿ 0 ¡ ( ¹ )a Á0 ¡ ( ¹ )a ¿ 0 + ( ¹ )a Á0+ ( ¹ )a

concentrated forces

vertical
¼ 0

2· p2 s2
T

1
¹

® T
¡1

¹

® T

horizontal
¼ 0

2· p2 s2
T

¡ ¹

® L
1 ¡ ¹

® L
¡1

concentrated double forces

vertical
d0

2· ps2
T

® L ¹ ® L ¡¹

horizontal
d0

2· ps2
T

¡ ¹ 2

® L
¡¹ ¡ ¹ 2

® L
¹

concentrated single couples

vertical
m0

2· ps2
T

¹
¹ 2

® T
¡¹

¹ 2

® T

horizontal
m0

2· ps2
T

¡¹ ® T ¹ ® T

double couple
without moment

m0

· ps2
T

¹ ¡ ® 2
T ¡ ¹ 2

® T
¡¹ ¡ ® 2

T ¡ ¹ 2

® T

centre of dilatation
» s2

L

2p
d0

1

® L
0

1

® L
0

centre of rotation
m0

2· p
0

1

® T
0

1

® T

edge dislocation
or vertical strike
fault

b0

ps2
T

¹ ¡ ® 2
T ¡ ¹ 2

® T
¡¹ ¡ ® 2

T ¡ ¹ 2

® T

a The relations between phase-related source function and source function are

¿ 0 ¡ ( ¹ ; p) = F (p) ¿ 0 ¡ ( ¹ )e
+ p ® Lh s ; Á0 ¡ ( ¹ ; p) = F (p)Á0 ¡ ( ¹ )e

+ p ® Th s ;

¿ 0 + ( ¹ ; p) = F (p) ¿ 0+ ( ¹ )e ¡ p ® Lh s ; Á0+ ( ¹ ; p) = F (p)Á0+ ( ¹ )e ¡ p ® Th s :

b All loadings are assumed with unit step time dependence H(t) and with unit magnitude.

and s ¤ is given by

s ¤ = (0; 0; : : : ; s
(i)
¡ ( ¡ hsi

); s
(i)
+ ( ¡ hsi

); : : : ; 0; 0)T for all y: (6.2 c)

Note that s(i)
+ ( ¡ hsi

) and s(i)
¡ ( ¡ hsi

) are determined by a body source at y = ¡ hs in
an in nite medium, and the material properties are the same as medium (i). Several
types of source function in an in nite domain are listed in table 1. For a more
general type of loading conditions within the medium, the solution can be obtained
by replacing the source vectors s ¤

0 and s ¤ .
The analytic results for a layered medium in the transform domain are exact

and can be expressed in a simple closed series form, with each term representing
a physical transient wave. Each component of the matrix solution could then be
identi ed with the solution derived by the theory of generalized rays. The solution
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in the time domain can be obtained by means of the inverse transform formulation
in (3.4 b), i.e.

b(x; y; t) =
¡ p

4 º 2

Z ¹ 1 + 1 i

¹ 1¡1 i

ep¹ x

Z p1 + 1 i

p1¡1 i

b̂(y; ¹ ; p)ept dp d ¹ : (6.3)

As an alternative, the transient solution in time domain can be accomplished by
the application of Cagniard’s method (Cagniard 1939). The idea behind Cagniard’s
method is to deform the path of integration in the complex ¹ -plane in such a manner
that the inverse Laplace transform along a new path of integration can be obtained
by inspection and the convolution theorem. The method of Cagniard is surveyed
in detail in the textbook written by Achenbach (1973) and in the review article by
Pao & Gajewski (1977). The numerical calculation of the exact transient solution
based on Cagniard’s method and the comparison between experimental waveform
and theoretical results will be discussed in the second part of this paper.

7. Conclusions

A matrix method is proposed in this study to analyse transient waves in a multi-
layered medium subjected to in-plane dynamic loadings. With aids of the Bromwich
matrix expansion, the solution in the transform domain is arranged into a power
series of the re®ection and transmission matrix R. Each term of the power series
represents a group of waves that are re®ected by, or transmitted through, the interface
the same number of times. The  nal solution in the transform domain is a series
composed of the product of the receiver matrix Rcv , the power matrix of R and a
source vector s. The connection between the proposed method and the generalized
ray method is established by considering the re®ection and transmission of waves at
a single interface.

For loadings applied in the interior of layers, the solution is obtained without intro-
ducing an arti cial interface, only by replacing the source vector with a suitable one,
as stated in x 6. For a column of sources within the layered medium, the solution can
be obtained easily by replacing the source vector s correspondingly by the principle
of superposition. Furthermore, if there is a column of receivers, the solution is readily
obtained since the displacement potentials in each layer are given in the proposed
solution.

The authors gratefully acknowledge the ¯nancial support of this research by the National Science
Council (Republic of China) under grant NSC 87-2212-E-002-035.
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