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Quasi-3-D Beam-Propagation Method for Modeling
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Abstract—The two-dimensional (2-D) iterative finite dif-
ference beam-propagation method (IFD-BPM) is modified
to model the cylindrically symmetric three-dimensional
(quasi-3-D) second-order nonlinear wavelength conversion
in quasi-phase-matched condition. The study shows that the dif-
ference between the 2-D and 3-D schemes is small for the guided
waves but large for the nonguided beams. The comparison with
experimental results shows that the quasi-3-D IFD-BPM is closer
to reality than the 2-D scheme. In addition, simulation using the
quasi-3-D IFD-BPM reveals that plane-wave and Gaussian-beam
assumptions are not sufficient for estimating the nonlinear con-
version and beam propagation in second-order nonlinear devices.

Index Terms—Difference frequency generation, finite-difference
beam-propagation method, periodic poled lithium niobate, quasi-
phase-matched techniques.

I. INTRODUCTION

QUASI-PHASE-MATCHED (QPM) frequency conversion
[1], [2], using periodically poled ferroelectric crystals, has
various applications because of its versatile and efficient

conversion abilities. QPM devices based on LiNbO, LiTaO ,
and KTP [3]–[5] hold promise for the generation of a wide
range of optical frequencies that are otherwise difficult to obtain.
For example, the QPM second harmonic generation (SHG) [6]
provides coherent light sources in the visible region [7]. Other
QPM second-order nonlinear effects like sum frequency gen-
eration (SFG) and difference frequency generation (DFG) are
useful in frequency tripling and quadrupling [8], mid-infrared
(IR) generation [9], [10], and wavelength-division multiplexing
(WDM) [11]. Large nonlinear phase shifts induced by QPM
second-order nonlinear effect [12] have also been proposed to
realize all-optical switching [13] and short-pulse compression
[14].

The advantage of QPM techniques over birefrin-
gent-phase-matched techniques is the possibility to
phase-match the full transparency range of the material
and the availability of large nonlinear coefficients [1] through
the engineerable periodic structure. To design and engineer
those devices, it is important to understand the functions of
these devices in advance, so theoretical models are important
tools. However, analytical models usually require many approx-
imations like the nondepletion of the pump wave or plane wave
assumption [6], [15]–[18]. In addition, when large or irregular

Manuscript received March 3, 2000; revised December 29, 2000.
The authors are with the Department of Electrical Engineering and Graduate

Institute of Electro-Optical Engineering, National Taiwan University, Taipei,
Taiwan, R.O.C.

Publisher Item Identifier S 0733-8724(01)03638-6.

geometrical variations exist or the depletion of the pump wave
is not negligible, precise analytical modeling of these devices
is quite difficult. As a result, numerical methods become neces-
sary for general and accurate analyses. The beam-propagation
method (BPM) [19] is a powerful and flexible approach to
design and simulate optical devices. Applications of BPM to
linear devices had been studied extensively and extended to
devices with second-order nonlinear effects, mostly SHG. The
simulation is based on schemes like fast Fourier transform
(FFT) [20] and finite-element (FE) [21]–[23], and finite-differ-
ence (FD) methods [24]–[30]. FFT-BPM is preferred less for
its low efficiency and accuracy. Its improvements are still under
investigation [19], [31]. On the other hand, the comparison of
FD-BPM and FE-BPM makes the former more attractive due
to its simplicity of implementation.

To further improve the accuracy of FD-BPM in the case
of nonlinear wavelength conversion, iterative finite-difference
BPM (IFD-BPM) was proposed [29], [30]. IFD-BPM was
shown to have good reliability, efficiency, and accuracy in com-
parison with other FD-BPMs. Such IFD-BPM was developed
in two-dimensional (2-D) cases before for lucid manifestation
of comparisons among those BPM algorithms. However, the
2-D model does not take into account the beam divergence in
both transverse directions. When the propagation beam is not
confined in the waveguide, the 2-D model overestimates the
nonlinear conversion. In order to make the simulation close to
the real situation in general, three-dimensional (3-D) consid-
eration becomes necessary. Nonetheless, the direct extension
of IFD-BPM to the 3-D case by taking finite difference in both
transverse directions squares the total number of calculations
[32], leading to intolerably large computation time. Therefore,
this paper proposes a scheme to handle the 3-D case without
increasing calculation number. For propagation beams with
circular or elliptical profiles, the 3-D case can be transferred
to 2-D case as long as the singularity at the origin is properly
manipulated. Because most pump beams used for parametric
interaction have a circular profile [33], this scheme is practi-
cally useful.

The simulation is performed in the case of the DFG in peri-
odic poled lithium niobate (PPLN) for both the bulk-type and
the waveguide-type materials. The extension of this scheme to
other second-order nonlinear interaction is straightforward and
so will not be elaborated. The comparison between the 2-D case
and the 3-D case of circular beam profiles, named quasi-3-D,
is shown. This paper is organized as follows. After the intro-
duction, the quasi-3-D IFD-BPM is formulated and singularity
at origin is solved in Section II. Then comparison between the
2-D and quasi-3-D schemes is made in Section III. In Section IV,
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some phenomena in DFG discovered by the quasi-3-D scheme
are presented. These phenomena are different from predictions
by previous methods. Section V gives the conclusion.

II. FORMULATION

Propagation of light in the presence of the second-order non-
linear polarization can be described by

(1a)

(1b)

where
and electric field and the polarization;

and linear and the second-order susceptibilities;
and permittivity and permeability in vacuum.

Second-order nonlinear effects are three-photon processes, so
there are in general three different frequencies involved. On the
other hand, the second-order nonlinear interaction is also polar-
ization dependent, so the susceptibilities have in general a tensor
character. For the simplicity of mathematical formulas, proper
tensor elements of the linear and the second-order susceptibili-
ties and the polarization of electric fields for three different fre-
quencies have already been assumed.

The total electric field composed of three monochromatic
waves can be expressed in the phasor notation as

c.c. (2)

where
, , angular frequencies of the three waves and

for energy conservation;
, , wavevectors in vacuum;

, , reference indexes.
Applying paraxial approximation, substituting (2) into (1) and
equating terms with the same frequency yields

(3a)

(3b)

(3c)

For 2-D scheme, the transverse Laplacian is simply
described as . For the 3-D case, it becomes

. If the
beam is cylindrically symmetric, is -independent; then

(4)

Therefore, the two-dimensional transverse Laplacian is reduced
to a one-dimensional operator. However, the first term on the
right-hand side of (4) has singularity at the origin, which re-
quires special treatments for the finite-difference method and
will be handled later in this section.

In the finite-difference scheme, the spatial domain is divided
into small regions by placing a grid over the domain. A uni-
form grid is used in this work. The step sizes along the(or )
and the directions are denoted by (or ) and with

and representing the indexes along these two directions, re-
spectively. For example, represents the electric field at the
point (or ).
For concise expressions, the following finite difference opera-
tors are defined:

(5a)

(5b)

(5c)

(5d)

(5e)

where for ,
. With these definitions, the 2-D and quasi-3-D schemes

could be better described.
In the IFD-BPM [29], the resulting difference equations in-

volve undetermined nonlinear source terms in the next step, so
iterative schemes are required to solve this problem [34]–[36].
In the beginning, one set of solutions is obtained by the RA
scheme or other methods and denoted by , which is
the initial guess of the electric fields for the next steps. The way
of the initial guess influences the rate of convergence, but the
difference is minor. An iterative algorithm described in the fol-
lowing is used for simulation:

(6a)

(6b)
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(6c)

(or) : Quasi-3-D

where is the iteration count and is the th iteration field.
In the 2-D scheme, we use expression; and in the quasi-3-D
scheme, we use expression.

In the quasi-3-D IFD-BPM, there is singularity at the origin,
which is not encountered in the 2-D IFD-BPM. To avoid the
singularity problem for numerical calculation, Gauss’ theorem
[37] is applied. From Gauss’ theorem

with being a closed loop and being the area inside. There,
placement of by changes the previous formula to

Then integrating equation (3) makes the Laplacian replaced by
. With the -independence, , so the

singularity at origin is removed. Therefore, the (7) is used for
the origin point

(7)

where is a small circular area centered at origin andis the
closed loop of .

The corresponding numerical method for the calculation at
the origin is as follows. Considering the condition around the
origin , a small circular area centered at
with its radius is used. The radius of the small area could
be any value, but here the step size along the direction is
used as the radius. Then, an “area average value” of the electric
field is substituted into the area integration of (7). The
“area average value” is defined in the following. Assume that

and

(8)

Do the integration in (7) with a small area . Then

(9)

Similar equations can also be derived for and .
These equations are used to replace (3a)–(3c). Because the di-
vision by zero is now removed, the corresponding difference
equations similar to (6a)–(6c) can be obtained for numerical cal-
culation at the origin.

For concise expressions, a new finite-difference operator is
defined

(10)

With other operators defined in (5c)–(5e), the quasi-3-D IFD
around the origin can be written as

(11a)

(11b)

(11c)

where is the iteration count and is the th iteration field.
can be derived by various means. Equations (11a)–(11c)

are the finite-difference equations used for the origin.

III. COMPARISON OFQUASI-3-D AND 2-D SCHEMES

In the simulation, the wavelengths and refractive indexes of
the pump, the signal, and the idler waves are 0.8594m, 1.064

m, 4.47 m, 2.171 57, 2.1575, and 2.038 14, respectively. The
period of the QPM grating is 23.17m, and the nonlinear coef-
ficient is 22 pm/V. The initial power levels of the pump, the
signal, and the idler waves are 0.48, 1, and 0 W, respectively.
The crystal length is 2 cm with m.
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(a)

(b)

(c)

Fig. 1. The diagrams of the cross-section of two waveguides. (a) The
refractive-index distribution for 2-D IFD. (b) The cross section of the
waveguide for 2-D IFD (the refractive index and electric field are assumed
uniform along y direction). (c) The cross section of the waveguide for
quasi-3-D IFD.

First, the QPM DFG in a waveguide-type PPLN is simu-
lated. The index difference is a typ-
ical value for a Ti-diffused waveguide on LiNbO. In the 2-D
scheme, the width of the waveguide is assumed to be 6m. The
guided modes of the pump and the signal waves then have al-
most the same full-width half-maximum (FWHM) width of 5.94

m. In the second transverse direction, the field is assumed to
uniformly distribute over a range of this FWHM width. In the
quasi-3-D scheme, a cylindrical waveguide with 6m diam-
eter is considered. The diagrams of the cross sections of two
waveguides are shown in Fig. 1. The computation window is
100 m with the transverse grid size m. Fig. 2
shows the idler power calculated by quasi-3-D and 2-D, respec-
tively, versus the propagation distance. The figure shows that
the 2-D scheme predicts the growing rate of idler power only
slightly larger than the 3-D scheme. At the exit facet of the 2-cm
PPLN, the conversion efficiency is 22.5% and 18.2% for the 2-D
scheme and the quasi-3-D scheme, respectively. Therefore, for

Fig. 2. Idler wave power versus propagation distance in the waveguide-type
PPLN, calculated by 2-D and quasi-3-D schemes, respectively.

Fig. 3. Idler wave power versus propagation distance in the bulk-type PPLN,
calculated by 2-D and quasi-3-D schemes, respectively.

Fig. 4. The pump wave electric field profile versus propagation distance,
calculated by 2-D and quasi-3-D schemes, respectively.

the waves well confined in the waveguide, both schemes predict
very similar results.

Second, the QPM-DFG in a bulk-type PPLN is simulated.
The beam shapes of the pump wave and the signal wave are as-
sumed to be Gaussian at the entry facet. The 25-m beam waist
is located at the middle of the crystal. The computing window
is 400 m. Fig. 3 shows the idler powers calculated by the 2-D
scheme and the quasi-3-D scheme, respectively, versus the prop-
agation distance. It can be seen that the 2-D scheme predicts a
much larger growing rate of the idler power. At the exit facet, the
idler power predicted by the 2-D scheme is 3.8 times the power
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Fig. 5. The experimental arrangement used in [10] for comparison with our simulation.

predicted by the quasi-3-D scheme. Because the 3-D scheme
takes into account the beam divergence in both transverse direc-
tions, the intensity decreases rapidly, as shown in Fig. 4. This
leads to reduced conversion efficiency. The 2-D scheme may
also simulate the divergence in both transverse directions if the
field distribution along the second transverse direction is varied
according to the beam expansion. However, because the actual
beam size at FWHM is still not known before it is calculated,
such estimation is difficult. In comparison, the consideration
of beam divergence for both transverse directions in quasi-3-D
scheme is very straightforward.

The two schemes are also compared to an experiment [10],
which has the experimental arrangement shown in Fig. 5. The
Nd : YAG laser beam nm) is combined with the
beam from a tunable external-cavity semiconductor laser
using a dichroic beamsplitter. The compound external cavity of
the semiconductor laser consists of a GaAlAs tapered stripe am-
plifier with a 130- m output aperture and a peak gain near 855
nm, a diffraction grating for tuning, and a single stripe semicon-
ductor amplifier. The laser threshold occurs at a tapered ampli-
fier of A, and the output power is 820 mW at A
with 0.5 W transmitted to the QPM crystal. The pump beams are
focused by an cm lens, producing a 29-m FWHM beam
waist ( m) at the center of a 245-m-thick 6-mm-long
bulk field poled, QPM LiNbO crystal. The z-cut crystals, with
a patterned electrode on thec side, were field poled with the
QPM domain period of m.

The comparison of the experiment and the simulation is
shown in Fig. 6. The DFG power at m, generated
by the tunable semiconductor laser at nm, is
shown as a function of the pump power product . In
this experiment, the crystal length is 6 mm. The simulation is
thus changed for this length. Table I shows the comparison
between the parameters used in the simulation and the exper-
iment. The normalized nonlinear conversion efficiencies of
the 2-D scheme, quasi-3-D scheme, and the experiment are
0.059, 0.0292, and 0.015%/Wcm. The normalized nonlinear
conversion efficiency of the quasi-3-D scheme is closer to the
experimental value than the 2-D scheme. This is reasonable
because the quasi-3-D scheme is closer to the physical reality.

Fig. 6. The 4.47-�m DFG idler output power versus the product of the signal
power and the pump power (the pump power is kept at 0.48 W).The calculations
using 2-D and quasi-3-D schemes and the experimental result are compared.

The quasi-3-D still estimates the efficiency at almost twice of
the experimental value. Considering the nonideal situations in
the experiment, for example, irregular variation of the periodic
structure, deviation of the pump beam from the fundamental
Gaussian mode, reflection at the crystal facet, and spread of the
pump wavelength, the experimental conversion is inevitably less
than the ideal 3-D simulation.

IV. PHENOMENA DISCOVERED BYQUASI-3-D SCHEME

This section shows some phenomena discovered from the
quasi-3-D IFD-BPM. In the simulation, the initial beam profiles
of the pump and the signal waves are Gaussian and their waist
positions are assumed to be the same.

A. The Beam-Size Variation of the Idler Wave

The beam size is defined as the diameter of the cylindrical
beam at which the field amplitude decays to 1. Fig. 7(a)
and (b) shows that the beam-size variation of the idler beam
along the propagation distance is different from the pump and
the signal beams. When the waists of the signal and the pump
beams are focused at the crystal center, the beam size of the
idler beam monotonically increases, growing up slowly before
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TABLE I
COMPARISON OFPARAMETERS BETWEEN THESIMULATION AND THE EXPERIMENT. THE QPM PERIODSARE DIFFERENTBECAUSE OF THEDEVIATION OF

REFRACTIVE INDEX FROM THEACTUAL VALUE AS A RESULT OF THEINACCURACIES IN THESELLMEIER COEFFICIENTS ATLONG WAVELENGTH

(a)

(b)

Fig. 7. The beam sizes of the three beams for focusing position at (a) 10 000
and (b) 20 000�m.

the crystal center and then quickly increasing afterwards,
as shown in Fig. 7(a). The beam size of the idler wave is
influenced by two factors. First, the convergence or divergence
of the pump and the signal waves forces the idler wave to
behave accordingly. Second, the diffraction of the idler beam

itself always results in a beam divergence. Before the crystal
center, the effect of diffraction is partially canceled out by the
convergence of signal and pump beams, leading to the slow
increase of the beam size of the idler beam. After the crystal
center, both factors cause the idler beam to diverge, so the beam
size increases rapidly. If both the pump and the signal beams
are focused at the end of the crystal, the convergence effect
could be stronger than the diffraction effect. Then the beam
size of the idler beam decreases, as shown in Fig. 7(b), but not
as fast as the pump beam and the signal beam. With a proper
choice of the convergent signal and pump beams, both factors
could exactly cancel out one another to maintain a constant
beam size of the idler beam in the crystal.

B. Beam Profiles After Propagating for a Long Distance

The beam profiles of the pump, the signal, and the idler waves
at 50 000 m are shown in Fig. 8. This beam profiles are also
compared to a Gaussian shape. From Fig. 8, it is clear that
the beam profiles of the pump and the signal waves remain
nearly Gaussian, but the generated idler wave is not Gaussian.
Therefore, predictions from the plane-wave approximation or
Gaussian-beam assumption [6] should fail and numerical simu-
lation for beam propagation during the nonlinear conversion is
necessary.

C. Influence of the Beam Size and Waist Position

In the case of DFG in bulk-type PPLN, the output idler wave
power is known to be influenced by the beam size and the waist
position of the pump wave and the signal waves. Fig. 9 shows
the idler output power versus the propagation distance for dif-
ferent beam sizes. In this calculation, the beam waists are in the
middle of the 2-cm crystal. As shown in Fig. 9, the optimal beam
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(a)

(b)

(c)

Fig. 8. The beam profiles at 50 000�m and comparison to a Gaussian shape:
(a) the pump wave, (b) the signal wave, and (c) the idler wave. [Solid line:
simulated beam profile; dotted line: Gaussian shape. Both curves are almost
identical for (a) and (b).]

Fig. 9. The idler output power versus the propagation distance for different
waist beam sizes.

TABLE II
THE OPTIMAL w , L=Z (CRYSTAL LENGTH OVEROPTIMAL CONFOCAL

LENGTH), AND RANGE OF15% OFw (w THAT MAKES THE OUTPUT POWER

LESS THAN 15% OF THE OPTIMAL OUTPUT POWER) VERSUSTHREE

DIFFERENTPPLN LENGTHS

Fig. 10. The normalized idler wave power versus focusing positions of the
pump and the signal waves.

size at the waist is 34m. In this situation, the crystal length
is 2.18 times the confocal length ( ). For the
waist beam size between 25 and 45m, the idler output power
is still more than 95% of the optimal value. This indicates that
the waist beam size is not a critical issue for DFG in PPLN. The
calculation had been done for several crystal lengths. The re-
sults are shown in Table II, all demonstrating the insignificance
of waist-size variation.

The influence of the waist position is shown in Fig. 10. It is
also known that the larger the beam size is, the less significant
the waist position is. However, Fig. 10 shows that the waist posi-
tion is not important even for the optimal beam size. In addition,
when the beam is focused to a size as small as 20m, the dif-
ferent waist position still causes less than 15% of output power
reduction, indicating that the waist position does not have sig-
nificant influence as long as the beam waist is in the crystal.

V. CONCLUSION

In conclusion, a quasi-3-D IFD-BPM is developed to model
second-order nonlinear interaction in both waveguide-type and
bulk-type PPLNs. The quasi-3-D IFD-BPM takes into account
the beam divergence in both transverse directions. In the wave-
guide-type PPLN, because there is no beam divergence, the
conversion efficiency calculated by the 2-D IFD-BPM and the
quasi-3-D IFD-BPM is similar. For the bulk-type PPLN, the es-
timated conversion efficiency by the 2-D scheme is much larger
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than that predicted by the quasi-3-D scheme. The comparison
of the simulation to an experiment of DFG in bulk-type PPLN
clearly shows that the quasi-3-D scheme is closer to the exper-
iment. The quasi-3-D IFD-BPM also reveals some novel phe-
nomena in DFG, indicating that plane-wave and Gaussian-beam
assumptions are not sufficient for estimating the conversion and
beam propagation in second-order nonlinear devices.
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