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A novel approach has been developed that maps a 
rule-based expert system into the neural architecture in 
both the structural and behavioural aspects. Under this 
approach, the knowledge base and the inference en- 
gine are mapped into an entity called 'conceptualiza- 
tion', where a node represents a concept and a link 
represents a relation between two concepts. A concept 
node is designated by a small number of  language 
symbols. In the neural system transformed from a 
knowledge-based system, the inference behaviour is 
characterized by propagating and combining activa- 
tions recursively through the network, and the learning 
behaviour is based upon a mechanism called 'back- 
propagation', which allows proper modification of 
connection strengths in order to adapt the system to 
the environment. This approach is based on the analo- 
gies observed between a belief network and a neural 
network, and its validity has been demonstrated by 
experiments. Finally, the advantages and disadvantages 
of this approach are discussed with respect to inference 
and learning. 
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The neural network approach, also referred to as 
connectionism, has been an increasingly important 
approach to artificial intelligence j-4. Under this 
approach, information processing occurs through in- 
teractions among a large number of simulated neurons, 
each of which is quite limited in its processing 
capabilities. The knowledge of a neural network (a 
connectionist) lies in its connections and associated 
weights. 

It has long been argued that a close resemblance 
between the computer's internal representations and 
neural nets is neither necessary nor feasible. Neural 
networks implemented earlier are often severely li- 
mited in the kinds of computations they can perform 5. 
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However, with recent successes of the neural network 
approach to such problems as learning to speak 6, 
medical reasoning 7, and recognizing hand-written char- 
acters, there is a growing interest in taking this 
approach to artificial intelligence. These successess can 
be explained in part by the invention of a number of 
useful learning algorithms such as 'back-propagation', 
and in part by hardware advances in the construction of 
massively parallel computers that enable much faster 
simulation of neural networks 8. Furthermore, resear- 
chers have begun to explore a new computer 
architecture called the neural computer (see, for 
example, Reference 9), which resembles biological 
brains in structure and behaviour. Such computers hold 
the promise of solving some hard problems faster than 
current computers by many orders of magnitude. 

Since the early eighties, when several knowledge- 
based systems such as DENDRAL,  PROSPECTOR 
and CADUCEUS proved to be successful, the 
knowledge-based approach has become the most im- 
portant approach to artificial intelligence. As shown in 
Figure 1, knowledge base, inference engine and user 
interface are three main components in a knowledge- 
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Figure 1. The basic components of a knowledge-based 
system 
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based system. Knowledge representation, knowledge 
processing (inference) and knowledge acquisition 
(learning) constitute three primary issues in building 
such systems. 

While the neural network approach has produced 
encouraging results, particularly in low-level perceptual 
and signal processing tasks, it has had limited success in 
high-level cognitive areas where the knowledge-based 
approach has shown promise. On the other hand, the 
knowledge-based approach may be inadequate or 
inappropriate for performing perceptual reasoning. To 
combine these two approaches is an important direc- 
tion for developing an artificial intelligence system in 
the future. 

This paper describes a novel approach that maps 
rule-based systems into the neural architecture. Under 
this approach, the knowledge base and the inference 
engine are mapped into an entity called conceptualiza- 
tion*, where a node represents a concept and a link 
represents a relation between two concepts. A concept 
node is designated by a small number of language 
symbols. In the neural system transformed from a 
knowledge-based system, the inference behaviour is 
characterized by propagating and combining activa- 
tions recursively through the network, and the learning 
behaviour is based upon a mechanism called back- 
propagation, which allows proper modification of 
connection strengths in the adaptation to the environ- 
ment. 

MAPPING RULE-BASED SYSTEMS INTO 
NEURAL A R C H I T E C T U R E  

The neural network approach contrasts with the 
knowledge-based approach in several aspects. The 
knowledge of a neural network lies in its connections 
and associated weights, whereas the knowledge of a 
rule-based system lies in rules. A neural network 
processes information by propagating and combining 
activations through the network, but a knowledge- 
based system reasons through symbol generation and 
pattern matching. The knowledge-based approach 
emphasizes knowledge representation, reasoning 
strategies and the ability to explain, whereas the neural 
network approach does not. The key differences 
between these two approaches are summarized in 
Table 1. 

A rule-based system (knowledge represented in 
rules) can be transformed into an inference network 
where each connection corresponds to a rule and each 
node corresponds to the premise or the conclusion of a 
rule, as seen in Figure 2. Reasoning in such systems is a 
process of propagating and combining multiple pieces 
of evidence through the inference network until final 
conclusions are reached. Uncertainty is often handled 
by adopting the certainty factor (CF) or the probabilis- 
tic schemes which associate each fact with a number 
called the belief value. An important part of reasoning 
tasks is to determine the belief values of the predefined 
final hypotheses given the belief values of observed 

*'Conceptualization'  is also a technical term in the artificial intelli- 
gence literature. 

evidence. The network of an inference system through 
which belief values of evidences or hypotheses are 
propagated and combined is called the belief network. 
Correspondence in structural and behavioural aspects 
exists between neural networks and belief networks, as 
shown in Table 2. For instance, the summation function 
in neural networks corresponds to the function for 
combining certainty factors in MYCIN-Iike systems or 
to the Bayesian formula for deriving a posteriori 
probabilities in PROSPECTOR-like systems. The 
thresholding function in neural networks corresponds 
to predicates such as SAME (in MYCIN-Iike systems), 
which cuts off any certainty value below 0.2. 

Since belief networks correspond to neural networks 
in every structural and behavioural attribute shown in 
Table 2, any algorithm that is applicable to neural 
networks characterized by no more than these attri- 
butes may also be applicable to belief networks. 
'Back-propagation' is just such an algorithm. 

A rule-based system is mapped into a neural network 
by mapping the knowledge base and the inference 
engine into a kind of neural network called concep- 
tualization, which stores knowledge and performs 
inference and learning. Furthermore, to construct a 
conceptualization, the following mappings need to be 
done. 

• Final hypotheses are mapped into output neurons 
(neurons without connections pointing outwards). 

• Data attributes are mapped into input neurons 
(neurons without connections pointing inwards). 

• Concepts that summarize or categorize subsets of 
data or intermediate hypotheses that infer final 
hypotheses are mapped into middle (also known as 
hidden) neurons. 

• The strength of a rule is mapped into the weight of 
the corresponding connection. 

If there are no data errors, input neurons can represent 
both the observed and the actual data. In case of 
possible data errors, the observed data and the actual 
data are represented by two different levels of neurons, 
with a connection established between each observed 
and actual input neurons referring to the same data 
attribute. One example is shown in Figure 3 where, for 
instance, observed input neuron E, corresponds to 
actual input neuron E,. 

K N O W L E D G E  REPRESENTATION 

In this section the knowledge representation language 
in MYCIN10 or similar systems is reviewed. The issue 
of how to map such language into a conceptualization is 
then examined, and knowledge representation for the 
neural network is described. 

In MYCIN, facts are represented by context- 
attribution-value (or object-attribute-value) triples. 
Each triple is a term. For instance, the term 'throat 
which is the site of the culture' is represented by the 
triple (CULTURE SITE THROAT) .  Each triple is 
associated with a certainty factor, which is described 
later. 

A sentence is represented by a predicate-context- 
attribute-value quadruple. For instance, the sentence 
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Table 1. Comparison between the neural network and the knowledge-based approaches 

Neural network approach Knowledge-based approach 

Knowledge Connections 

Computation Numbers 
Summation and thresholding 
Simple, uniform 

Reasoning Non-strategic 

Tasks Signal level 

Rules 

Numbers, symbols 
Pattern matching 
Complicated, various 

Strategic, meta-level 

Knowledge level 

N 7 N 8 N 9 N10 

Table 2. Correspondence between neural networks and 
belief networks 

Neural networks Belief networks 

Connections 
Nodse 
Weights 
Thresholds 
Summation 

Propagation of activations 

Rules 
Premises, conclusions 
Rule strengths 
Predicates 
Combination of 
belief values 
Propagation of 
belief values 

Figure 2. An inference network 
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Figure 3. Organization of the knowledge base and input 
data as a neural network 

'the site of the culture is throat' is represented by 
quadruple (SAME CULTURE SITE THROAT).  The 
truth value of a sentence is determined by whether the 
triple satisfies the predicate in terms of its CF. 

Judgemental and inferential knowledge is repre- 
sented in production rules; i.e. if-then rules. If a rule's 
IF-part is evaluated to be true, its THEN part will be 
concluded. Each part is constituted by a small number 
of sentences. For instance, a MYCIN rule 

RULE124 
IF: 
1. The site of the culture is throat. 
2. The identity of the organism is Streptococcus. 
THEN: There is strongly suggestive evidence (.8) 
that the subtype of the organism is not group-D. 

can be encoded in the MYCIN language as 

(RULE124 ((SAND(SAME CULTURE SITE 
THROAT) 
(SAME ORGANISM IDENTITY STREPTOCOC- 
CUS)) 
((CONCLUDE ORGANISM SUBTYPE GROUP- 
D -.8)))) 

Certainty factors are integers ranging from - 1.0 to 1.0. 
A minus number indicates disbelief whereas a positive 
number indicates belief. The degree of belief or 
disbelief parallels the absolute value of the number. 
The extreme values -1 .0  to 1.0 represent 'No' and 
'Yes', respectively. A triple is associated with a CF 
indicating the current belief in the triple, A rule is 
assigned a CF representing the degree of belief in the 
conclusion given that the premise is true. For instance, 
the CF of RULE124 in the example above is -0.8. The 
CF of a conclusion based upon a rule can be computed 
by multiplying the CF of the premise and the CF of the 
rule. Each sentence (condition) in the premise on 
evaluation will return a number ranging from 0 to 1.0 
representing the CF of the sentence. The CFs of all 
conditions in the premise are combined to result in the 
CF of the premise. As in the fuzzy set theory, SAND 
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returns the minimum of the CFs of its arguments. CFs 
of a fact due to different pieces of evidence are 
combined according to certain formulae. 

A sentence in the rule language is mapped into a 
concept node (a node in the conceptualization). Map- 
ping at this level of abstraction can capture the 
analogies between a belief and a neural network shown 
in Table 2. Mappings at lower levels, such as mapping a 
word in a sentence into a concept node, lack a good 
justification. 

Suppose the premise of a rule involves conjunction. 
Each sentence in the premise is mapped into a concept 
node. These concept nodes then lead into another 
concept node representing the conjunction. 

The CF of a sentence is mapped into the activation 
level of the concept node designated by the sentence. 
The CF of a rule is mapped onto the weight of the 
connection between the two concept nodes, one 
designated by the premise and the other by the 
conclusion of the rule. 

A neural network is a directed graph where each arc 
is labelled with a weight. Therefore, it is defined by a 
two-tuple (V, A), where V is a set of vertices and A is a 
set of arcs. The knowledge of a neural network is stored 
in its connections and weights. The data structure to 
represent a neural network should take into account 
how to use its knowledge. Here the scheme used to 
represent a neural network will be described. 

Assume that the network is arranged as multiple 
layers. Each layer contains a certain number of nodes 
(processing elements). A node receives input from 
some other nodes which feed into the node. If node A 
leads into node B, we say that node A is adjacent to 
node B and node B is adjacent from node A. There is 
one list from each node in the network. The members 
in list i represent the nodes that are adjacent to node i. 
To make the access to these lists fast, all the nodes are 
stored in an array where each node points to the list 
associated with it, as shown in Figure 4. This scheme is 
known as 'inverse adjacency lists' in graph theory. 
Connection weights are stored in properly defined data 
fields in the adjacency lists. Since the activation level at 
a given node is computed based on the activations at 
the nodes adjacent to the node, inverse adjacency lists 
offer computational advantages. By contrast, the 
scheme of 'adjacency lists' which contain nodes adja- 
cent from a given node is useful for back-propagation. 

A 
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8 

Figure 4. Representation 
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INFERENCE 

Inference in MYCIN or similar systems is to deduce the 
CFs of predefined hypotheses from given data. Such 
systems have been applied successfully to several types 
of problems such as diagnosis, analysis, interpretation 
and prediction. MYCIN uses a goal-oriented strategy 
to make inference. This means it invokes rules whose 
consequents deal with the given goal and recursively 
turns a goal into subgoals suggested by the rules' 
antecedents. By contrast, a system which adopts a 
data-driven strategy will select rules whose antecedents 
are matched by the database. Despite the difference in 
rule selection between these two strategies, inference in 
rule-based system is a process of propagating and 
combining CFs through the belief network. Since 
inference in the neural network involves a similar 
process, with CFs replaced by activation levels, the 
formulae for computing CFs can be applied to compute 
the activation level at each concept node in the 
conceptualization. 

If a rule-based system involves circularity (cyclic 
reasoning), then inference in the neural networks 
mapped by such a system is characterized by not only 
propagation and combination of activations but also 
iterative search for a stable state. Starting with a noisy 
state, a network can reach a stable state, if it converges, 
in an extremely short period of time measured at the 
unit of the time constant of the neural circuit. 

The inference capability of the neural network is 
derived from the collective behaviour of simple com- 
putational mechanisms at individual nodes. The output 
of a node is a function of the weighted sum of its inputs. 
In a biological neuron, if and only if its input exceeds a 
certain threshold, the neuron will fire. For an artificial 
neuron, continuous nonlinear transfer functions such as 
the sigmoid function and noncontinuous ones such as 
threshold logic have been defined. A neural network is 
often arranged as single-layered or multi-layered, and 
is organized as feedforward or with collateral or 
recurrent circuits. Different architectures are taken in 
accordance with the problem characteristics. 

In a feedforward neural network, the inference 
behaviour is characterized by propagating and combin- 
ing activations successively in the forward direction 
from input to output layers. Collateral inhibition and 
feedback mechanisms are implemented using collateral 
and recurrent circuits, respectively. They are employed 
for various purposes. For instance, the winner-take-all 
strategy can be implemented with collateral inhibition 
circuits. Feedback mechanisms are important in 
adaptation to the environment. As to the layered 
arrangement, multi-layered neural networks are more 
advantageous than single-layered networks in perform- 
ing nonlinear classification. This advantage stems from 
the nonliner operation at the hidden nodes. For 
instance, exclusive-OR can be simulated by a bi- 
layered neural network but not by any single-layered 
one. The principle of maximum information preserva- 
tion (infomax principle) has been proposed for in- 
formation transmission from one layer to another in a 
neural network 1~. This principle can shed light on the 
design of a neural network for information processing. 

The inference tasks performed by the neural network 
generally fall into four categories: pattern recognition, 
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association, optimization and self-organization. A 
single-layered network can act as a linear discriminant, 
whereas a multi-layered network can be an arbitrary 
nonlinear discriminant. Association performed by the 
neural network is content-directed, allowing incom- 
plete matching. Optimization problems can be solved 
by implementing cost functions as neural circuits and 
optimizing them. Self-organization is the way the 
neural network evolves unsupervisedly in response to 
environmental changes. Clustering algorithms can be 
implemented by neural networks with self-organization 
abilities. 

MYCIN-like expert systems will be mapped into 
neural networks which are in general feedforward and 
multi-layered, and perform tasks close to pattern 
recognition. By capitalizing on all inference capabilities 
of the neural network, it is possible to develop expert 
systems more versatile than existing ones. 

LEARNING 

Learning in the conceptualization is the process of 
modifying connection weights in order to achieve 
correct inference behaviour. The following will show 
h~w to apply the back-propagation rule to learn and 
hdw to revise rules and/or data on the basis of the 
results through learning. 

The learning problem 

In a knowledge-based system, the issue of learning 
deals with acquiring new knowledge and maintaining 
integrity of the knowledge base. The knowledge base is 
constructed through a process called knowledge en- 
gineering (encoding of expert knowledge) or through 
machine learning. 

When errors are observed in the conclusions made by 
a rule-based system, an issue is raised of how to identify 
and correct the rules or data responsible for these 
errors. The problem of indentifying the sources of 
errors is known as the blame assignment problem. 

Previous approaches 12-15 only focus on how to revise 
the knowledge base. Among these, TEIRESIAS12 is a 
typical work. It maintains the integrity of the know- 
ledge base by interacting with experts. However, as the 
size of the knowledge base grows, it is no longer 
feasible for human experts to consider all possible 
interactions among knowledge in a coherent and 
consistent way. TMS16 resolves inconsistency by alter- 
ing a minimal set of beliefs, but it lacks the notion of 
uncertainty in the method itself. Symbolic machine 
learning techniques such as the RL program 17 can learn 
and debug knowledge but in general do not address the 
case when the knowledge involves intermediate con- 
cepts which are not used to describe the training 
samples. 

TEIRES1AS may be confronted with the following 
problems. First, incorrect conclusions may be due to 
data errors. Second, experts know the strength of 
inference for each individual rule, but it may be 
difficult for them to determine the rule strengths in 
such a way that dependencies among rules are carefully 
considered in order to meet the system assumptions. 
For instance, in MYCIN, since certainty factors are 
combined under the assumption of independence, the 

certainty factors assigned to two dependent rules 
should be properly adjusted so as to meet this 
assumption. The approach presented here will address 
these problems. 

Back-propagation of error 

An error refers to the disagreement between the belief 
value generated by the system and that indicated by a 
knowledge source assumed to be correct (e.g., an 
expert) with respect to some fact. The back- 
propagation rule developed in the neural network 
approach~ is a recursive heuristic which propagates 
backwards errors at a node to all nodes pointing to that 
node, and modifies the weights of connections leading 
into nodes with errors. First, we will restrict our 
attention to single-layered networks involving only 
input and output neurons. 

In each inference task, the system arrives at the 
belief values of final hypotheses given those of input 
data. The belief values of input data form an input 
pattern (or an input vector) and those of final hypoth- 
eses form an output pattern (or an output vector). 
System error refers to the case when incorrect output 
patterns are generated by the system. When system 
error arises, we use the instance consisting of the input 
pattern given for inference and the correct output 
pattern to train the network. The instance is repeatedly 
used to train the network until a satisfactory perform- 
ance is reached. Since the network may be incorrectly 
trained by that instance, we also maintain a set of 
reference instances to monitor the learning process. 
This reference set is consistent with the knowledge 
base. If, during learning, some instances in the refer- 
ence set become inconsistent, they will be added to the 
learning process. 

On a given trial, the network generates an output 
vector given the input vector of the training instance. 
The discrepancy obtained by subtracting the network's 
vector from the desired output vector serves as the 
basis for adjusting the strengths of the connections 
involved. The back-propagation rule adapted from 
Reference 3 is formulated as follows: 

AWj, = rDj(dOj/dWj,) (1) 

where Dj = T i - Oj, AWii is the weight (strength) 
adjustment of the connection from input node i to 
output node j, r is a trial-independent learning rate, D i 
is the discrepancy between the desired belief value (7"i) 
and the network's belief value (Oj) at node j, and the 
term dOj/dWji is the derivative of Ot with respect to 
Wi~. According to this rule, the magnitude of weight 
adjustment is proportional to the product of the 
discrepancy and the derivative above. 

The back-propagation rule is applicable to belief 
networks where the propagation and the combination 
of belief values are determined by differentiable 
mathematical functions. As shown in Equation (1), the 
mathematical requirement for applying the back- 
propagation rule is that the relation between the output 
activation (Oi) and the input weight (Wji) is deter- 
mined by a differentiable function. In belief networks, 
this relation is differentiable if the propagation and the 
combination functions are differentiable. Since corn- 
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bining belief values in most rule-based systems involves 
such logic operations as conjunction or disjunction, the 
back-propagation rule is applied after turning the 
conjunction operator into multiplication and the dis- 
junction operator into summation. 

A multi-layered network involves at least three 
levels: one level of input nodes, one level of output 
nodes and one or more levels of middle nodes. 
Learning in a multi-layered network is more difficult 
because the behaviour of middle nodes is not directly 
observable. Modifying the strengths of the connections 
pointing to a middle node entails the knowledge of the 
discrepancy between the network's value and the 
desired belief value at the middle node. The discrepan- 
cy at a middle node can be derived from the discrepan- 
cies at output nodes which receive activations from the 
middle node 3. It can be shown that the discrepancy at 
middle node j is defined by 

Dj = ~(dOkdO])Dk 
k 

where Dg is the discrepancy at node k. In the 
summation, each discrepancy Dk is weighted by the 
strength of the connection pointing from middle node j 
to node k. This is a recursive definition in which the 
discrepancy at a middle node is always derived from 
discrepancies at nodes at the next higher level. 

In addition, the belief value of a middle node can be 
obtained by propagating the belief values at input 
nodes recursively and combining these values properly 
until the middle node is reached. 

Distinguishing knowledge base from input data 
errors 

A method has been devised that can distinguish 
knowledge base errors from input data errors. This 
method includes three tests. In the first test, we clamp 
all connections corresponding to the knowledge base so 
that only the strengths of the connections between the 
observed and the actual input data nodes remain 
adjustable during learning. In the second test, we 
clamp the connections between the observed and the 
actual inputs and allow only the strengths of the 
connections corresponding to the knowledge base to be 
modified. In the third test, we allow the strengths of all 
connections to be adjusted. In each test, success is 
reported if the error concerned can be resolved after 

Table 3. Distinguishing knowledge-base errors from 
data errors 

Test 1 Test 2 Test 3 Test 4 

S S S O1 
S S F 02 
S F S 03 
S F F 04 
F S S 05 
F S F 06 
F F S 07 
F F F 08 

S = success, F = failure 

learning; failure is reported otherwise. Consequently, 
there are eight possible outcomes combined from the 
results of these three tests, as shown in Table 3. These 
results are interpreted as follows. Outcome O1 sug- 
gests the revision of either the knowledge base or input 
data. In this case, an expert's opinion is needed to 
decide which should be revised. Outcome 02 is 
unlikely (in the experience of the authors) and is 
ignored. Outcome 03 suggests the revision of input 
data. Outcome 04  is unlikely and is ignored. Outcome 
05 suggests the revision of the knowledge base. 
Outcome 06  is also unlikely and is ignored. Outcome 
07 suggests the revision of both the knowledge base 
and input data. Outcome 08 is a deadlock which 
demands an expert to resolve. 

Revision operations 

The results of the above tests will indicate whether the 
knowledge base or input data (or both) should be 
revised. The strengths of the connections in the 
network (representing the knowledge base and input 
data) have been revised after learning. The next 
question is how to revise the knowledge base and/or 
input data according to the revisions made in the 
network. The revision of the knowledge base will be 
dealt with first. 

Basically, there are five operators for rule revision 12. 

• modification of strengths, 
• deletion, 
• generalization, 
• specialization, and 
• creation. 

However, not all the five operators are suitable in the 
neural network approach to editing rules. Each oper- 
ator is examined below. 

The modification of strengths operator is straightfor- 
ward since the strength of a rule is just a copy of the 
weight of the corresponding connection and the weights 
of connections have been modified after learning with 
the back-propagation rule. If the weight change is 
trivial, we just keep the rule strength before learning. 

The deletion operator is justified by Theorem 1. 

Theorem 1. In a rule-based system, if the following 
conditions are met: 

1 the belief value of the conclusion is determined by 
the product of the belief value of the premise and the 
rule strength, 

2 the absolute value of any belief value and the rule 
strength is not greater than 1, 

3 any belief value is rounded off to zero if its absolute 
value is below threshold k (k is a real number 
between 0 and 1), 

then the deletion of rules with strengths below k will 
not affect the belief values of the conclusions arrived at 
by the system. 

Proof. From conditions 1 and 2, if the strength of rule 
R is below k, the belief value of its conclusion is always 
below k. From condition 3, the belief value of the 
conclusion made by rule R will always be rounded off 
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to zero. Since rule R is not effective in making any 
conclusion, it can be deleted. Thus, the deletion of such 
rules as rule R will not affect the system conclusions.[-] 

Accordingly, deletion of a rule is indicated when its 
absolute strength is below the predetermined 
threshold. In MYCIN-like systems, the threshold is 0.2. 

The deletion operator  is also justified by the follow- 
ing argument. Suppose we add some connections to a 
neural network that has already reached an equilibrium 
and assign weights to these added connections in such a 
way that incorrect output vectors are generated. Thus, 
these conditions are semantically inconsistent. Then, if 
we train the network with correct samples, the weights 
of the added connections will be modified in the 
direction of minmizing their effect. What happens is 
that the weights will go towards zero and even cross 
zero during training. In practice, we set a threshold so 
that when the shift towards zero for a connection 
weight is greater than this threshold, we delete the 
connection. 

Generalization of a rule can be done by removing 
some conditions from its premise, whereas specializa- 
tion can be done by adding more conditions to the 
premise. If the desired belief value of a conclusion is 
always higher than that generated by the network and 
the discrepancy resists decline during learning, it is 
suggested that rules supporting this conclusion be 
generalized. Or on the other hand, if the discrepancy is 
negative and resistant, specialization is suggested. 
However,  generalization or specialization of a rule may 
involve qualitative changes of nodes. The back- 
propagation rule has not yet been powerful enough to 
make this kind of change except deletion of conditions 
for generalization. 

Creation of new rules involves establishment of new 
connections. Whereas we delete a rule if its absolute 
strength is below a threshold, we may establish a new 
connection when its absolute strength is above the 
threshold. To create new rules we need to create some 
additional connections which have the potential to 
become rules. Without any bias, one may need an 
inference network where all data are fully connected to 
all intermediate hypotheses, which in turn are fully 
connected to all final hypotheses. This is not a feasible 
approach unless the system is small. 

From the above analyses, we allow only the mod- 
ification of strengths and deletion operators in the 
neural network approach to rule revision. 

Revision of input data is much simpler. If the weight 
of the connection between an observed and an actual 
input node after learning is below a predetermined 
threshold, or the shift towards zero is above a certain 
value, the corresponding input data attribute is treated 
as false and deleted accordingly. 

It has been known that noise associated with training 
instances will affect the quality of learning. In the 
neural network approach, since noise will be distri- 
buted over the network, its effect on individual 
connections is relatively minor. In practice, perfect 
training instances are neither feasible nor necessary. As 
long as most instances are correct, a satisfactory 
performance can be achieved. 

The comparison between the TEIRESIAS approach 
and the neural network approach to error handling is 

shown in Table 4. The neural network approach may be 
more useful than TEIRESIAS in handling multiple 
errors or errors involving some unobservable concepts 
which human experts may have difficulties in dealing 
with. In addition, the back-propagation rule can be 
uniformly applied to the whole rule base, whereas 
human experts may focus on certain parts of the rule 
base consciously or subconsciously. Also, in Reference 
15, it is suggested that the only proper  way to cope with 
deleterious interactions among rules is to delete offend- 
ing rules. In light of this view and the experience of the 
present authors, the deletion operator  is very useful. 
While the neural network approach is still too simple to 
deal with errors involving qualitative changes of rules, 
reasoning strategies or meta-level knowledge, the 
techniques developed under this approach can supple- 
ment the current rule base technology. 

E V A L U A T I O N  

In this section, the validity of the developed mapping 
from a rule-based system into the neural architecture 
will be demonstrated on a practical domain, namely, 
the problem of diagnosing jaundice, and then the 
applicability of this approach to a large rule-based 
system with thousands of rules will be discussed. 

Derived from J A U N D I C E  ~7, the rule base used 
contains 50 rules, 5 final hypotheses, 3 intermediate 
hypotheses and 20 clinical attributes. This rule base is 
mapped into a bi-layered network with 5 output nodes, 
3 middle nodes and 20 input nodes. Twenty training 
instances that can be diagnosed correctly by these 50 
rules were collected from the J A U N D I C E  case library. 

Ten experiments were carried out. In each experi- 
ment, a small number  of incorrect connections (rules) 
that contradict medical knowledge were added to the 
network described above. These incorrect rules were 
provided by a medical expert. No incorrect rule was 
shared by two experiments. Then the neural network 
transformed from the rule base was used to diagnose 
the 20 training instances before and after learning, The 
objective of these experiments was to see whether 
those incorrect rules could be removed through learn- 
ing and how good the inference capability is. In each 
experiment,  the number of incorrect rules and the 
diagnostic accuracy were recorded before and after 
learning. The results are shown in Figure 5. The 
statistical paired t test was used to judge whether 
learning can remove incorrect rules and improve the 
system performance significantly. 

Two null hypotheses were formulated. The first 
states that there is no difference in incorrect rule 
numbers before and after learning. The second states 
that there is no difference in the system performance 
before and after learning. The t values for the first and 
the second hypotheses are 6.32 and 5.85, respectively. 
Both hypotheses are rejected at level of significance 
0l < 0.01. In other words, this approach is effective in 
these experiments. Another  result is that no rule 
among the original 50 correct rules was deleted. 

One important question is whether this approach can 
be scaled up to the order  of rule bases large enough for 
industrial application (such as XCON, which contains 
thousands of rules). The 50 rule expert system used in 
the above experiments is certainly too small. However ,  
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Table  4.  C o m p a r i s o n  b e t w e e n  T E I R E S I A S  a n d  the  neura l  n e t w o r k  a p p r o a c h  

TEIRESIAS Neural network approach 

Approach Human experts 

Operators Modifying strengths 
Deletion 
Addition 
Generalization 
Specialization 

Errors Rule errors 

Back-propagation 

Modifying strengths 
Deletion 

Rule and data errors 

I , .  
- I  

& 

c~ 

100 

90 

8 0 - -  

7 0 - -  

6 0 - -  

\ 

I I I I I I I I I I 
I 2 3 4 5 6 7 8 9 10 

I n c o n s i s t e n t  ru le  numbe r  

Figure 5. Performance measured by diagnostic accura- 
cy. O, case I: after learning; A, case H: before learning 

the validity of the developed approach can be based on 
the following arguments. First, the analogies between 
neural networks and belief networks were shown 
earlier. Second, because knowledge-based networks 
are much sparser than ordinary neural networks and 
may be further decomposed into independent net- 
works, they can escape the problems due to combina- 
torics. 

DISCUSSION 

In a simple production system, rules can interact only 
through the working memory, which becomes a bot- 
tleneck during processing of a large number of rules. 
One way to get around this problem is by using a 
distributed architecture. A rule base is mapped into a 
network so that a rule will fire when its premise node is 
activated. Rule interaction becomes distributive over 
the network rather than centralized through the work- 
ing memory. In the literature, it has been shown that 
compiling a rule base into a network significantly 
increases the system performance. When a distributed 
architecture is taken, the performance then depends on 
how many rules can be processed in parallel. Conse- 
quently, a parallel distributed architecture such as the 
neural network is desirable for building rule-based 
systems. 

Under the mapping as described, the neural network 
is able to compute the belief values of given hypoth- 
eses. Thus, it is especially suitable for handling 
uncertainty. However, the mathematical abstraction of 
a rule base as a belief network does not address 
adequately such aspects as symbol-based pattern 
matching, which are of major importance in a rule- 
based system. In addition, it should be noted that the 
mapping is straightforward for propositional logic but 
complicated for predicate logic. An architecture which 
combines the neural network and the rule-based 
network (e.g., compiled from the Rete algorithm) will 
be the ultimate choice. 

Learning in the neural network is characterized by 
seeking local optima. In general, learning heuristics are 
kinds of gradient descent procedures. A fundamental 
problem is that local optima are not necessarily global 
optima. Learning performance critically depends on 
the choice of the initial state and the architecture. 
Without any knowledge or bias, the rules generated by 
such learning heuristics usually lack psychological 
meanings. Therefore, when mapping a rule-based 
system into the neural architecture, we preserve the 
system topology and the human-assigned rule strengths 
as the key bias. 

The advantage of learning under such mapping lies in 
refining rather than creating a knowledge base. In 
particular, the back-propagation strategy is useful for 
debugging intermediate rules whose behaviour is not 
observed directly from samples. The approach pre- 
sented here provides a means to delete inconsistent 
rules and refine rule strengths. However, this approach 
is quite limited in conducting more sophisticated rule 
revision operations involving qualitative changes in 
rules as well as in learning meta-level or control 
heuristics. 

In the current technology, the knowledge-based 
system is suitable for high-level cognitive tasks, where- 
as the neural network proves useful for perceptual and 
signal processing tasks. The rule-based technique has 
become the most important one with which to build a 
knowledge-based system primarily because expertise 
can be easily captured and modified as rules. It has 
been found that rule-based systems are natural for 
some domains but awkward for others. Several prob- 
lem characteristics have been identified that distinguish 
between domains for which rule-based systems are 
suitable and those for which rule-based systems are 
not 10. In a suitable domain, the theory is diffuse, the 
control flow is simple and the use of knowledge is not 
predetermined. While rule-based systems have span- 
ned a wide range of applicability, the inference model 
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provided by a rule-based system is more appropriate 
for problems where solutions are selected from a 
predetermined set than for problems where solutions 
need to be constructed. In this sense, the presented 
approach is suitable for diagnostic or analytical prob- 
lems, but may not be for planning problems. 

The neural network architecture (connectionism) has 
been applied to solve problems which more or less can 
be categorized into pattern recognition, optimization, 
association and self-organization. Specific applications 
include recognition of hand-written characters, speech 
understanding, image or signal processing (e.g., noise 
filtering, data compression), machine diagnosis, analy- 
sis of sensor information, and financial and economic 
modelling. This architecture is suitable for systems 
where problems being considered can be modelled as a 
network consisting of a large number of processing 
elements and connections, and solutions to the prob- 
lems depend on how those processing elements connect 
and what the connection weights are. Mapping 
MYCIN-Iike rule-based systems into the neural 
architecture is based on this consideration. 

CONCLUSIONS 

It has been long argued that the neural network 
approach to artificial intelligence is neither necessary 
nor feasible. However, recent successes of the neural 
network approach have forced a reconsideration of this 
route to production of intelligent behaviour. By con- 
trast the knowledge-based approach emphasizes that 
knowledge is the key to generation of intelligent 
computer systems. An emerging trend is to combine 
these two approaches. It is thus justified to ask how to 
implement a rule-based system on the neural 
architecture. This question has been answered here in 
the context of MYCIN and similar systems. 

A rule-based system has been mapped into a neural 
network by mapping the knowledge base and the 
inference engine into a kind of neural network called 
conceptualization. Under such mapping, a sentence in 
the rule base is mapped into a concept node in the 
conceptualization. The inference behaviour is characte- 
rized by propagating and combining activations recur- 
sively through the network and may involve an iterative 
search for a stable state. The learning behaviour is 
based upon a mechanism called back-propagation, 
which has been shown to be effective in both rule and 
data revision. 

The advantages and disadvantages of this approach 
have been examined. The system performance can be 
greatly enhanced by using a distributed paralled 
architecture. However, the neural network does not 
address symbol-based pattern matching. The learning 
heuristics for neural networks are effective in deleting 
inconsistent rules and modifying rule strengths but do 
not allow more sophisticated rule revisions. An 
architecture that combines neural network and the 
rule-based network will be the ultimate alternative. 

The authors argue for the generality of this approach 

based upon the analogies observed between a belief 
network and a neural network and the relative sparse- 
ness of a knowledge-based network. Finally this 
approach has been validated on a practical domain. 

REFERENCES 

1 Feldman, J A and Ballard, D H 'Connectionist 
models and their properties' Cognitive Sci. Vol 6 
No 3 (1982) pp 205-254 

2 Feldman, J A, Fanty, M A, Goddard, N H and 
Lynne, K J 'Computing with structured connection- 
ist networks' Commun. ACM Vol 31 No 2 (1988) 
pp 170-187 

3 Rumelhart, D E, Hinton, G E and Williams, R J 
'Learning internal representation by error propoga- 
tion, in Parallel Distributed Processing Explorations 
in the Microstructures of Cognition MIT Press, USA 
(1986) 

4 Smolensky, P 'Connectionist AI, symbolic AI, and 
the brain' Artif. Intell. Rev. Vol 1 (1987) pp 95-109 

5 Minsky, M and Papert, S Perceptrons MIT Press, 
USA (1969) 

6 Sejnowski, T J and Rosenberg, C R NETalk: a 
Parallel Network that Learns to Read Aloud 
JHU/EECS-86/01, Johns Hopkins University, 
USA (1986) 

7 Gallant, S I 'Connectionist expert systems" Com- 
mun. ACM Vol 31 No 2 (1988) pp152-169 

8 Jones, W P and ltoskins, J 'Back-propogation: a 
generalized delta learning rule' Byte (October 1987) 
pp 155-162 

9 Hopfield, J J and Tank, D W 'Computing with 
neural circuits: a model' Science Vol 233 No 4764 
(1986) pp 625-633 

10 Buchanan, B G and Shortliffe, E H Rule-Based 
Expert Systems Addison-Wesley, USA (1984) 

11 Linsker, R 'Self-organization in a perceptual net- 
work' Computer (March 1988) pp 105-117 

12 Davis, R Application of Meta-level Knowledge to the 
Construction, Maintenance and Use of Large Know- 
ledge Base PhD thesis, Computer Science Dept., 
Stanford University, USA (1976) 

13 Politakis, P G Using Empirical Analysis to Refine 
Expert System Knowledge Base PhD thesis, Rutger 
University, USA (1982) 

14 Suwa, M, Scott, A C and Shortliffe, E H 'Complete- 
ness and consistency in a rule-based expert system' 
in Buchanan, B G and Shortlifl'e, E H (Eds) 
Rule-Based Expert Systems Addison-Wesley, USA 
(1984) 

15 Wilkins, D C and Buchanan, B G 'On debugging 
rule sets when reasoning under uncertainty' in Proc. 
AAA1-86 Philadelphia (1986) pp 448-454 

16 Doyle, J 'A truth maintenance system' Artif. lntell. 
Vol 12 No 3 (1979) pp 231-272 

17 Fu, L-M Learning object-level and recta-level know- 
ledge in expert systems PhD thesis, Stanford Uni- 
versity (1985) 

56 Knowledge-Based Systems 


