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Quasi-3-D Beam-Propagation Method for Modeling
Nonlinear Wavelength Conversion

Shing Mou, Ching-Fuh LinSenior Member, IEEE, Member, OS#d Hsu-Feng Chou

Abstract—The two-dimensional (2-D) iterative finite dif- geometrical variations exist or the depletion of the pump wave
ference beam-propagation method (IFD-BPM) is modified is not negligible, precise analytical modeling of these devices
to model the cylindrically symmetric three-dimensional g jite difficult. As a result, numerical methods become neces-

(quasi-3-D) second-order nonlinear wavelength conversion .
in quasi-phase-matched condition. The study shows that the dif- S&Y for general and accurate analyses. The beam-propagation

ference between the 2-D and 3-D schemes is small for the guidedMethod (BPM) [19] is a powerful and flexible approach to
waves but large for the nonguided beams. The comparison with design and simulate optical devices. Applications of BPM to
experimental results shows that the quasi-3-D IFD-BPM is closer |inear devices had been studied extensively and extended to
to reality than the 2-D scheme. In addition, simulation using the devices with second-order nonlinear effects, mostly SHG. The

quasi-3-D IFD-BPM reveals that plane-wave and Gaussian-beam _. |ati is based h like fast Eourier t f
assumptions are not sufficient for estimating the nonlinear con- simUiaton s “DaseCson SCIEMes HIKE Iast Fourleriransiorm

version and beam propagation in second-order nonlinear devices. (FFT) [20] and finite-element (FE) [21]-[23], and finite-differ-
. o ence (FD) methods [24]-[30]. FFT-BPM is preferred less for
Index Terms—Difference frequency generation, finite-difference

beam-propagation method, periodic poled lithium niobate, quasi- ?ts Iovv_ eﬁipiency and accuracy. Its improvements are stiI_I under
phase-matched techniques. investigation [19], [31]. On the other hand, the comparison of
FD-BPM and FE-BPM makes the former more attractive due
to its simplicity of implementation.
To further improve the accuracy of FD-BPM in the case
UASI-PHASE-MATCHED (QPM) frequency conversionof nonlinear wavelength conversion, iterative finite-difference
[1], [2], using periodically poled ferroelectric crystals, ha8PM (IFD-BPM) was proposed [29], [30]. IFD-BPM was
various applications because of its versatile and efficiedliown to have good reliability, efficiency, and accuracy in com-
conversion abilities. QPM devices based on LiNbQiTaO;, parison with other FD-BPMs. Such IFD-BPM was developed
and KTP [3]-[5] hold promise for the generation of a widén two-dimensional (2-D) cases before for lucid manifestation
range of optical frequencies that are otherwise difficult to obtaiaf comparisons among those BPM algorithms. However, the
For example, the QPM second harmonic generation (SHG) D model does not take into account the beam divergence in
provides coherent light sources in the visible region [7]. Oth&oth transverse directions. When the propagation beam is not
QPM second-order nonlinear effects like sum frequency gegenfined in the waveguide, the 2-D model overestimates the
eration (SFG) and difference frequency generation (DFG) arenlinear conversion. In order to make the simulation close to
useful in frequency tripling and quadrupling [8], mid-infraredhe real situation in general, three-dimensional (3-D) consid-
(IR) generation [9], [10], and wavelength-division multiplexingeration becomes necessary. Nonetheless, the direct extension
(WDM) [11]. Large nonlinear phase shifts induced by QPMf IFD-BPM to the 3-D case by taking finite difference in both
second-order nonlinear effect [12] have also been proposedransverse directions squares the total number of calculations
realize all-optical switching [13] and short-pulse compressida2], leading to intolerably large computation time. Therefore,
[14]. this paper proposes a scheme to handle the 3-D case without
The advantage of QPM techniques over birefrinncreasing calculation number. For propagation beams with
gent-phase-matched techniques is the possibility eicular or elliptical profiles, the 3-D case can be transferred
phase-match the full transparency range of the material2-D case as long as the singularity at the origin is properly
and the availability of large nonlinear coefficients [1] througinanipulated. Because most pump beams used for parametric
the engineerable periodic structure. To design and enging@eraction have a circular profile [33], this scheme is practi-
those devices, it is important to understand the functions @dlly useful.
these devices in advance, so theoretical models are importanthe simulation is performed in the case of the DFG in peri-
tools. However, analytical models usually require many approgdic poled lithium niobate (PPLN) for both the bulk-type and
imations like the nondepletion of the pump wave or plane watlee waveguide-type materials. The extension of this scheme to
assumption [6], [15]-[18]. In addition, when large or irregulagther second-order nonlinear interaction is straightforward and
so will not be elaborated. The comparison between the 2-D case
and the 3-D case of circular beam profiles, named quasi-3-D,
Manuscript received March 3, 2000; revised December 29, 2000. is shown. This paper is organized as follows. After the intro-
The authors are with the Department of Electrical Engineering and Gradugfgction, the quasi-3-D IFD-BPM is formulated and singularity
Institute of Electro-Optical Engineering, National Taiwan University, Taipei L . . .
Taiwan, R.O.C. at origin is solved in Section Il. Then comparison between the
Publisher Item Identifier S 0733-8724(01)03638-6. 2-D and quasi-3-D schemes is made in Section Ill. In Section IV,
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some phenomena in DFG discovered by the quasi-3-D schefterefore, the two-dimensional transverse Laplacian is reduced
are presented. These phenomena are different from predictioms one-dimensional operator. However, the first term on the

by previous methods. Section V gives the conclusion. right-hand side of (4) has singularity at the origin, which re-
quires special treatments for the finite-difference method and
II. FORMULATION will be handled later in this section.

P i fliaht in th fth d-ord In the finite-difference scheme, the spatial domain is divided
__rropagation otlight in the presence otn€ Second-order NQfis, o q) regions by placing a grid over the domain. A uni-
linear polarization can be described by

form grid is used in this work. The step sizes alongdher )

PE 2P and thez directions are denoted ¥z (or Ar) and Az with
V2E = jiog, 2 TH 5z (1a) m ands representing the indexes along these two directions, re-
spectively. For exampld;™: ® represents the electric field at the
P=¢, (X(l)E + X(Q)EE> (1b) point(r, z) = (m- Az, s- Az) (or (z, r) = (m-Ar, s- Az)).
For concise expressions, the following finite difference opera-
where tors are defined:
E andP electric field and the polarization;
x™ andx® linear and the second-order susceptibilities; 7, E7* = 1 L(ET"“:S S
€, andyi, permittivity and permeability in vacuum. ’ Ar? [2m> ’

Second-order nonlinear effects are three-photon processes, so
there are in general three different frequencies involved. On the
other hand, the second-order nonlinear interaction is also polar-

+ (E;n-l—l,s _ 2Eirn,s +E;n—l,5) (Sa)

ization dependent, so the susceptibilities have in general atensprp™” = % (E;"—ly T 2B 4 EZ?"+1: ),
character. For the simplicity of mathematical formulas, proper AJF
tensor elements of the linear and the second-order susceptibili- =123 (5h)
ties an_d the polarization of electric fields for three different fre- L = /fff(ﬂ;n’ s ﬁf), i=1,23 (5¢)
guencies have already been assumed. ’

The total electric field composed of three monochromatic F[™° =k2,x?" "¢ 0-aksaz i=1,2 (5d)
waves can be expressed in the phasor notation as s AL AL

p p o N (5e)

E = 1 {E . j(wlt—kolﬂlz) E . j(wzt—kozﬁzz)
2 1($’ 7)6 + 2($’ 7)6 whereAk = ]Cogﬁg — ko1 — kooTio for 713 =1+ )(51), 7=

(Wt —koaTsz) 1, 2, 3. With these definitions, the 2-D and quasi-3-D schemes
+ Es(w, z)e + C'C'} 2) could be better described.
In the IFD-BPM [29], the resulting difference equations in-
where | d ined i in th
angular frequencies of the three waves a \@p ve un etermined non Inear source terms In the next step, so
Wi, w2, W3 Nerative schemes are required to solve this problem [34]-[36].

w3 = w1 + ws for energy conservation;
oty koo, ko3 wavevectors in vacuum;
1, N2, T3 reference indexes.
Applying paraxial approximation, substituting (2) into (1) an
equating terms with the same frequency yields

In the beginning, one set of solutions is obtained by the RA
scheme or other methods and denotedisy s+1 \hich is

éhe initial guess of the electric fields for the next steps. The way
of the initial guess influences the rate of convergence, but the
difference is minor. An iterative algorithm described in the fol-

) OF lowing is used for simulation:
2jk01ﬁ1 871 Iv%El‘f‘kgl(ﬂ%—ﬁ%)El
) . 2jkolﬁl m, s+1( 1, S
+2k2 xP eI ARz B p (3a) Ao (E1 - E )
. _ OFE; 2 2 2 _o 1 m,s+1/2 m, s m, s+1(%
2jko3m3 0 =V Es+k,(ns—n3) =3 [(Lz + Lo )(El + B )
+2k2,x P e 7B By (3b) + (F{'”SEQ%SE;",s*
. —8E2_2 2 2 2 e 1)
2Jk02n2 9z —VTE2+I€03(713_713) + Flrn,,s—l—lEgn,s—l—l( 1>E;n,s—|—1( B ):| (Ga.)

+2k2,x P eI ARz pop (3c)

2jk02ﬁ2 (E.rn,,s—l—l(t) Ern,,s)
-t

2
For 2-D scheme, the transverse Laplacd.E is simply Az
described asd*E/dz?. For the 3-D case, it becomes I%[(LiJrLZ;’S*l/Q) (E;"’SJFE;’”S*M)
(1/r)(OE/0r) + (O*E[0r?) + (1/r?)(02E/9¢?). If the
beam is cylindrically symmetridZ is ¢-independent; then + (FQ’"’ SETVCE™ s"
1 0E; O%E; (-1 (1)
2 Ez — = z 1' 4 m, s+1 pym, s+1 m, s+1
Vi r Or or? “) + 5 Es Ey )} (6b)
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25 ko373 (E"”’ s+10 o, s) Similar equations can also be derived foy,, > andE,.,_ 3.
Az ® s These equations are used to replace (3a)—(3c). Because the di-
_1 [(L L s+1/2) (Ern,s I Enl,s—l—l(t)) vision. by zero is now removed, the corr_esponding diff_erence
2 [T el 3 3 equations similar to (6a)—(6c) can be obtained for numerical cal-

culation at the origin.
For concise expressions, a new finite-difference operator is
defined

M, S M, S N, §
+(F3 El E2

1 10— 1G-1)
+ Fgrn,s—l— EIn,s—l— E;n,s—l— ; (GC)

t=x (or)r, L,:2D; L, Quasi-3-D LoE;} = 2

(Ar)?

(E° —EX®), i=1,23. (10)

wheret is the iteration count an@® is thetth iteration field. _ o _
In the 2-D scheme, we ude, expression; and in the quasi-3-D With other operators defined in (5¢)—(5e), the quasi-3-D IFD

scheme, we usé, expression. around the origin can be written as

In the quasi-3-D IFD-BPM, there is singularity at the origin, 2l 7 o
which is not encountered in the 2-D IFD-BPM. To avoid the % (Ejjil - ij,l)
singularity problem for numerical calculation, Gauss’ theorem o
[37] is applied. From Gauss’ theorem — %Lro (Ef + Ef+1(”)

§-d7: V-‘ida 0,541/2 [ s s 1®
/Q /A + % |:Lol / (Ea'v'u, 1 + Eajl},l )
with €2 being a closed loop and being the area inside. There, 05 s .-
placement ol by V, E changes the previous formula to + (Fl’ B, 3w, 2
/Q V. E-dl = A V2 Eda. + B T Y )} (11a)
Then integrating equation (3) makes the Laplacian replaced by 2jk .7, O ps
V | E. With the ¢-independencey | E = (JE/9r)7, so the Az ( ave,2 avvw)
singularity at origin is removed. Therefore, the (7) is used for L . 1D
the origin point =35 Lvo (EQ + E; )
oF ¢
ko1 it L Ja 41 |:L0,25+1/2 (Es’ Ly +EST.1(2>)
4 aZ 2 2 av, avv,
w 0, s s s*
= / VJ_El -dl +/ (/ﬂgl(ﬂ%—ﬁ%)El + (FQ Ea'v'v,3Ea'v'v,l
Q A
) 0, s+1 s (t—1) s (t—1)*
+ 2k @i AR B B da (7) + B RS BN )} (11b)

where A is a small circular area centered at origin &nhés the 2jko3n3 ( 1O s )
closed loop ofA. Az av,3 avv, 3

The corresponding numerical method for the calculation at
the origin is as follows. Considering the condition around the
origin (m = 0), a small circular area centeredrat 0 (m = 0)

sy el®
= $ Lo (B3 + E5H)

with its radiusAr is used. The radius of the small area could +3 [LSéSH/Q (Ej,w?g + Eri?;},(:;)

be any value, but here the step sixe along ther direction is 0

used as the radius. Then, an “area average value” of the electric + (Fg B 1B, 2

field (E..v) is substituted into the area integration of (7). The 1 b

“area average value” is defined in the following. Assume that + BT ESN BN, )} (11c)

C=E%S, D= ELS andf(r) = C — (r/Ar)(C — D)

1 9 wheret is the iteration count and@® is thetth iteration field.

Boaw = (A2 (r) x 2mrdr = ;03D (8) EO can be derived by various means. Equations (11a)—(11c)
0

3
) o ) are the finite-difference equations used for the origin.
Do the integration in (7) with a small aredAr)?. Then

20Fqay 1 [ll. COMPARISON OFQUASI-3-D AND 2-D SCHEMES
z

1 Ar

2jk01n_17r(A7‘)
In the simulation, the wavelengths and refractive indexes of
_ <27TA7, %) +r(Ar)? the pump, the signal, and the idler waves are 0.8a941.064

ar pm, 4.47um, 2.17157, 2.1575, and 2.038 14, respectively. The
5 9 o period of the QPM grating is 23.1#m, and the nonlinear coef-
: [km(”l — 1) Faav,1 ficient daz is 22 pm/V. The initial power levels of the pump, the
) signal, and the idler waves are 0.48, 1, and 0 W, respectively.
+ 253 x P eI B S ELL, 2} . (9)  The crystal length is 2 cm withhz = 1 zm.

Authorized licensed use limited to: National Taiwan University. Downloaded on February 8, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



MOU et al. QUASI-3-D BEAM-PROPAGATION METHOD 775

o~~~
o A
_qg) 6pm 20+
£ < > Quasi-3D
g n, —_,—————-\— § 150 e 2D
= n. —
g £
ou -
b5 g 10
= S
= L
> o 5
0 x (Lateral distance)
0 L
@ . . , . .
0 5000 10000 15000 20000
“y Propagation Distance (um)
Fig. 2. Idler wave power versus propagation distance in the waveguide-type
PPLN, calculated by 2-D and quasi-3-D schemes, respectively.
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Fig. 1. The diagrams of the cross-section of two waveguides. (a) The
refractive-index distribution for 2-D IFD. (b) The cross section of the

waveguide for 2-D IFD (the refractive index and electric field are assumed
uniform along y direction). (c) The cross section of the waveguide for

quasi-3-D IFD.

First, the QPM DFG in a waveguide-type PPLN is simu-
lated. The index differencé&n = n, — n. = 0.01 is a typ-
ical value for a Ti-diffused waveguide on LiNBOIn the 2-D
scheme, the width of the waveguide is assumed tojom6The
guided modes of the pump and the signal waves then haverd: 4. The pump wave electric field profile versus propagation distance,
most the same full-width half-maximum (FWHM) width of 5.94calculated by 2-D and quasi-3-D schemes, respectively.

#m. In the second transverse direction, the field is assumed to

uniformly distribute over a range of this FWHM width. In thethe waves well confined in the waveguide, both schemes predict
quasi-3-D scheme, a cylindrical waveguide withu diam- very similar results.

eter is considered. The diagrams of the cross sections of twd&Gecond, the QPM-DFG in a bulk-type PPLN is simulated.
waveguides are shown in Fig. 1. The computation window &he beam shapes of the pump wave and the signal wave are as-
100.:m with the transverse grid sizez(Ar) = 0.5 pm. Fig. 2 sumed to be Gaussian at the entry facet. The@bbeam waist
shows the idler power calculated by quasi-3-D and 2-D, respégs{ocated at the middle of the crystal. The computing window
tively, versus the propagation distance. The figure shows tha#00.m. Fig. 3 shows the idler powers calculated by the 2-D
the 2-D scheme predicts the growing rate of idler power ongcheme and the quasi-3-D scheme, respectively, versus the prop-
slightly larger than the 3-D scheme. At the exit facet of the 2-cagation distance. It can be seen that the 2-D scheme predicts a
PPLN, the conversion efficiency is 22.5% and 18.2% for the 2-uch larger growing rate of the idler power. At the exit facet, the
scheme and the quasi-3-D scheme, respectively. Therefore,itber power predicted by the 2-D scheme is 3.8 times the power

Authorized licensed use limited to: National Taiwan University. Downloaded on February 8, 2009 at 22:55 from IEEE Xplore. Restrictions apply.



776 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 19, NO. 5, MAY 2001

E Narrow i
i stripe Nd:YAG
: amplifier E laser
b 5 0
i Grating | =8 cm
: ] DFG  InSb
; : detector
B v N
i Tapered ;  Far aday \ .
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Fig. 5. The experimental arrangement used in [10] for comparison with our simulation.

predicted by the quasi-3-D scheme. Because the 3-D scheme 1.0 T T T . .

takes into account the beam divergence in both transverse direc- * 2D simulation _

tions, the intensity decreases rapidly, as shown in Fig. 4. This g4 * Quasi-3D simulation ot i
leads to reduced conversion efficiency. The 2-D scheme may Experimemtal data fitline = " S
also simulate the divergence in both transverse directions if the 064 ‘ 02’53 ::Wg:\\llvvz
field distribution along the second transverse direction is varied « ’ /N

according to the beam expansion. However, because the actual
beam size at FWHM is still not known before it is calculated,

4.47 pm DFG power (m
s 2

such estimation is difficult. In comparison, the consideration e
of beam divergence for both transverse directions in quasi-3-D R T
scheme is very straightforward. s 0.15 mW/cmW?2
. 0.0 . : T : .
The two schemes are also compared to an experiment [10], 0.0 0.5 1.0 15 2.0 2.5 3.0
which has the experimental arrangement shown in Fig. 5. The PP, (W)

Nd: YAG laser beam(A> = 1064 nm) is combined with the

begm from a t_unable eXt_emal'C""V'ty semiconductor |@$g)’_ Fig. 6. The 4.47xm DFG idler output power versus the product of the signal
using a dichroic beamsplitter. The compound external cavity gdwer and the pump power (the pump power is kept at 0.48 W).The calculations
the semiconductor laser consists of a GaAlAs tapered stripe a#$i0g 2-D and quasi-3-D schemes and the experimental result are compared.
plifier with a 1304:m output aperture and a peak gain near 855 _ _ _ o _

nm, a diffraction grating for tuning, and a single stripe semicon- The quasi-3-D still estimates the efficiency at almost twice of
ductor amplifier. The laser threshold occurs at a tapered ampiie experimental value. Considering the nonideal situations in
fier of I = 1.1 A, and the output power is 820 mWAt= 2.0 A the experiment, for example, irregular variation of the periodic
with 0.5 W transmitted to the QPM crystal. The pump beams asgucture, deviation of the pump beam from the fundamental
focused by anf = & cm lens, producing a 28m FWHM beam Gaussian mode, reflection at the crystal facet, and spread of the
waist o = 25 pm) at the center of a 24pm-thick 6-mm-long PUMpP wavelength, the experimental conversion is inevitably less
bulk field poled, QPM LiNbQ crystal. The z-cut crystals, with than the ideal 3-D simulation.

a patterned electrode on the side, were field poled with the
QPM domain period of\ = 22.6 zm. IV. PHENOMENA DISCOVERED BY QUASI-3-D SCHEME

The comparison of the experiment and the simulation is This section shows some phenomena discovered from the
shown in Fig. 6. The DFG power at = 4.47 xm, generated quasi-3-D IFD-BPM. In the simulation, the initial beam profiles
by the tunable semiconductor laser ) = 859.4 nm, is of the pump and the signal waves are Gaussian and their waist
shown as a function of the pump power produgtP’s. In positions are assumed to be the same.
this experiment, the crystal length is 6 mm. The simulation is . e
thus changed for this length. Table | shows the comparisbn 1he Beam-Size Variation of the Idler Wave
between the parameters used in the simulation and the expefFhe beam size is defined as the diameter of the cylindrical
iment. The normalized nonlinear conversion efficiencies dfeam at which the field amplitude decays tpelFig. 7(a)
the 2-D scheme, quasi-3-D scheme, and the experiment ang (b) shows that the beam-size variation of the idler beam
0.059, 0.0292, and 0.015%/Wcm. The normalized nonlinealong the propagation distance is different from the pump and
conversion efficiency of the quasi-3-D scheme is closer to tiiee signal beams. When the waists of the signal and the pump
experimental value than the 2-D scheme. This is reasonablEams are focused at the crystal center, the beam size of the
because the quasi-3-D scheme is closer to the physical realitgller beam monotonically increases, growing up slowly before
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TABLE |
COMPARISON OFPARAMETERS BETWEEN THE SIMULATION AND THE EXPERIMENT. THE QPM RERIODS ARE DIFFERENT BECAUSE OF THEDEVIATION OF
REFRACTIVE INDEX FROM THE ACTUAL VALUE AS A RESULT OF THEINACCURACIES IN THE SELLMEIER COEFFICIENTS ATLONG WAVELENGTH

Wavelength
B
a(um) | aa(pm) | a3(pm)
Experiment 447 1.064 | 0.8594
Simulation 447 1.064 | 0.8594
Crystal ds3 QPM  {Pump beams
Length period wo (Lm)
Experiment] 6 mm - 22.83um 25
Simulation| 6 mm 22 23.17 um 25
Wavelength Refractive Index.
i um] -:-.?f:.:.:'_'_"'-'] dx{pum) il nk .}
Experiment 447 1.064 08504 | . = -
Sirmneladion 5 | _5 5 _I_E;lf:ﬂ.-ﬂ]-'? 2157901217157
7 E‘.“::.-':inai da | QPM Fump beams
| Length period | wilum)
Experimmer 5 Fum - 2 8ipm 15
Simulation| 6 mm 1 22 |23.17um 15

100 . T . T T
90 —a— Idler Wave /
= 80 —a— Pump Wave
é 700 , —— Signal Wave /./ .
% 604 A\. / ./ A
= sl .\ o Ve ‘/
§ 40 BN .?A/
23] 30 q ,\xk‘/‘ %‘
20 T T T T "
0 5000 10000 15000 20000
Propagation Distance {(um)
(@
140 T T .
. —=— Pump wave
120} \‘\. —e— Signal wave
§ 100 ", N —a— |dler wave
E sof :\_\.
[ A
2 60} I
& "
401 s.\l\.
20}
0 5000 10000 15000 20000

Propagation Distance (um)
(b)

itself always results in a beam divergence. Before the crystal
center, the effect of diffraction is partially canceled out by the
convergence of signal and pump beams, leading to the slow
increase of the beam size of the idler beam. After the crystal
center, both factors cause the idler beam to diverge, so the beam
size increases rapidly. If both the pump and the signal beams
are focused at the end of the crystal, the convergence effect
could be stronger than the diffraction effect. Then the beam
size of the idler beam decreases, as shown in Fig. 7(b), but not
as fast as the pump beam and the signal beam. With a proper
choice of the convergent signal and pump beams, both factors
could exactly cancel out one another to maintain a constant
beam size of the idler beam in the crystal.

B. Beam Profiles After Propagating for a Long Distance

The beam profiles of the pump, the signal, and the idler waves
at 50 000um are shown in Fig. 8. This beam profiles are also
compared to a Gaussian shape. From Fig. 8, it is clear that
the beam profiles of the pump and the signal waves remain
nearly Gaussian, but the generated idler wave is not Gaussian.
Therefore, predictions from the plane-wave approximation or
Gaussian-beam assumption [6] should fail and numerical simu-
lation for beam propagation during the nonlinear conversion is
necessary.

Fig. 7. The beam sizes of the three beams for focusing position at (a) 10 000

and (b) 2000Q:m.

C. Influence of the Beam Size and Waist Position
In the case of DFG in bulk-type PPLN, the output idler wave

the crystal center and then quickly increasing afterwardsower is known to be influenced by the beam size and the waist
as shown in Fig. 7(a). The beam size of the idler wave psition of the pump wave and the signal waves. Fig. 9 shows
influenced by two factors. First, the convergence or divergentte idler output power versus the propagation distance for dif-
of the pump and the signal waves forces the idler wave terent beam sizes. In this calculation, the beam waists are in the
behave accordingly. Second, the diffraction of the idler beamiddle of the 2-cm crystal. As shown in Fig. 9, the optimal beam
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Fig. 8. The beam profiles at 50 0gdn and comparison to a Gaussian shape:
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TABLE 1
THE OPTIMAL wq, L/Zy (CRYSTAL LENGTH OVER OPTIMAL CONFOCAL
LENGTH), AND RANGE OF 15% OF wq (wo THAT MAKES THE OUTPUT POWER
LESS THAN 15% CF THE OPTIMAL OUTPUT POWER) VERSUS THREE
DIFFERENT PPLN LENGTHS

PPLN | Optimal | L/Z, 15% OFF
Length Wo Wo(pum)
(em) | (um) Left | Right
1 24 2.1870 14 41
2 34 2.1794 19 59
3.8 46 22622 26 81
5 53 2.2423 30 92
1.0 ' o==——‘~a¢§ R
0.9- :/ —e— Minimal waist = 20 um \: ’
& —s— Minimal waist = 34 pm
§ 0.8+ —a— Minimal waist = 60 um ]
B
-§ 0.7 ]
s
0.6 4
0.5 T .

0 5000 10000 15000 20000
Focus Position (um)

Fig. 10. The normalized idler wave power versus focusing positions of the
pump and the signal waves.

size at the waist is 34m. In this situation, the crystal length

is 2.18 times the confocal length (Zo = ww3/)\). For the
waist beam size between 25 and 4%, the idler output power

is still more than 95% of the optimal value. This indicates that
the waist beam size is not a critical issue for DFG in PPLN. The
calculation had been done for several crystal lengths. The re-
sults are shown in Table II, all demonstrating the insignificance
Of waist-size variation.

(a) the pump wave, (b) the signal wave, and (c) the idler wave. [Solid line: The influence of the waist position is shown in Fig. 10. It is
simulated beam profile; dotted line: Gaussian shape. Both curves are almgiio known that the larger the beam size is, the less significant

identical for (a) and (b).]

0.30 - - Beam waist = 15(um)
- Beam waist = 25(um)
§ 0.251 —— Beam waist = 34(um)
E Beam waist = 45(um)
~ 0.204 ... Beam waist = 60(um)
-
2 o5y
Do_ 0.10
—
@D 0.05
z
0.00-

0 5000 10000 15000 20000
Propagation Distance (um)

the waist position is. However, Fig. 10 shows that the waist posi-
tion is not important even for the optimal beam size. In addition,
when the beam is focused to a size as small agrapthe dif-
ferent waist position still causes less than 15% of output power
reduction, indicating that the waist position does not have sig-
nificant influence as long as the beam waist is in the crystal.

V. CONCLUSION

In conclusion, a quasi-3-D IFD-BPM is developed to model
second-order nonlinear interaction in both waveguide-type and
bulk-type PPLNs. The quasi-3-D IFD-BPM takes into account
the beam divergence in both transverse directions. In the wave-
guide-type PPLN, because there is no beam divergence, the
conversion efficiency calculated by the 2-D IFD-BPM and the

Fig. 9. The idler output power versus the propagation distance for diﬁereqpaSiB'D IFD-BPM is similar. For the bulk-type PPLN, the es-

waist beam sizes.

timated conversion efficiency by the 2-D scheme is much larger
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than that predicted by the quasi-3-D scheme. The comparisqmo]
of the simulation to an experiment of DFG in bulk-type PPLN
clearly shows that the quasi-3-D scheme is closer to the expe[rz-o]
iment. The quasi-3-D IFD-BPM also reveals some novel phe-
nomena in DFG, indicating that plane-wave and Gaussian-beal#!]
assumptions are not sufficient for estimating the conversion and

beam propagation in second-order nonlinear devices.
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