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Abstract 
Due to the multiple-stream and sequence-disorder effects, a process change 
caused by one machine at an in-line step may result in changes in both the 
mean and variance of end-of-line wafer acceptance test (WAT) data 
sequence. To speed up trend detection of WAT data without resorting to 
an intensive computing power, an end-of-line SHEWMAC scheme has been 
proposed by Fan et al. (1999). The SHEWMAC scheme consists of a 
Shewhart, an exponentially weighted moving average (EWMA), and an 
exponentially weighted moving Cpk (EWMC) charts for jointly monitoring 
the mean and variance of WAT lot average sequence. This paper aims at 
the robust design of a SHEWMAC scheme and the analysis of its 
effectiveness. Simulation results show that the SHEWMAC scheme with 
robust parameters reduces about 15% of the time in detecting WAT trends 
as compared to either the Exponentially Weighted Mean Square (EWMS) or 
combined Shewhart-EWMA schemes generally used for trend detection. 
Field data validation also shows that the incorporation of SHEWMAC 
complements the existing end-of-line data monitoring system and in-line 
SPC schemes for process integration. 

1. Introduction 
WAT data provides the integral statistics about process stability and product performance. 
It has the salient features of sequence disorder (SD) and muZfipZe streams (MS) due to 
operation dispatching as compared with in-line data of individual machines andor 
fabrication steps. In presence of the two features, a change caused by one machine at an 
in-linc: step may result in changes in both the mean and variance of a WAT data sequence. 
A current industrial practice groups WAT data over a period of time (window) and 
monitors mean, variance or process capability index (Cpk) of data groups respectively. 
In specific, a control chart of Cpk may serve to detect combined changes in mean and 
variance, and a window size of one week is taken for grouping so that trend patterns can 
be extracted under the salient features of WAT data sequence. 

In many of the aforementioned WAT monitoring schemes, the control limits and window 
size me determined empirically because in-line SPC techniques do not apply directly. 
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As a result, window size and control limits thus selected have led to slow process fault 
detection or frequent false alarms. There have been a lack of solid foundation for the 
design and analysis of WAT SPC schemes, especially for a fab where product types, 
process characteristics, and the intensities of SD and MS effects vary widely and 
frequently. 

- 

In [4], the authors proposed a framework of end-of-line quality control (Figure 1) and 
focused on the end-of-line SPC module. A SHEWMA scheme was developed and 
implemented in a foundry fab. It is a methodology for generating robust design 
parameters for the simultaneous application of Shewhart and EWMA control charts to 
WAT data. By exploiting the advantages of both SHEWMA and Cpk review schemes, 
the authors further developed an integrated WAT SP€ scheme [5], SHEWMAC, for 
jointly monitoring mean and variance of wafer lot average sequence from WAT data. 
The SHEWMAC scheme consists of a Shewhart, an EWMA, and an exponentially 
weighted moving Cpk (EWMC) control charts. Figure 2 illustrates the potential 
advantage of SHEWMAC over SHEWMA. The shaded areas in the 
mean-versus-variance plots are the respective in-control regions of SHEWMA and 
SHEWMAC derived by our analysis under approximately the same false alarm rate. It is 
obvious that when both process mean and variance change together, the monitored 
statistics are more likely to fall outside the in-control region of SHEWMAC. Namely, 
SHEWMAC is more sensitive in detecting a combined mean and variance change at a 
given false alarm rate. 
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Fig. 1 Sequential detection and diagnosis approach for end-of-line quality control 
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Fig. 2 In-control regions of SHEWMA and SHEWMAC 
This paper aims at the robust design of a SHEWMAC scheme and the analysis of its 
effectiveness for a real fab. A robust set of SHEWMAC parameters are calculated by 
considering the requirement of false alarm rate and the wide range of process conditions 
in a fab. To highlight the advantages of robust SHEWMAC design, four SPC schemes 
are compared: CSE, EWMS, SHEWMA, and SHEWMAC. All of the four schemes use 
exponentially weighted moving statistics as monitoring statistics. The CSE scheme is 
the direct use of a combined Shewhart-EWMA scheme without considering the 
multiple-stream and sequence-disorder effects [7].  The EWMS (exponentially weighted 
mean square) scheme is usually adopted for detecting the combined mean change and 
variance increase [8 ] .  The SHEWMA scheme is a special case of SHEWMAC scheme 
with no EWMC control limit. 

The remainder of this paper is organized as follows. 
and MS features of WAT data. 
Section 3. 
weighted moving statistics as monitoring statistics. 
of SFIEWMAC scheme is finally analyzed. 

Section 2 first characterizes the SD 
The robust design of SHEWMAC scheme is described in 

Section 4 then compares it with the other three schemes using exponentially 
By using fab data, the effectiveness 

2. SEQUENCE-DISORDER & MULTIPLE-STREAM 
Figure 3 demonstrates the generation process of a WAT data sequence. Let {z,} be a 
random sequence representing wafer lot averages of a WAT measurement item, where i is 
the lot output sequence index at the WAT step. In general, affected by different product 
flows and dispatching polices, the cycle time from a process step p to the end-of-line WAT 
step varies among lots. As a result, the lot with a sequence label n at stepp very likely 
has a different lot sequence label i at the WAT step. This is defined as the 
sequence-disorder efect. Note that the processing of a lot may require more than 300 
steps and each step may be processed by any one of a machine group. Define a stream as 
a sequence of machines that a lot goes through during its fabrication process. There are 
many possible streams in a fab and the resultant WAT measurements among different 
streanis vary due to machine-to-machine variation. This is defined as the 
multiple-stream eflect. 
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Fig. 3 Generation process of end-of-line WAT data 

- 270- 



A triplet of process conditions (R, M,  S) are defined to characterize these two salient 
features of WAT data, where 

- R 
- M 
- S 

is the SD range fiom the monitored stepp to WAT step (defined in Fig. 3), 
is the total number of machines in the monitored step p, and 
is the potential magnitude of a shift (in standard deviation unit). 

For example, when (R, M, S)=(15,2, 1.5), the changes in both mean and variance of WAT 
data in end-of-line lot sequence, {x,} , in contrast with those in in-line lot sequence fiom 
the abnormal machne m is demonstrated in Figure 4. It can be seen that an in-line shift 
on machine m ramps and then levels off in the WAT data sequence, where the magnitude 
of leveling off part is reduced and the variance increases as compared with the original 
in-line shift. It is clear that to enhance the WAT shift detection speed, the end-of-line 
SPC scheme should have the capability to simultaneously detect changes in both mean 
and variance of {Fl} .  
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Fig. 4 The changes in mean and variance of {x,} 

3. SHEWMAC SYSTEM 
Figure 5 depicts the schematic diagram of SHEWMAC tool implementation. There are 
three function modules: Input Data Normalization, Control Charting, and Integrated 
Design. In a foundry fab, daily generation of WAT data of each product type may be 
statistically “rare”. To increase the sample size, WAT data inputs are first normalized so 
that data of different products belonging to the same processing technology can be 
aggregated to reach a scale of statistical significance. A normalized data sequence can 
then be monitored lot-by-lot by the Control Charting module based on the scheme 
parameters from the Integrated Design module. The Integrated Design module takes the 
requirement of false alarm rate and the possible range of process conditions L2 E { (R, M,  
S)} as inputs. It evaluates the scheme performance and generates a robust set of 
SHEWMAC parameters over a wide range of process conditions. The outputs of the 
SHEWMAC scheme include a Shewhart, an EWMA, and an EWMC control charts of the 
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nomialized WAT lot average sequence, and a warning signal when a data point is out of 
control. 
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Fig. 5 Schematic diagram of SHEWMAC tool 

Data Normalization 
The objective here is to use the historical WAT lot average sequence to establish the 
baseline behavior, and later normalize the real time WAT lot average sequence based on 
this baseline. The baseline behavior consists of the long-term mean ( b  ) and variance 

(6;) of {TI } .  This paper assumes that {TI} follows a normal distribution. In 
specific, a moving range estimator [6] is adopted to estimate the variance 

6, =0.887%?, where % @ = ( ~ M R , ) I I , , M R ,  = l z , + , - X r  l,i=1,2 ,..., I , ,andloisthe 

number of samples. This estimator is unbiased, is robust with respect to shifts in the 
process mean, and can model the machine-to-machine variation among lots well. Given 

= (TI - F)/6,- will be approximately normally 
distributed and can be used as the common metric for all products. 

IO - 

r = l  

and 6;, the normalized metric 

Control Charting 
In the Control Charting module, the Shewhart chart tests if the average of a lot is normal; 
the EWMA chart tests if there is any small WAT shift; and the EWMC chart tests if the 
slight changes in mean and variance result in a significant changes in Cpk. Warning 
messages from these three charts provide information about the occurrence and the extent 
of a process shift. If only the EWMA or EWMC chart detects an abnormal trend, there 
could be a small process shift. When there is a large trend in the EWMA and EWMC 
charts and a data point out of Shehwart control limits at the same time, a large process 
shift may have occurred. 

Let the monitored statistics be { d }  in the Shewhart chart. The EWMA sequence is 

- 272- 



then generated by 
A, = z, + (1 - d)A,-, 

i-1 

i=l,2,. . . , 
q=o 

where y-, = d(1- To 

get the Cpk values in EWMC chart, the variance is first estimated by Y; = B, - A,', where 

, 0 < d I 1 , and the initial value A, is usually set as zero. 

B, = dZ': + (1 - d)B,-, 
r - l  

= EFyqZq + (1 - A), Bo,  i=l ,2,. . . , (2) 
q=o 

is an exponentially weighted moving estimator of mean square and Bo is usually set as 1. 
Given A, and B, , the EWMC sequence is then generated by 

Ci = (SPL- I Ai I) / ( 3 f i )  , 
where SPL is the nonnalized specification limit. 

(3) 

In summary, SHEWMAC scheme parameters consists of quadruplet (cy A, h, k), where c 
is the control limit gain of Shewhart chart, h is the weighting factor, h is the control limit 
gain of EWMA chart, and t is the lower control limit of EWMC chart. Once the 
SHEWMAC parameters (c, A, h, k) are available, control limits of Shewhart chart, 
EWMA chart, and EWMC chart are then set as ? c, ? h d m ,  and k respectively. 

Integrated Design 
The parametric design of SHEWMAC is based on the concept of run length. The run 
length is a random variable characterizing the number of observations that an SPC scheme 
takes to generate an out-of-control signal after the occurrence of a process change. In 
view of the fact that in Eq. (l), each EWMA value A, is an interpolation of its former 
value A,-l and the present normalized lot average z,, the average run length of an 
EWMA chart is usually characterized as a discrete state Markov chain [7 ] .  Similar to 
this approach, the average run length of SHEWMAC is characterized as a two-variable, 
A, and B, , Markov chain. 

Figure 6 depicts the design procedures in the Integrated Design module. Design inputs 

include a set of process conditions, Q 3 { (R,  My S) , R E R+ , M E  Z+ , SE R+ } and 
the requirement of false alarm rate, a. Design output is a robust selection of parameters, 
( c ,  x, i, k ) .  The philosophy of SHEWMAC design is to minimize the average run 
length ARLl when process is out of control while maintaining the average run length 
ARLO at a fixed level when process is in control. Thus the feasible parameter set 
satisfying the false alarm rate requiremnet is first calculated. Then the optimal 
parameters for individual process conditions in Q are calculated. In practice, exact 
process conditions (R ,M,S)  cannot be known a priori. For the feasibility of 
implementation, a robust design of parameters is chosen by minimizing the detection 
delay in the wost case, so that the SHEWMAC scheme results in a satisfactory 
performance over possible conditions in SZ . 
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Q = { (R ,M,S ) )  

Optimal Designs for Individual Process Conditions 
Feasible parameters calculation 

Optimal selection of parameters under R, M, S 

. 

(c*,A*, h*, k*) E Arg 

ARLI*(R ,M,S)=  ARLl(c*,A*,h*,k*,R,M,S) 

Min 
( c , A  h.k% UJ 

ARLl(c, A, h, k ,  R, M , S  

- - - -  
(c, A, h, k )  = Arg Min 

( c . l , h , k W  
J(c, A, h, k )  

4 

Robust Designs 

AARLl(c, a,, h, k, R, M ,  S )  = ARLl(c, A, h, k, R, M ,  S )  
0 Robustness metric calculation 

-ARLI *(R,M,S)  
J(c,A,h, k ) =  ~a bARLl(c,A,h,k, R,M,S)  

( R f l S W  
0 _. Robust selection of parameters 

Fig. 6 The design procedure of SHEWMAC scheme 

4. Performance Evaluation 
To highlight the advantages of robust SHEWMAC design, four SPC schemes are 
compared here: CSE, EWMS, SHEWMA, and SHEWMAC. All of the four schemes 
use exponentially weighted moving statistics as monitoring statistics. The CSE scheme 
is the direct use of a combined Shewhart-EWMA scheme without considering the 
multiple-stream and sequence-disorder effects [7]. The EWMS (exponentially weighted 
mean square) scheme is usually adopted for detecting the combined mean change and 
variance increase [8 ] .  The SHEWMA scheme is a special case of SHEWMAC scheme 
with no EWMC control limit. 

Table 1 lists the range of process conditions considered and the resultant design 
parameters for the CSE, EWMS, SHEWMA, and SHEWMAC schemes, each of which 
meets the false alarm rate of 0.27%. All the robust parameters in Table 1 are calculated 
by simulation. 

Figure 7 demonstrates the ARLl performance of the four schemes under different 
magnitudes of process shift. The smaller the ARLl value, the faster the detection speed. 
It can be seen that the CSE scheme without considering MS & SD effects always results 
in the worst performance. When the shift size is small (S=l), the SHEWMA scheme is 
better than the EWMS scheme. However, when there is a large shift size (S=2), the 
EWMS scheme is superior to the SHEWMA scheme. No matter what the magnitudes of 
process shift, the SHEWMAC scheme always has the smallest ARLl and is the best 
among the four schemes in detecting WAT trend. 
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Schemes 
CSE 

Robust Parameters Range of Process Conditions 
( c c , ~ c , i c )  (R=O,  M = l ,  l S S S 2 )  

I 1=(0.03.2.140) I 
EWMS 

=(3.75, 0.19,2.866) 
(38, i s  ) (OIR550, l 5 M 1 5 ,  1 5 S 5 2 )  

Table 1 Robust parameters for schemes comparison 
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Fig. 7 Relation of ARLl to S with R=25 and M=5 

5. Field Data Application 
A 0.26 pn logic device is selected with a focus on monitoring WAT item of Rs-N+, 
which represents the sheet resistance of N+ structure. In this case, the SHEWMAC 
pararneters are chosen as (c, A, h, k)=(3.25, 0.11, 2.90, 0.65) and the corresponding 
SHEWMAC control charts are demonstrated in Figures 8(a) and 8(b). The SHEWMAC 
generates seven warning messages, one from the Shewhart chart at the 65* lot, three from 
the EWMA chart at the 27*, 37*, and 64* lots, and the other three from the EWMC chart 
at the 27*, 37*, and 55' lots respectively. 

Through the data trace back and stratification functions of engineering data analysis (EDA) 
systm, it is found that N+ draidsource implant step is the root cause. Figure 8(c) 
demonstrates the Shewhart chart of Rs-N+ in the lot sequence and processing machines at 
the faulty step. It is obvious that M1 had a significant machine offset from the 29* to 
36* lots in its in-line lot sequence as compared to the other machines. Also, a process 
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shift occurred at M4 starting from the 62' lot in its in-line lot sequence. In this case, it is 
validated that EWMA and EWMC charts are supperior to the Shewhart chart in detecting 
the s;amll machine offset of M1. Also, since the EWMC chart reflects the changes in 
both mean and variance, it enhances the shift detection of M4 by 10 lots as compared to 
the ElWMA chart. 
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Fig. 8 Field data validation for SHEWMAC scheme 
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Can the fault be identified using in-line SPC for the N+ draidsource implant step? The 
in-line SPC at the N+ draidsource implant step monitors the sheet resistance, which is 
taken from the test wafer every 12 hours. Both Western Electric Rules (WER) and CSE 
schemes are adopted as the in-line SPC schemes. 

The CSE charts for machine M4 at N+ draidsource implant step, during the tracking time 
of the 70 lots under investigation, are given in Figures 9(a) and 9(b). During the period 
of process shift, there are 23 lots, from the 48* to the 70* lot in Figure 8(c), processed by 
machine M4 for the N+ draidsource implant step. However, in the same period of time, 
only 4 data points, from the 13'd sampling point to the 16" sampling point in Figure 9, of 
sheet resistance are taken for in-line SPC. It can be seen that, using the in-line sheet 
resistance data, neither the CSE scheme nor the WER detects the large process shift in 
machine M4. As for the offset of machine M1, it is more difficult to detect by using 
in-line SPC because only two data points of sheet resistance are taken from M1 and the 
offset of M1 is much less than the magnitude of process shift in M4. 
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There are two reasons that the in-line SPC does not detect the process shift and machme 
offset in this case. First, the in-line measurements may be less sensitive to the process 
change as compared to the WAT measurements taken from product wafer. Second, the 
sampling rate in in-line level is much less than that of WAT. End-of-line SHEWMAC is 
thus complementary to the in-line SPC for process integration. 

6. Co’nclusions 
In this paper, an end-of-line SPC scheme, SHEWMAC, is proposed to monitor the 
simultaneous changes in mean and variance of WAT lot average sequence. Simulation 
and field data validation show that SHEWMAC is superior to the combined 
Shewhart-EWMA scheme in shift detection speed and is complementary to the in-line 
SPC. 
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