
Mapping rule-based systems
into neural architecture

Li-Min Fu and Li-Chen Fu*

A novel approach has been developed that maps a
rule-based expert system into the neural architecture in
both the structural and behavioural aspects. Under this
approach, the knowledge base and the inference en-
gine are mapped into an entity called 'conceptualiza-
tion', where a node represents a concept and a link
represents a relation between two concepts. A concept
node is designated by a small number of language
symbols. In the neural system transformed from a
knowledge-based system, the inference behaviour is
characterized by propagating and combining activa-
tions recursively through the network, and the learning
behaviour is based upon a mechanism called 'back-
propagation', which allows proper modification of
connection strengths in order to adapt the system to
the environment. This approach is based on the analo-
gies observed between a belief network and a neural
network, and its validity has been demonstrated by
experiments. Finally, the advantages and disadvantages
of this approach are discussed with respect to inference
and learning.

Keywords: expert systems, rule-based systems, neural
architecture

The neural network approach, also referred to as
connectionism, has been an increasingly important
approach to artificial intelligence j-4. Under this
approach, information processing occurs through in-
teractions among a large number of simulated neurons,
each of which is quite limited in its processing
capabilities. The knowledge of a neural network (a
connectionist) lies in its connections and associated
weights.

It has long been argued that a close resemblance
between the computer's internal representations and
neural nets is neither necessary nor feasible. Neural
networks implemented earlier are often severely li-
mited in the kinds of computations they can perform 5.

Department of Electrical Engineering and Computer Science,
College of Engineering and Applied Science, The University of
Wisconsin-Milwaukee, PO Box 784, Milwaukee, WI 53201, USA
* Department of Computer Science, The National Taiwan Universi-
ty, 1 Roosevelt Rd IV, Taipei, Taiwan

Paper received 17 February 1989. Revised paper received 30 August
1989. Accepted 13 September 1989

48

However, with recent successes of the neural network
approach to such problems as learning to speak 6,
medical reasoning 7, and recognizing hand-written char-
acters, there is a growing interest in taking this
approach to artificial intelligence. These successess can
be explained in part by the invention of a number of
useful learning algorithms such as 'back-propagation',
and in part by hardware advances in the construction of
massively parallel computers that enable much faster
simulation of neural networks 8. Furthermore, resear-
chers have begun to explore a new computer
architecture called the neural computer (see, for
example, Reference 9), which resembles biological
brains in structure and behaviour. Such computers hold
the promise of solving some hard problems faster than
current computers by many orders of magnitude.

Since the early eighties, when several knowledge-
based systems such as DENDRAL, PROSPECTOR
and CADUCEUS proved to be successful, the
knowledge-based approach has become the most im-
portant approach to artificial intelligence. As shown in
Figure 1, knowledge base, inference engine and user
interface are three main components in a knowledge-

Experts, knowledge engineers

Knowledge acquisition

Knowledge
base

_i
I

Inference
engine

User interface

L_.

0950-7051/90/010048-09 $03.00 ©

The user

Figure 1. The basic components of a knowledge-based
system

1990 Butterworth & Co (Publishers) Ltd
Knowledge-Based Systems

based system. Knowledge representation, knowledge
processing (inference) and knowledge acquisition
(learning) constitute three primary issues in building
such systems.

While the neural network approach has produced
encouraging results, particularly in low-level perceptual
and signal processing tasks, it has had limited success in
high-level cognitive areas where the knowledge-based
approach has shown promise. On the other hand, the
knowledge-based approach may be inadequate or
inappropriate for performing perceptual reasoning. To
combine these two approaches is an important direc-
tion for developing an artificial intelligence system in
the future.

This paper describes a novel approach that maps
rule-based systems into the neural architecture. Under
this approach, the knowledge base and the inference
engine are mapped into an entity called conceptualiza-
tion*, where a node represents a concept and a link
represents a relation between two concepts. A concept
node is designated by a small number of language
symbols. In the neural system transformed from a
knowledge-based system, the inference behaviour is
characterized by propagating and combining activa-
tions recursively through the network, and the learning
behaviour is based upon a mechanism called back-
propagation, which allows proper modification of
connection strengths in the adaptation to the environ-
ment.

MAPPING RULE-BASED SYSTEMS INTO
NEURAL A R C H I T E C T U R E

The neural network approach contrasts with the
knowledge-based approach in several aspects. The
knowledge of a neural network lies in its connections
and associated weights, whereas the knowledge of a
rule-based system lies in rules. A neural network
processes information by propagating and combining
activations through the network, but a knowledge-
based system reasons through symbol generation and
pattern matching. The knowledge-based approach
emphasizes knowledge representation, reasoning
strategies and the ability to explain, whereas the neural
network approach does not. The key differences
between these two approaches are summarized in
Table 1.

A rule-based system (knowledge represented in
rules) can be transformed into an inference network
where each connection corresponds to a rule and each
node corresponds to the premise or the conclusion of a
rule, as seen in Figure 2. Reasoning in such systems is a
process of propagating and combining multiple pieces
of evidence through the inference network until final
conclusions are reached. Uncertainty is often handled
by adopting the certainty factor (CF) or the probabilis-
tic schemes which associate each fact with a number
called the belief value. An important part of reasoning
tasks is to determine the belief values of the predefined
final hypotheses given the belief values of observed

*'Conceptualization' is also a technical term in the artificial intelli-
gence literature.

evidence. The network of an inference system through
which belief values of evidences or hypotheses are
propagated and combined is called the belief network.
Correspondence in structural and behavioural aspects
exists between neural networks and belief networks, as
shown in Table 2. For instance, the summation function
in neural networks corresponds to the function for
combining certainty factors in MYCIN-Iike systems or
to the Bayesian formula for deriving a posteriori
probabilities in PROSPECTOR-like systems. The
thresholding function in neural networks corresponds
to predicates such as SAME (in MYCIN-Iike systems),
which cuts off any certainty value below 0.2.

Since belief networks correspond to neural networks
in every structural and behavioural attribute shown in
Table 2, any algorithm that is applicable to neural
networks characterized by no more than these attri-
butes may also be applicable to belief networks.
'Back-propagation' is just such an algorithm.

A rule-based system is mapped into a neural network
by mapping the knowledge base and the inference
engine into a kind of neural network called concep-
tualization, which stores knowledge and performs
inference and learning. Furthermore, to construct a
conceptualization, the following mappings need to be
done.

• Final hypotheses are mapped into output neurons
(neurons without connections pointing outwards).

• Data attributes are mapped into input neurons
(neurons without connections pointing inwards).

• Concepts that summarize or categorize subsets of
data or intermediate hypotheses that infer final
hypotheses are mapped into middle (also known as
hidden) neurons.

• The strength of a rule is mapped into the weight of
the corresponding connection.

If there are no data errors, input neurons can represent
both the observed and the actual data. In case of
possible data errors, the observed data and the actual
data are represented by two different levels of neurons,
with a connection established between each observed
and actual input neurons referring to the same data
attribute. One example is shown in Figure 3 where, for
instance, observed input neuron E, corresponds to
actual input neuron E,.

K N O W L E D G E REPRESENTATION

In this section the knowledge representation language
in MYCIN10 or similar systems is reviewed. The issue
of how to map such language into a conceptualization is
then examined, and knowledge representation for the
neural network is described.

In MYCIN, facts are represented by context-
attribution-value (or object-attribute-value) triples.
Each triple is a term. For instance, the term 'throat
which is the site of the culture' is represented by the
triple (CULTURE SITE THROAT) . Each triple is
associated with a certainty factor, which is described
later.

A sentence is represented by a predicate-context-
attribute-value quadruple. For instance, the sentence

Vol 3 No 1 March 1990 49

Table 1. Comparison between the neural network and the knowledge-based approaches

Neural network approach Knowledge-based approach

Knowledge Connections

Computation Numbers
Summation and thresholding
Simple, uniform

Reasoning Non-strategic

Tasks Signal level

Rules

Numbers, symbols
Pattern matching
Complicated, various

Strategic, meta-level

Knowledge level

N 7 N 8 N 9 N10

Table 2. Correspondence between neural networks and
belief networks

Neural networks Belief networks

Connections
Nodse
Weights
Thresholds
Summation

Propagation of activations

Rules
Premises, conclusions
Rule strengths
Predicates
Combination of
belief values
Propagation of
belief values

Figure 2. An inference network

/
• 11

• E 1 •

l
• E~ •

H 1

• 12

E 2 • E 3

l
q • E' 3

• H 2

• 13

• E 4 • E 5

1
• • E;

Figure 3. Organization of the knowledge base and input
data as a neural network

'the site of the culture is throat' is represented by
quadruple (SAME CULTURE SITE THROAT). The
truth value of a sentence is determined by whether the
triple satisfies the predicate in terms of its CF.

Judgemental and inferential knowledge is repre-
sented in production rules; i.e. if-then rules. If a rule's
IF-part is evaluated to be true, its THEN part will be
concluded. Each part is constituted by a small number
of sentences. For instance, a MYCIN rule

RULE124
IF:
1. The site of the culture is throat.
2. The identity of the organism is Streptococcus.
THEN: There is strongly suggestive evidence (.8)
that the subtype of the organism is not group-D.

can be encoded in the MYCIN language as

(RULE124 ((SAND(SAME CULTURE SITE
THROAT)
(SAME ORGANISM IDENTITY STREPTOCOC-
CUS))
((CONCLUDE ORGANISM SUBTYPE GROUP-
D -.8))))

Certainty factors are integers ranging from - 1.0 to 1.0.
A minus number indicates disbelief whereas a positive
number indicates belief. The degree of belief or
disbelief parallels the absolute value of the number.
The extreme values -1 .0 to 1.0 represent 'No' and
'Yes', respectively. A triple is associated with a CF
indicating the current belief in the triple, A rule is
assigned a CF representing the degree of belief in the
conclusion given that the premise is true. For instance,
the CF of RULE124 in the example above is -0.8. The
CF of a conclusion based upon a rule can be computed
by multiplying the CF of the premise and the CF of the
rule. Each sentence (condition) in the premise on
evaluation will return a number ranging from 0 to 1.0
representing the CF of the sentence. The CFs of all
conditions in the premise are combined to result in the
CF of the premise. As in the fuzzy set theory, SAND

50 Knowledge-Based Systems

returns the minimum of the CFs of its arguments. CFs
of a fact due to different pieces of evidence are
combined according to certain formulae.

A sentence in the rule language is mapped into a
concept node (a node in the conceptualization). Map-
ping at this level of abstraction can capture the
analogies between a belief and a neural network shown
in Table 2. Mappings at lower levels, such as mapping a
word in a sentence into a concept node, lack a good
justification.

Suppose the premise of a rule involves conjunction.
Each sentence in the premise is mapped into a concept
node. These concept nodes then lead into another
concept node representing the conjunction.

The CF of a sentence is mapped into the activation
level of the concept node designated by the sentence.
The CF of a rule is mapped onto the weight of the
connection between the two concept nodes, one
designated by the premise and the other by the
conclusion of the rule.

A neural network is a directed graph where each arc
is labelled with a weight. Therefore, it is defined by a
two-tuple (V, A), where V is a set of vertices and A is a
set of arcs. The knowledge of a neural network is stored
in its connections and weights. The data structure to
represent a neural network should take into account
how to use its knowledge. Here the scheme used to
represent a neural network will be described.

Assume that the network is arranged as multiple
layers. Each layer contains a certain number of nodes
(processing elements). A node receives input from
some other nodes which feed into the node. If node A
leads into node B, we say that node A is adjacent to
node B and node B is adjacent from node A. There is
one list from each node in the network. The members
in list i represent the nodes that are adjacent to node i.
To make the access to these lists fast, all the nodes are
stored in an array where each node points to the list
associated with it, as shown in Figure 4. This scheme is
known as 'inverse adjacency lists' in graph theory.
Connection weights are stored in properly defined data
fields in the adjacency lists. Since the activation level at
a given node is computed based on the activations at
the nodes adjacent to the node, inverse adjacency lists
offer computational advantages. By contrast, the
scheme of 'adjacency lists' which contain nodes adja-
cent from a given node is useful for back-propagation.

A

D

8

Figure 4. Representation
inverse adjacency lists (b)

Array List

A J ~B

~ ~ nil
I

b

D_C

of a neural network (a) as

INFERENCE

Inference in MYCIN or similar systems is to deduce the
CFs of predefined hypotheses from given data. Such
systems have been applied successfully to several types
of problems such as diagnosis, analysis, interpretation
and prediction. MYCIN uses a goal-oriented strategy
to make inference. This means it invokes rules whose
consequents deal with the given goal and recursively
turns a goal into subgoals suggested by the rules'
antecedents. By contrast, a system which adopts a
data-driven strategy will select rules whose antecedents
are matched by the database. Despite the difference in
rule selection between these two strategies, inference in
rule-based system is a process of propagating and
combining CFs through the belief network. Since
inference in the neural network involves a similar
process, with CFs replaced by activation levels, the
formulae for computing CFs can be applied to compute
the activation level at each concept node in the
conceptualization.

If a rule-based system involves circularity (cyclic
reasoning), then inference in the neural networks
mapped by such a system is characterized by not only
propagation and combination of activations but also
iterative search for a stable state. Starting with a noisy
state, a network can reach a stable state, if it converges,
in an extremely short period of time measured at the
unit of the time constant of the neural circuit.

The inference capability of the neural network is
derived from the collective behaviour of simple com-
putational mechanisms at individual nodes. The output
of a node is a function of the weighted sum of its inputs.
In a biological neuron, if and only if its input exceeds a
certain threshold, the neuron will fire. For an artificial
neuron, continuous nonlinear transfer functions such as
the sigmoid function and noncontinuous ones such as
threshold logic have been defined. A neural network is
often arranged as single-layered or multi-layered, and
is organized as feedforward or with collateral or
recurrent circuits. Different architectures are taken in
accordance with the problem characteristics.

In a feedforward neural network, the inference
behaviour is characterized by propagating and combin-
ing activations successively in the forward direction
from input to output layers. Collateral inhibition and
feedback mechanisms are implemented using collateral
and recurrent circuits, respectively. They are employed
for various purposes. For instance, the winner-take-all
strategy can be implemented with collateral inhibition
circuits. Feedback mechanisms are important in
adaptation to the environment. As to the layered
arrangement, multi-layered neural networks are more
advantageous than single-layered networks in perform-
ing nonlinear classification. This advantage stems from
the nonliner operation at the hidden nodes. For
instance, exclusive-OR can be simulated by a bi-
layered neural network but not by any single-layered
one. The principle of maximum information preserva-
tion (infomax principle) has been proposed for in-
formation transmission from one layer to another in a
neural network 1~. This principle can shed light on the
design of a neural network for information processing.

The inference tasks performed by the neural network
generally fall into four categories: pattern recognition,

Vol 3 No 1 March 1990 51

association, optimization and self-organization. A
single-layered network can act as a linear discriminant,
whereas a multi-layered network can be an arbitrary
nonlinear discriminant. Association performed by the
neural network is content-directed, allowing incom-
plete matching. Optimization problems can be solved
by implementing cost functions as neural circuits and
optimizing them. Self-organization is the way the
neural network evolves unsupervisedly in response to
environmental changes. Clustering algorithms can be
implemented by neural networks with self-organization
abilities.

MYCIN-like expert systems will be mapped into
neural networks which are in general feedforward and
multi-layered, and perform tasks close to pattern
recognition. By capitalizing on all inference capabilities
of the neural network, it is possible to develop expert
systems more versatile than existing ones.

LEARNING

Learning in the conceptualization is the process of
modifying connection weights in order to achieve
correct inference behaviour. The following will show
h~w to apply the back-propagation rule to learn and
hdw to revise rules and/or data on the basis of the
results through learning.

The learning problem

In a knowledge-based system, the issue of learning
deals with acquiring new knowledge and maintaining
integrity of the knowledge base. The knowledge base is
constructed through a process called knowledge en-
gineering (encoding of expert knowledge) or through
machine learning.

When errors are observed in the conclusions made by
a rule-based system, an issue is raised of how to identify
and correct the rules or data responsible for these
errors. The problem of indentifying the sources of
errors is known as the blame assignment problem.

Previous approaches 12-15 only focus on how to revise
the knowledge base. Among these, TEIRESIAS12 is a
typical work. It maintains the integrity of the know-
ledge base by interacting with experts. However, as the
size of the knowledge base grows, it is no longer
feasible for human experts to consider all possible
interactions among knowledge in a coherent and
consistent way. TMS16 resolves inconsistency by alter-
ing a minimal set of beliefs, but it lacks the notion of
uncertainty in the method itself. Symbolic machine
learning techniques such as the RL program 17 can learn
and debug knowledge but in general do not address the
case when the knowledge involves intermediate con-
cepts which are not used to describe the training
samples.

TEIRES1AS may be confronted with the following
problems. First, incorrect conclusions may be due to
data errors. Second, experts know the strength of
inference for each individual rule, but it may be
difficult for them to determine the rule strengths in
such a way that dependencies among rules are carefully
considered in order to meet the system assumptions.
For instance, in MYCIN, since certainty factors are
combined under the assumption of independence, the

certainty factors assigned to two dependent rules
should be properly adjusted so as to meet this
assumption. The approach presented here will address
these problems.

Back-propagation of error

An error refers to the disagreement between the belief
value generated by the system and that indicated by a
knowledge source assumed to be correct (e.g., an
expert) with respect to some fact. The back-
propagation rule developed in the neural network
approach~ is a recursive heuristic which propagates
backwards errors at a node to all nodes pointing to that
node, and modifies the weights of connections leading
into nodes with errors. First, we will restrict our
attention to single-layered networks involving only
input and output neurons.

In each inference task, the system arrives at the
belief values of final hypotheses given those of input
data. The belief values of input data form an input
pattern (or an input vector) and those of final hypoth-
eses form an output pattern (or an output vector).
System error refers to the case when incorrect output
patterns are generated by the system. When system
error arises, we use the instance consisting of the input
pattern given for inference and the correct output
pattern to train the network. The instance is repeatedly
used to train the network until a satisfactory perform-
ance is reached. Since the network may be incorrectly
trained by that instance, we also maintain a set of
reference instances to monitor the learning process.
This reference set is consistent with the knowledge
base. If, during learning, some instances in the refer-
ence set become inconsistent, they will be added to the
learning process.

On a given trial, the network generates an output
vector given the input vector of the training instance.
The discrepancy obtained by subtracting the network's
vector from the desired output vector serves as the
basis for adjusting the strengths of the connections
involved. The back-propagation rule adapted from
Reference 3 is formulated as follows:

AWj, = rDj(dOj/dWj,) (1)

where Dj = T i - Oj, AWii is the weight (strength)
adjustment of the connection from input node i to
output node j, r is a trial-independent learning rate, D i
is the discrepancy between the desired belief value (7"i)
and the network's belief value (Oj) at node j, and the
term dOj/dWji is the derivative of Ot with respect to
Wi~. According to this rule, the magnitude of weight
adjustment is proportional to the product of the
discrepancy and the derivative above.

The back-propagation rule is applicable to belief
networks where the propagation and the combination
of belief values are determined by differentiable
mathematical functions. As shown in Equation (1), the
mathematical requirement for applying the back-
propagation rule is that the relation between the output
activation (Oi) and the input weight (Wji) is deter-
mined by a differentiable function. In belief networks,
this relation is differentiable if the propagation and the
combination functions are differentiable. Since corn-

52 Knowledge-Based Systems

bining belief values in most rule-based systems involves
such logic operations as conjunction or disjunction, the
back-propagation rule is applied after turning the
conjunction operator into multiplication and the dis-
junction operator into summation.

A multi-layered network involves at least three
levels: one level of input nodes, one level of output
nodes and one or more levels of middle nodes.
Learning in a multi-layered network is more difficult
because the behaviour of middle nodes is not directly
observable. Modifying the strengths of the connections
pointing to a middle node entails the knowledge of the
discrepancy between the network's value and the
desired belief value at the middle node. The discrepan-
cy at a middle node can be derived from the discrepan-
cies at output nodes which receive activations from the
middle node 3. It can be shown that the discrepancy at
middle node j is defined by

Dj = ~(dOkdO])Dk
k

where Dg is the discrepancy at node k. In the
summation, each discrepancy Dk is weighted by the
strength of the connection pointing from middle node j
to node k. This is a recursive definition in which the
discrepancy at a middle node is always derived from
discrepancies at nodes at the next higher level.

In addition, the belief value of a middle node can be
obtained by propagating the belief values at input
nodes recursively and combining these values properly
until the middle node is reached.

Distinguishing knowledge base from input data
errors

A method has been devised that can distinguish
knowledge base errors from input data errors. This
method includes three tests. In the first test, we clamp
all connections corresponding to the knowledge base so
that only the strengths of the connections between the
observed and the actual input data nodes remain
adjustable during learning. In the second test, we
clamp the connections between the observed and the
actual inputs and allow only the strengths of the
connections corresponding to the knowledge base to be
modified. In the third test, we allow the strengths of all
connections to be adjusted. In each test, success is
reported if the error concerned can be resolved after

Table 3. Distinguishing knowledge-base errors from
data errors

Test 1 Test 2 Test 3 Test 4

S S S O1
S S F 02
S F S 03
S F F 04
F S S 05
F S F 06
F F S 07
F F F 08

S = success, F = failure

learning; failure is reported otherwise. Consequently,
there are eight possible outcomes combined from the
results of these three tests, as shown in Table 3. These
results are interpreted as follows. Outcome O1 sug-
gests the revision of either the knowledge base or input
data. In this case, an expert's opinion is needed to
decide which should be revised. Outcome 02 is
unlikely (in the experience of the authors) and is
ignored. Outcome 03 suggests the revision of input
data. Outcome 04 is unlikely and is ignored. Outcome
05 suggests the revision of the knowledge base.
Outcome 06 is also unlikely and is ignored. Outcome
07 suggests the revision of both the knowledge base
and input data. Outcome 08 is a deadlock which
demands an expert to resolve.

Revision operations

The results of the above tests will indicate whether the
knowledge base or input data (or both) should be
revised. The strengths of the connections in the
network (representing the knowledge base and input
data) have been revised after learning. The next
question is how to revise the knowledge base and/or
input data according to the revisions made in the
network. The revision of the knowledge base will be
dealt with first.

Basically, there are five operators for rule revision 12.

• modification of strengths,
• deletion,
• generalization,
• specialization, and
• creation.

However, not all the five operators are suitable in the
neural network approach to editing rules. Each oper-
ator is examined below.

The modification of strengths operator is straightfor-
ward since the strength of a rule is just a copy of the
weight of the corresponding connection and the weights
of connections have been modified after learning with
the back-propagation rule. If the weight change is
trivial, we just keep the rule strength before learning.

The deletion operator is justified by Theorem 1.

Theorem 1. In a rule-based system, if the following
conditions are met:

1 the belief value of the conclusion is determined by
the product of the belief value of the premise and the
rule strength,

2 the absolute value of any belief value and the rule
strength is not greater than 1,

3 any belief value is rounded off to zero if its absolute
value is below threshold k (k is a real number
between 0 and 1),

then the deletion of rules with strengths below k will
not affect the belief values of the conclusions arrived at
by the system.

Proof. From conditions 1 and 2, if the strength of rule
R is below k, the belief value of its conclusion is always
below k. From condition 3, the belief value of the
conclusion made by rule R will always be rounded off

Vol 3 No 1 March 1990 53

to zero. Since rule R is not effective in making any
conclusion, it can be deleted. Thus, the deletion of such
rules as rule R will not affect the system conclusions.[-]

Accordingly, deletion of a rule is indicated when its
absolute strength is below the predetermined
threshold. In MYCIN-like systems, the threshold is 0.2.

The deletion operator is also justified by the follow-
ing argument. Suppose we add some connections to a
neural network that has already reached an equilibrium
and assign weights to these added connections in such a
way that incorrect output vectors are generated. Thus,
these conditions are semantically inconsistent. Then, if
we train the network with correct samples, the weights
of the added connections will be modified in the
direction of minmizing their effect. What happens is
that the weights will go towards zero and even cross
zero during training. In practice, we set a threshold so
that when the shift towards zero for a connection
weight is greater than this threshold, we delete the
connection.

Generalization of a rule can be done by removing
some conditions from its premise, whereas specializa-
tion can be done by adding more conditions to the
premise. If the desired belief value of a conclusion is
always higher than that generated by the network and
the discrepancy resists decline during learning, it is
suggested that rules supporting this conclusion be
generalized. Or on the other hand, if the discrepancy is
negative and resistant, specialization is suggested.
However, generalization or specialization of a rule may
involve qualitative changes of nodes. The back-
propagation rule has not yet been powerful enough to
make this kind of change except deletion of conditions
for generalization.

Creation of new rules involves establishment of new
connections. Whereas we delete a rule if its absolute
strength is below a threshold, we may establish a new
connection when its absolute strength is above the
threshold. To create new rules we need to create some
additional connections which have the potential to
become rules. Without any bias, one may need an
inference network where all data are fully connected to
all intermediate hypotheses, which in turn are fully
connected to all final hypotheses. This is not a feasible
approach unless the system is small.

From the above analyses, we allow only the mod-
ification of strengths and deletion operators in the
neural network approach to rule revision.

Revision of input data is much simpler. If the weight
of the connection between an observed and an actual
input node after learning is below a predetermined
threshold, or the shift towards zero is above a certain
value, the corresponding input data attribute is treated
as false and deleted accordingly.

It has been known that noise associated with training
instances will affect the quality of learning. In the
neural network approach, since noise will be distri-
buted over the network, its effect on individual
connections is relatively minor. In practice, perfect
training instances are neither feasible nor necessary. As
long as most instances are correct, a satisfactory
performance can be achieved.

The comparison between the TEIRESIAS approach
and the neural network approach to error handling is

shown in Table 4. The neural network approach may be
more useful than TEIRESIAS in handling multiple
errors or errors involving some unobservable concepts
which human experts may have difficulties in dealing
with. In addition, the back-propagation rule can be
uniformly applied to the whole rule base, whereas
human experts may focus on certain parts of the rule
base consciously or subconsciously. Also, in Reference
15, it is suggested that the only proper way to cope with
deleterious interactions among rules is to delete offend-
ing rules. In light of this view and the experience of the
present authors, the deletion operator is very useful.
While the neural network approach is still too simple to
deal with errors involving qualitative changes of rules,
reasoning strategies or meta-level knowledge, the
techniques developed under this approach can supple-
ment the current rule base technology.

E V A L U A T I O N

In this section, the validity of the developed mapping
from a rule-based system into the neural architecture
will be demonstrated on a practical domain, namely,
the problem of diagnosing jaundice, and then the
applicability of this approach to a large rule-based
system with thousands of rules will be discussed.

Derived from J A U N D I C E ~7, the rule base used
contains 50 rules, 5 final hypotheses, 3 intermediate
hypotheses and 20 clinical attributes. This rule base is
mapped into a bi-layered network with 5 output nodes,
3 middle nodes and 20 input nodes. Twenty training
instances that can be diagnosed correctly by these 50
rules were collected from the J A U N D I C E case library.

Ten experiments were carried out. In each experi-
ment, a small number of incorrect connections (rules)
that contradict medical knowledge were added to the
network described above. These incorrect rules were
provided by a medical expert. No incorrect rule was
shared by two experiments. Then the neural network
transformed from the rule base was used to diagnose
the 20 training instances before and after learning, The
objective of these experiments was to see whether
those incorrect rules could be removed through learn-
ing and how good the inference capability is. In each
experiment, the number of incorrect rules and the
diagnostic accuracy were recorded before and after
learning. The results are shown in Figure 5. The
statistical paired t test was used to judge whether
learning can remove incorrect rules and improve the
system performance significantly.

Two null hypotheses were formulated. The first
states that there is no difference in incorrect rule
numbers before and after learning. The second states
that there is no difference in the system performance
before and after learning. The t values for the first and
the second hypotheses are 6.32 and 5.85, respectively.
Both hypotheses are rejected at level of significance
0l < 0.01. In other words, this approach is effective in
these experiments. Another result is that no rule
among the original 50 correct rules was deleted.

One important question is whether this approach can
be scaled up to the order of rule bases large enough for
industrial application (such as XCON, which contains
thousands of rules). The 50 rule expert system used in
the above experiments is certainly too small. However ,

54 Knowledge-Based Systems

Table 4. C o m p a r i s o n b e t w e e n T E I R E S I A S a n d the neura l n e t w o r k a p p r o a c h

TEIRESIAS Neural network approach

Approach Human experts

Operators Modifying strengths
Deletion
Addition
Generalization
Specialization

Errors Rule errors

Back-propagation

Modifying strengths
Deletion

Rule and data errors

I , .
- I

&

c~

100

90

8 0 - -

7 0 - -

6 0 - -

\

I I I I I I I I I I
I 2 3 4 5 6 7 8 9 10

I n c o n s i s t e n t ru le numbe r

Figure 5. Performance measured by diagnostic accura-
cy. O, case I: after learning; A, case H: before learning

the validity of the developed approach can be based on
the following arguments. First, the analogies between
neural networks and belief networks were shown
earlier. Second, because knowledge-based networks
are much sparser than ordinary neural networks and
may be further decomposed into independent net-
works, they can escape the problems due to combina-
torics.

DISCUSSION

In a simple production system, rules can interact only
through the working memory, which becomes a bot-
tleneck during processing of a large number of rules.
One way to get around this problem is by using a
distributed architecture. A rule base is mapped into a
network so that a rule will fire when its premise node is
activated. Rule interaction becomes distributive over
the network rather than centralized through the work-
ing memory. In the literature, it has been shown that
compiling a rule base into a network significantly
increases the system performance. When a distributed
architecture is taken, the performance then depends on
how many rules can be processed in parallel. Conse-
quently, a parallel distributed architecture such as the
neural network is desirable for building rule-based
systems.

Under the mapping as described, the neural network
is able to compute the belief values of given hypoth-
eses. Thus, it is especially suitable for handling
uncertainty. However, the mathematical abstraction of
a rule base as a belief network does not address
adequately such aspects as symbol-based pattern
matching, which are of major importance in a rule-
based system. In addition, it should be noted that the
mapping is straightforward for propositional logic but
complicated for predicate logic. An architecture which
combines the neural network and the rule-based
network (e.g., compiled from the Rete algorithm) will
be the ultimate choice.

Learning in the neural network is characterized by
seeking local optima. In general, learning heuristics are
kinds of gradient descent procedures. A fundamental
problem is that local optima are not necessarily global
optima. Learning performance critically depends on
the choice of the initial state and the architecture.
Without any knowledge or bias, the rules generated by
such learning heuristics usually lack psychological
meanings. Therefore, when mapping a rule-based
system into the neural architecture, we preserve the
system topology and the human-assigned rule strengths
as the key bias.

The advantage of learning under such mapping lies in
refining rather than creating a knowledge base. In
particular, the back-propagation strategy is useful for
debugging intermediate rules whose behaviour is not
observed directly from samples. The approach pre-
sented here provides a means to delete inconsistent
rules and refine rule strengths. However, this approach
is quite limited in conducting more sophisticated rule
revision operations involving qualitative changes in
rules as well as in learning meta-level or control
heuristics.

In the current technology, the knowledge-based
system is suitable for high-level cognitive tasks, where-
as the neural network proves useful for perceptual and
signal processing tasks. The rule-based technique has
become the most important one with which to build a
knowledge-based system primarily because expertise
can be easily captured and modified as rules. It has
been found that rule-based systems are natural for
some domains but awkward for others. Several prob-
lem characteristics have been identified that distinguish
between domains for which rule-based systems are
suitable and those for which rule-based systems are
not 10. In a suitable domain, the theory is diffuse, the
control flow is simple and the use of knowledge is not
predetermined. While rule-based systems have span-
ned a wide range of applicability, the inference model

Vol 3 No 1 March 1990 55

provided by a rule-based system is more appropriate
for problems where solutions are selected from a
predetermined set than for problems where solutions
need to be constructed. In this sense, the presented
approach is suitable for diagnostic or analytical prob-
lems, but may not be for planning problems.

The neural network architecture (connectionism) has
been applied to solve problems which more or less can
be categorized into pattern recognition, optimization,
association and self-organization. Specific applications
include recognition of hand-written characters, speech
understanding, image or signal processing (e.g., noise
filtering, data compression), machine diagnosis, analy-
sis of sensor information, and financial and economic
modelling. This architecture is suitable for systems
where problems being considered can be modelled as a
network consisting of a large number of processing
elements and connections, and solutions to the prob-
lems depend on how those processing elements connect
and what the connection weights are. Mapping
MYCIN-Iike rule-based systems into the neural
architecture is based on this consideration.

CONCLUSIONS

It has been long argued that the neural network
approach to artificial intelligence is neither necessary
nor feasible. However, recent successes of the neural
network approach have forced a reconsideration of this
route to production of intelligent behaviour. By con-
trast the knowledge-based approach emphasizes that
knowledge is the key to generation of intelligent
computer systems. An emerging trend is to combine
these two approaches. It is thus justified to ask how to
implement a rule-based system on the neural
architecture. This question has been answered here in
the context of MYCIN and similar systems.

A rule-based system has been mapped into a neural
network by mapping the knowledge base and the
inference engine into a kind of neural network called
conceptualization. Under such mapping, a sentence in
the rule base is mapped into a concept node in the
conceptualization. The inference behaviour is characte-
rized by propagating and combining activations recur-
sively through the network and may involve an iterative
search for a stable state. The learning behaviour is
based upon a mechanism called back-propagation,
which has been shown to be effective in both rule and
data revision.

The advantages and disadvantages of this approach
have been examined. The system performance can be
greatly enhanced by using a distributed paralled
architecture. However, the neural network does not
address symbol-based pattern matching. The learning
heuristics for neural networks are effective in deleting
inconsistent rules and modifying rule strengths but do
not allow more sophisticated rule revisions. An
architecture that combines neural network and the
rule-based network will be the ultimate alternative.

The authors argue for the generality of this approach

based upon the analogies observed between a belief
network and a neural network and the relative sparse-
ness of a knowledge-based network. Finally this
approach has been validated on a practical domain.

REFERENCES

1 Feldman, J A and Ballard, D H 'Connectionist
models and their properties' Cognitive Sci. Vol 6
No 3 (1982) pp 205-254

2 Feldman, J A, Fanty, M A, Goddard, N H and
Lynne, K J 'Computing with structured connection-
ist networks' Commun. ACM Vol 31 No 2 (1988)
pp 170-187

3 Rumelhart, D E, Hinton, G E and Williams, R J
'Learning internal representation by error propoga-
tion, in Parallel Distributed Processing Explorations
in the Microstructures of Cognition MIT Press, USA
(1986)

4 Smolensky, P 'Connectionist AI, symbolic AI, and
the brain' Artif. Intell. Rev. Vol 1 (1987) pp 95-109

5 Minsky, M and Papert, S Perceptrons MIT Press,
USA (1969)

6 Sejnowski, T J and Rosenberg, C R NETalk: a
Parallel Network that Learns to Read Aloud
JHU/EECS-86/01, Johns Hopkins University,
USA (1986)

7 Gallant, S I 'Connectionist expert systems" Com-
mun. ACM Vol 31 No 2 (1988) pp152-169

8 Jones, W P and ltoskins, J 'Back-propogation: a
generalized delta learning rule' Byte (October 1987)
pp 155-162

9 Hopfield, J J and Tank, D W 'Computing with
neural circuits: a model' Science Vol 233 No 4764
(1986) pp 625-633

10 Buchanan, B G and Shortliffe, E H Rule-Based
Expert Systems Addison-Wesley, USA (1984)

11 Linsker, R 'Self-organization in a perceptual net-
work' Computer (March 1988) pp 105-117

12 Davis, R Application of Meta-level Knowledge to the
Construction, Maintenance and Use of Large Know-
ledge Base PhD thesis, Computer Science Dept.,
Stanford University, USA (1976)

13 Politakis, P G Using Empirical Analysis to Refine
Expert System Knowledge Base PhD thesis, Rutger
University, USA (1982)

14 Suwa, M, Scott, A C and Shortliffe, E H 'Complete-
ness and consistency in a rule-based expert system'
in Buchanan, B G and Shortlifl'e, E H (Eds)
Rule-Based Expert Systems Addison-Wesley, USA
(1984)

15 Wilkins, D C and Buchanan, B G 'On debugging
rule sets when reasoning under uncertainty' in Proc.
AAA1-86 Philadelphia (1986) pp 448-454

16 Doyle, J 'A truth maintenance system' Artif. lntell.
Vol 12 No 3 (1979) pp 231-272

17 Fu, L-M Learning object-level and recta-level know-
ledge in expert systems PhD thesis, Stanford Uni-
versity (1985)

56 Knowledge-Based Systems

