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We propose a novel image-recovery method using the covariance matrix of the red–green–blue (R–G–B) color
histogram and tensor theories. The image-recovery method is called the color histogram normalization algo-
rithm. It is known that the color histograms of an image taken under varied illuminations are related by a
general affine transformation of the R–G–B coordinates when the illumination is changed. We propose a sim-
plified affine model for application with illumination variation. This simplified affine model considers the ef-
fects of only three basic forms of distortion: translation, scaling, and rotation. According to this principle, we
can estimate the affine transformation matrix necessary to recover images whose color distributions are varied
as a result of illumination changes. We compare the normalized color histogram of the standard image with
that of the tested image. By performing some operations of simple linear algebra, we can estimate the matrix
of the affine transformation between two images under different illuminations. To demonstrate the perfor-
mance of the proposed algorithm, we divide the experiments into two parts: computer-simulated images and
real images corresponding to illumination changes. Simulation results show that the proposed algorithm is
effective for both types of images. We also explain the noise-sensitive skew-rotation estimation that exists in
the general affine model and demonstrate that the proposed simplified affine model without the use of skew
rotation is better than the general affine model for such applications. © 2001 Optical Society of America

OCIS codes: 330.1690, 100.3020, 100.2960.
1. INTRODUCTION
In recent years the role of color is becoming important in
computer vision, as many researchers have used color in-
formation to recognize objects.1,2 The color of an object
varies with changes in illumination source, illumination
geometry, viewing angle, and miscellaneous sensor
parameters.3 But in pattern-recognition applications, re-
searchers usually use the recovery of the color of the ob-
ject under standard illumination as a template for recog-
nition. The phenomenon of steady spectral color
response under different illuminations is called color
constancy.4 In other words, the color constancy problem
consists of removing the illumination-source color to ob-
tain the object’s pure surface-reflectance color.5 Color
constancy algorithms can play a major role in image re-
trieval from image databases.

Early research on computational color constancy cen-
tered on recovering an illumination-invariant surface de-
scription at each image location. Two common assump-
tions in this approach are that the spectral reflectance of
the surface is given or that the weighted average of the
spectral reflectance in the scene is known.6 Another
common assumption is that highlights of the dielectric
materials can be observed, which contain illumination
spectral properties illumination that are useful in color
constancy work.7,8 Although worth mentioning, these as-
sumptions are not valid for all situations. Consequently,
Maloney and Wandell proposed the first computational
color constancy algorithm that did not require the above
assumptions.4 Using the linear surface-reflectance
model, they computed color-constant surface descriptors
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for cases in which photoreceptors have more classes than
degrees of freedom. Their results are significant for sub-
sequent research on color constancy.

The color image histogram distribution of an object has
been used in pattern recognition for many years. For ex-
ample, multiband images that carry a large quantity of
information about a scene are commonly used in remote-
sensing applications. In addition, Swain and Ballard
proposed an algorithm called color indexing,1 which uses
the color histogram intersection of the object to compare
observed histograms of many different kinds of objects di-
rectly from a large database over a range of conditions.
The technique does not use any geometric information of
objects, but color distributions are often sensitive to illu-
mination changes. That is, the method is feasible only in
environments where illumination is not allowed to vary
much.

Later, Funt and Finlayson introduced a new algorithm
called color-constant color indexing2 to approach the
above-mentioned problem. The algorithm matches the
distributions of color ratios in an illumination-varying en-
vironment. They proved that under the coefficient model
for sensor response, the distributions of color ratios are il-
lumination invariant. Although the method performs far
better than color indexing when illumination color is al-
lowed to change, it still has significant restrictions. For
example, color ratios are often sensitive to low-intensity
noise levels.

Slater and Healey developed a color neighborhood rep-
resentation for illumination-invariant matching.9 How-
ever, using such the representation requires a suitable
2001 Optical Society of America
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search-and-projection method for indexing. The draw-
back of the algorithm is that it requires a large amount of
storage space and expensive comparisons for representing
objects by using distributions or definite structure. Fur-
ther, Healey and Slater tried to select a vector of six color
distribution invariants to recognize objects on a medium-
sized database.10–12 These color distribution invariants
have been demonstrated and used as a feature for image
retrieval.

In this paper we propose a novel algorithm that uses
color histogram normalization to recover images. Using
the statistical properties of color distributions to normal-
ize the color histogram of images, we then derive, by basic
linear algebra, the affine transform corresponding to the
illumination change. This paper is organized as follows.
In Section 2 we review the modeling of color representa-
tion. The proposed algorithms for image recovery are de-
scribed in Section 3. In Section 4 we present the experi-
mental results and discussion of the real natural images.
Our conclusions are presented in Section 5.

2. MODELING COLOR REPRESENTATION
From Refs. 9–11 we know that n sensor measurements
are observed by a color imaging system at each image lo-
cation (x, y), given by

r i~x, y ! 5 E
l
l~l!s~x, y, l!fi~l!dl, 1 < i < n,

(1)

where l indicates wavelength, l(l) is the spectral power
distribution of the scene illumination, s(x, y, l) is the
spectral reflectance of the surface, and fi(l) is the spec-
tral sensitivity of the ith sensor class; n is usually 3, and
f1(l), f2(l), and f3(l) represent the spectral response of
the red, green, and blue sensing elements for a red–
green–blue (R–G–B) color system. The integration is
over the entire range of visible wavelengths.

However, the surface reflectance s(x, y, l) can be ap-
proximated by the weighted sum of a series of fixed basis
functions,

s~x, y, l! 5 (
j51

m

s j~x, y !Sj~l!, (2)

where Sj(l) are a set of m fixed basis functions and
s j(x, y) are the surface weighting coefficients correspond-
ing to location. When the effect of human visual sensi-
tivity is included, the linear model approximations pro-
vide excellent fits of measure (at 0.9890 accuracy) to the
empirical data for m > 3,13,14 and such approximations
have been applied extensively.4,15,16 Combining Eqs. (1)
and (2), we can find that

r~x, y ! 5 As~x, y !, (3)

where r(x, y) 5 @r1(x, y), r2(x, y),..., rn(x, y)#T, de-
notes the column vector of sensor measurements,
s(x, y) 5 @ s1(x, y), s2(x, y),..., sm(x, y)#T denotes the
column vector of the fixed basis function weights, and A is
an n 3 m matrix with entries
Aij 5 E l~l!Sj~l!fi~l!dl. (4)

Obviously, A depends on the light spectrum wavelength l
but is independent of the image location (x, y). In most
cases, m is equal to n.

Consider color images taken of the same planar surface
under different illuminations l(l) and l̃(l); then the two
images are represented as

r~x, y ! 5 As~x, y !, r̃~x, y ! 5 Ãs~x, y !. (5)

Assuming that A and Ã corresponding to l(l) and l̃(l)
are nonsingular matrices, one can then show the relation-
ship between the two images by using Eq. (5),

r̃~x, y ! 5 Mr~x, y !, (6)

where M 5 ÃA21.
Let H(r) and H( r̃) be n-dimensional color histograms

corresponding to the same surface imaged under different
illuminations l(l) and l̃(l). From Eq. (6) we can find
that

H~ r̃ ! 5 H~Mr!. (7)

Thus the three-dimensional (3D) color histograms are re-
lated by an affine transformation of the coordinates under
changing illumination. Note that Eq. (7) is correct only if
no reduction by quantization is done.

3. THE PROPOSED ALGORITHM FOR
IMAGE RECOVERY
We describe a method to normalize a color histogram with
respect to translation, scaling, and rotation in the 3D
color spaces, which result from a change in illumination
color. We must emphasize that although a general affine
transformation can be separated into five basic forms of
distortion—translation, scaling, rotation, skew, and
shearing,17—we claim that the effects of translation, scal-
ing, and rotation dominate the distortion of the color his-
togram and that the effects of skew and shearing can be
neglected.

Why do we make this claim? Because in considering
the distorted color histogram resulting from a change in
illumination color, we find that the histogram’s shape
does not change very much that it represents there is
little effect of skew and shearing. On the other hand,
when the image is taken under lighter illuminant the
range of the color histogram is larger, indicating an effect
of scaling. Moreover, with a green illuminant, the posi-
tion and shape of the distribution are deflected slightly to-
ward the G axis, indicating translation and rotation ef-
fects. Furthermore, extensive experimental results
demonstrate that the average peak signal-to-noise ratio
(PSNR) is quite low when the color histogram normaliza-
tion algorithm is considered in the general affine model;
this result is not as good as the result from the simplified
affine model with respect only to translation, scaling, and
rotation. Thus we can come to the reasonable conclusion
that the general affine model is not appropriate for prac-
tical application of the distorted color histogram resulting
from a change in illumination color. Therefore we pro-
pose a simplified affine model with respect to translation,
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scaling, and rotation for such applications. A detailed ex-
planation and proof from actual experiments will be given
in Section 4.

Note that there have been two previous approaches to
rotation for color histograms: (1) color rotation in RGB
and (2) the adaptation of the whitening transform.18 In
these approaches it was proposed that the color vectors
are expected on the gray axis in the color system; if it they
are not there, the algorithm will be rotated to this axis.
However, we want to emphasize that the ‘‘rotation’’ of our
proposed algorithm is performed in order to transform the
color histogram into a normalized form; the meaning of
rotation is quite different from that in Ref. 18.

A. Color (R–G–B) Histogram Normalization Algorithm
A normalization algorithm has been developed that trans-
forms a two-dimensional (2D) pattern into its normalized
form such that it is invariant to translation, scaling, rota-
tion, and skew.19 In this section we extend the normal-
ization algorithm to 3D color histograms in R-G-B color
space. Here we will consider only three basic forms of
the color histogram’s distortion: translation, rotation,
and scaling.

1. Feature Extraction
Let p(r, g, b) denote the color histogram’s signature at
the location (r, g, b) in 3D color space. For example,

p~r, g, b ! 5 H 1 if the color exists

0 if the color does not exist
. (8)

The probability density function f(r, g, b) can be found
as

f~r, g, b ! 5
p~r, g, b !

E
V

p~r, g, b !dV

, (9)

where V is the 3D color space that we consider and dV is
an infinitesimal volume around (r, g, b). Hence the
mean vector c for the color histogram center is

c 5 @Cr Cg Cb#T, (10)

Cr 5 E
V

rf~r, g, b !dV, (11)

Cg 5 E
V

gf~r, g, b !dV, (12)

Cb 5 E
V

bf~r, g, b !dV, (13)

and, letting m ijk denote the joint central moment, we get

m ijk 5 E@~r 2 Cr!
i~ g 2 Cg!j~b 2 Cb!k#

5 E
V

~r 2 Cr!
i~ g 2 Cg!j~b 2 Cb!kf~r, g, b !dV.

(14)

So we can define the 3D joint central-moments covariance
matrix M as
M 5 F m200 m110 m101

m110 m020 m011

m101 m011 m002

G . (15)

Similarly to the 2D cases in Ref. 19 in the object space, we
may formulate all the distortions by a general affine
transformation in 3D color space:

S u
v
w
D 5 F a11 a12 a13

a21 a22 a23

a31 a32 a33

G S r
g
b
D 1 S b1

b2

b3

D , (16)

which written in vector form is

u 5 Ar 1 b. (17)

Worth mentioning is that the well-defined covariance ma-
trix M also satisfies theorem 1 in Ref. 19, in either 2D or
3D cases. We describe it as theorem 1 here.

Theorem 1: Let M be the covariance matrix of the
original color histogram and M8 be the covariance matrix
of the affine color histogram in 3D color spaces. Then
matrices M and M8 are related as

M8 5 AMAT (18)

where

A 5 F a11 a12 a13

a21 a22 a23

a31 a32 a33

G . (19)

2. Algorithm of Normalization That Will Not Deform
the Color Histogram’s Shape
Now we describe how to normalize the color histogram.
This procedure contains four major steps:

1. Computing the covariance matrix M of the color
histogram.

2. Finding out the eigenvalues and eigenvectors of M
and then determining the exact eigenvectors that will not
cause the reflection of the normalized color histogram.

3. Aligning the coordinates with the exact eigenvec-
tors.

4. Rescaling the new coordinates by using the corre-
sponding eigenvalues of M.

Step 1. Computing the Covariance Matrix M. The
purpose of the process is to rotate and rescale the color
histogram such that the transformed color histogram is
invariant under translation, rotation, and scaling but not
to deform the color histogram’s shape. By Eq. (14), we
may calculate the elements of M.

Step 2. Determining the Exact Eigenvectors. We can
easily compute the eigenvalues and eigenvectors of M.
Let e1 be the eigenvector associated with eigenvalue l1 ,
e2 be the eigenvector associated with eigenvalues l2 , and
e3 be the eigenvector associated with eigenvalue l3 ,
where l1 < l2 < l3 .

Since M is symmetric, the eigenvectors e1 , e2 , e3 are
orthonormal to one another. To avoid the reflection of the
normalized color histogram, we must choose the direction
of e3 according to the direction of the cross product of e1
and e2 :



2644 J. Opt. Soc. Am. A/Vol. 18, No. 11 /November 2001 Pei et al.
e3 5 e1 3 e2 . (20)

After the arrangement of Eq. (20), there are still four pos-
sible combinations of the three eigenvectors:

~e1 e2 e3!, ~e1 2 e2 2 e3!,
(21)

~2e1 e2 2 e3!, ~2e1 2 e2 e3!.

We must determine a coordinate system from these four
possible cases that will not cause reflection of the normal-
ized color histogram as we rotate the color histogram to
the new coordinate.

To choose one proper coordinate system that is invari-
ant under translation, rotation, and scaling, we analyze
some properties of the eigenvectors of M.

Case 1: Translation. For translation, the covariance
matrix M8 of the translated color histogram is equal to
the covariance matrix M of the original color histogram.
Therefore their eigenvectors and eigenvalues are the
same. Thus aligning the coordinates with the eigenvec-
tors if the distortion is due to translation will cause no re-
flection.

Case 2: Scaling. For scaling, A 5 aI, where a is the
scaling factor. By theorem 1,

M8 5 AMAT 5 a2M. (22)

Thus the eigenvalues of M8 5 (l18 l28 l38)
5 (a2l1 a2l2 a2l3), but they have the same eigen-
vectors. Thus aligning the coordinates with the eigen-
vectors if the distortion is due to scaling will cause no re-
flection.

Case 3: Rotation. For the case of rotation, A is an or-
thogonal matrix; i.e.,

AT 5 A21 (23)

By theorem 1,

M8 5 AMAT 5 AMA21, (24)

so M8 is similar to M; in other words, M8 and M have the
same eigenvalues. But because their eigenvectors are
different, the relation between the two sets of eigenvec-
tors is

E8 5 A21E or E8 5 2A21E, (25)

where

E 5 S e1
T

e2
T

e3
T
D , E8 5 S e18

T

e28
T

e38
T
D . (26)

If E8 5 A21E, we can get the same orientation after we
rotate the two color histograms individually according to
their eigenvectors. If E8 5 2A21E, the normalized color
histograms are mirror symmetric to each other. In addi-
tion to the four possible combinations of these eigenvec-
tors in Eq. (21), it is impossible to get the same orienta-
tion of normalized color histograms without modification
of these eigenvectors.

In the following, we discuss how to choose the exact
eigenvectors to get the same orientation of normalized
color histograms. According to Eq. (21), the four possible
rotation matrices are
E1 5 S e1
T

e2
T

e3
T
D 5 F e1r e1g e1b

e2r e2g e2b

e3r e3g e3b

G , (27)

E2 5 S e1
T

2e2
T

2e3
T
D 5 F e1r e1g e1b

2e2r 2 e2g 2 e2b

2e3r 2 e3g 2 e3b

G , (28)

E3 5 S 2e1
T

e2
T

2e3
T
D 5 F 2e1r 2 e1g 2 e1b

e2r e2g e2b

2e3r 2 e3g 2 e3b

G , (29)

E4 5 S 2e1
T

2e2
T

e3
T
D 5 F 2e1r 2 e1g 2 e1b

2e2r 2 e2g 2 e2b

e3r e3g e3b

G . (30)

In the normalization algorithm we transform the original
color histogram according to one of the four rotational ma-
trices; i.e.,

S r8
g8
b8
D 5 E1S r 2 Cr

g 2 Cg

b 2 Cb

D , i in $1, 2, 3, 4%. (31)

Similarly, we apply the tensor theories to normalized
color histograms.20 First we present the tensor represen-
tation of 3D color space and some theories, and then we
apply tensor theories to normalize color histograms. As
at the outset of Section 3, we can express the affine trans-
formation as Eq. (16). Therefore the first-order moments
of the color histograms are denoted by (Cr Cg Cb)T,
and the jointly central moments are denoted by m ijk . If
we translate the coordinates to the center of the color his-
togram, Eq. (16) becomes

S u 2 Cu

v 2 Cv

w 2 Cw

D 5 F a11 a12 a13

a21 a22 a23

a31 a32 a33

G S r 2 Cr

g 2 Cg

b 2 Cb

D . (32)

Obviously, Eq. (32) is invariant to translation. The origin
of coordinates is assumed at the center of color histogram
to simplify notation in the following discussion.

In tensor notation, the coordinate variables are differ-
entiated by an index; i.e., x1 here is equivalent to the r
coordinate, x2 is equivalent to the g coordinate, and x3 is
equivalent to the b coordinate. Thus Eq. (32) becomes

S y1

y2

y3
D 5 F A1

1 A2
1 A3

1

A1
2 A2

2 A3
2

A1
3 A2

3 A3
3
G S x1

x2

x3
D , (33)

where

S y1

y2

y3
D 5 S u 2 Cu

v 2 Cv

w 2 Cw

D , S x1

x2

x3
D 5 S r 2 Cr

g 2 Cg

b 2 Cb

D ,

(34)F A1
1 A2

1 A3
1

A1
2 A2

2 A3
2

A1
3 A2

3 A3
3
G 5 F a11 a12 a13

a21 a22 a23

a31 a32 a33

G .

In a tensor expression, Eq. (33) is denoted by
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yi 5 Aj
ixj for i 5 1, 2, 3. (35)

Hence we may define the inverse affine transformation,

xi 5 aj
iyj for i 5 1, 2, 3, (36)

with the property

Aj
iak

j 5 H 1 if i 5 k

0 if i Þ kJ 5 d ik . (37)

The central moment tensors are defined as

Tijk... 5 E
V

xixjxk ... f~x1, x2!dx1dx2, (38)

where f(x1, x2) can be regarded as the probability density
function as in Eq. (9).

This type of tensor is the case of contravariant tensor
operators. Referring to Ref. 19, we get the following
theorem:

Theorem 2: If we let

Tijk... 5 E
V

xixjxk ... f~x1, x2!dx1dx2, (39)

T̄ijk... 5 E
S
yiyjyk ... f~ y1, y2!dy1dy2, (40)

if (xixjxk) and ( yiyjyk) are related as tensors; i.e.,

yiyjyk ... 5 Al
iAm

j An
k ... xlxmxn ... (41)

then (TiTjTk) and (T̄iT̄ jT̄k) are also related as tensors;
i.e.,

T̄iT̄ jT̄k ... 5 Al
i Am

j An
k ... TlTmTn ... . (42)

As mentioned above, we may determine which is the
exact rotational matrix. In Eq. (31) the relation between
the transformed and the original tensor is

T̄ijk~A! 5 Al
i Am

j An
kTlmn, (43)

where Aj
i is the element (i, j) of matrix A; for example,

when we calculate the transformed tensor T̄111 for i 5 j
5 k 5 1 in Eq. (43), Aj

1 are the elements of the first row
of the matrix A. On the other hand, the calculation of
Tlmn can be regarded as the calculation of 3D jointly cen-
tral moment as in Eq. (14) according to the definition of
tensors such as Eqs. (39) and (40).

Substituting the rotation matrix E of Eqs. (27)–(30)
into Eq. (43), we get the relations

T̄111~E1! 5 T̄111~E2! 5 2T̄111~E3! 5 2T̄111~E4!,
(44)

T̄222~E1! 5 2T̄222~E2! 5 T̄222~E3! 5 2T̄222~E4!.
(45)

First choosing T̄111 . 0, we may differentiate E1 E2

from E3 E4 . Furthermore, setting T̄222 . 0, we may
differentiate E1 from E2 .

Therefore we can uniquely determine a rotational ma-
trix that will not cause reflection of the normalized color
histograms. In addition, this choice can also solve the
mirror phenomenon in Eq. (25). In conclusion, the exact
eigenvectors may be found by the criterion
Choose E in $E1 E2 E3 E4% such that

T̄111 . 0 and T̄222 . 0 simultaneously. (46)

Step 3. Aligning the Coordinates with the Exact
Eigenvectors. After finding out the exact eigenvectors,
we rotate the color histogram to new coordinates:

S r8
g8
b8
D 5 ES r 2 Cr

g 2 Cg

b 2 Cb

D . (47)

Step 4. Rescaling the Coordinates by Using the Eigen-
values of M. With the transformation of Eq. (47), only
the scaling distortion remains unsolved. By the previous
discussion of case 2, the eigenvalues of M8 is related to M
by

l i8 5 a2l i , i 5 1, 2, 3. (48)

Letting l 5 l1 1 l2 1 l3 , when we rescale the color his-
togram by the factor c/Al (c is constant), the transformed
color histogram becomes invariant to scaling.

When we summarize the above discussion, the normal-
ized color histogram may be found by the following trans-
formation:

S r9
g9
b9
D 5

c

Al
ES r 2 Cr

g 2 Cg

b 2 Cb

D . (48)

Equation (48) seems to be related to the principal compo-
nents analysis (PCA), which is a powerful statistical tool
for feature extraction and data compression.21 Although
PCA is also an important application of eigenvectors and
eigenvalues for finding the directions of greatest variance
of a covariance matrix,18,22 extra rotation, scaling, and
translation with tensor theory are needed for our normal-
ization algorithm. This is the major difference between
our algorithm and PCA. On the basis of the color histo-
gram normalization, we can propose a simple, efficient,
and illuminant-invariant color image recognition algo-
rithm. We get the normalized color images with a sim-
plified affine model and then extract the block average
feature vectors from them to perform color-image recogni-
tion very effectively. That is, to average all the pixel val-
ues in each block, which are obtained by dividing up the
normalized color image into its normalized domains, we
can obtain the critical vector v as a feature to represent
this image; it is the block-average feature. Then we use
the distance difference D to achieve image recognition, if
the difference D is a minimum value between the corre-
sponding critical vector v of the selected image and the
test image critical vector v8 in the database. The pre-
liminary experimental results show that the proposed
technique is extremely successful; in a database with 10
standard images and 60 illumination-changed test im-
ages, the recognition rate of image queries is 91.67% for
the normalized color image divided into 2 3 2 blocks, and
the recognition rate reaches 100% for 4 3 4 blocks. The
specific details of the recognition algorithm are described
in Ref. 23. At the same time, the related PCA algorithm
is quite efficient for recognizing 3D objects.5 It is of in-
terest that some PCA-related methods are applied in
model-based object recognition,24 remotely sensed data
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classification,25 facial-expression classification,26 hand-
written kanji recognition,27 etc.

3. Summary of Three-Dimensional Color Histogram
Normalization
The steps of the algorithm are as follows:

(1) Computing the following moments of the original
color histogram;

1. Mean vector c of the center of an color histo-
gram’s appearance in 3D color space,

2. Covariance matrix M,
3. Third-order joint central moment m ijk .

(2) Finding the eigenvalues l i and eigenvectors ei of
M.

(3) According to Eq. (43), computing the tensors T̄111

and T̄222:

If ~T̄111 , 0 !, then e1 5 2e1 . (50)

If ~T̄222 , 0 !, then e2 5 2e2 . (51)

e3 5 e1 3 e2 ,

where 3 denotes cross product. (52)

(4) The normalized color histogram can be obtained
by the following transformation:

S r9
g9
b9
D 5

c

Al
ES r 2 Cr

g 2 Cg

b 2 Cb

D . (53)

The normalization algorithm has been applied to 3D
objects successfully in computer vision; the specified de-
tails are described in Refs. 28 and 29.

B. Color Histogram Normalization Algorithm for Image
Recovery
In this paper we intend to remove the illumination color
to obtain the object’s pure surface-reflectance color. On
the basis of Ref. 10 and the discussion at the beginning of
Section 3, we see that there is an important affine prop-
erty of color distribution change: The effects of transla-
tion, scale, and rotation on the appearance of the color
histogram depend on the illumination variation. This is
true because we assume a finite-dimensional linear
surface-reflectance model, changing illumination color to
cause a linear transformation of color distributions in
R–G–B space. In that case the two 3D color histograms
are related by an affine transformation of the coordinates
when the illumination is changed. Therefore the relation
between the two color histograms of the original image
and the illumination-changed image can be expressed as

S r8
g8
b8
D 5 F a11 a12 a13

a21 a22 a23

a31 a32 a33

G S r
g
b
D 1 S b1

b2

b3

D . (54)

By estimating the affine coefficients with the normaliza-
tion algorithm, we can derive the effects of the different
illuminations on the two images. The system block dia-
gram is shown in Fig. 1.

With Eq. (53), the color histogram of the original image
is normalized by the transformation
S u
v
w
D 5

c

Alo

EoS r 2 Cr

g 2 Cg

b 2 Cb

D . (55)

Similarly, the color histogram of the illumination-changed
image is normalized by the transformation

S u
v
w
D 5

c

Ala

EaS r8 2 Cr8

g8 2 Cg8

b8 2 Cb8
D (56)

Since the same normalized histograms are obtained, we
combine Eqs. (55) and (56).

S r8 2 Cr8

g8 2 Cg8

b8 2 Cb8
D 5

Ala

Alo

Ea
TEoS r 2 Cr

g 2 Cg

b 2 Cb

D . (57)

Note that Ea
TEo is the rotational matrix between the two

histograms, Ala/Alo is the scaling factor, and Cr8 2 C in
Eq. (10) is the displaced vector between the two histo-
grams. Let

G 5
Ala

Alo

Ea
TEo . (58)

Equation (57) may be rearranged as

S r8
g8
b8
D 5 GS r

g
b
D 1 S Cr8

Cg8

Cb8
D 2 GS Cr

Cg

Cb

D . (59)

Comparing Eq. (59) with Eq. (54), we can get the affine
transform coefficients:

F a11 a12 a13

a21 a22 a23

a31 a32 a33

G 5 G, (60)

S b1

b2

b3

D 5 S Cr8

Cg8

Cb8
D 2 GS Cr

Cg

Cb

D . (61)

In other words, the color histogram of the original image
can be obtained from the color histogram of the
illumination-changed image by the following transforma-
tion:

Fig. 1. Diagram of color histogram normalization.
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S r
g
b
D 5 G21S r8

g8
b8
D 1 S Cr

Cg

Cb

D 2 G21S Cr8

Cg8

Cb8
D . (62)

4. EXPERIMENTAL RESULTS AND
DISCUSSION
To demonstrate the proposed color constancy algorithm,
we tested seven natural images taken under different il-
lumination conditions. The experiment is divided into
two parts in order to test the performance of the proposed
algorithm in different circumstances. We chose the ini-
tial images under standard illumination as the standard
template image for recovering. We obtained the stan-
dard template image using our image-acquisition facility
with a Sharp VL-H450 DIS Hi8 and an Adobe Premiere
4.0 montage. We emphasize that we use the full-
resolution histograms in all the experiments (tristimulus
values are all integers ranging between 0 and 255 directly
extracted from the source images), and the size of all im-
ages is 128 3 128.

A. Synthetic Images, Taken under Different
Illuminations, Are Simulated by Computer

1. Experimental Setup
We will use some image-processing software to simulate
the illuminant-changed images; the noise in these com-
puter simulation images is usually much less than in the
real images. Therefore seven additional images of each
picture were fabricated under lighter, darker, red, yellow,
green, blue, and magenta by the Paint Shop Pro 5.0 soft-
ware for several illumination adjustments. The manner
of the adjustment is to use the instruction ‘‘Adjust’’ in the
‘‘Colors’’ item with Paint Shop Pro 5.0 to obtain the simu-
lation images. For example, if we want to obtain a simu-
lated image under red illumination, we set the red com-
ponent to 30% of the standard template image; the rest of
the components are unchanged. Similarly, if we want to
obtain the simulated image under darker illumination,
we will diminish the three components to 30% of the stan-
dard template image. Tristimulus values should be con-
trolled to avoid clipping in any color band by the software.

2. Experimental Results
Next we will show the experimental results of computer-
simulated images obtained by using Paint Shop Pro 5.0.
In Fig. 2, in the original image set [top left (a)–(d)], the
upper left figure [label (a)] shows the image with the bas-
ket of fruit taken under standard illumination. We re-
gard it as the standard template image. The color histo-
gram of the image is displayed in the upper right figure
[label (b)]. Then, using the proposed color histogram nor-
malization algorithm, we show the normalization result of
the color histogram in the lower left figure [label (c)].
Similarly, in the set with the computer-simulated image
taken under the yellow illumination [top right set (a)–
(d)], the upper left figure [label (a)] shows the same image
but taken under yellow illumination; it is regarded as the
test image. The upper right figure [label (b)] and the
lower left figure [label (c)] are the color histogram and the
normalized one of this test image, respectively. Then, us-
ing some linear algebra operations with the two ex-
tremely similar normalized patterns of standard image
and test image (see Subsection 3.B and the system dia-
gram in Fig. 1), we can obtain a matrix that represents
the affine transformation between these two images’ his-
tograms. Through the affine transformation, the test im-
age can be recovered to be close to the standard image.
The proposed procedure is to use the color histogram nor-
malization algorithm for recovering the illumination-
changed images. The recovered image is shown in the
lower right figure [label (d)] of each computer-simulated
image set for test images fabricated under yellow, green,
and blue by Paint Shop Pro 5.0. Figure 3 consists of im-
ages of a famous painting by Manet, ‘‘Suonatore di Dif-
feraro.’’ These images were fabricated under darker, red,
and magenta by Paint Shop Pro 5.0 as the tested images
to be recovered. As can be seen, the recovery perfor-
mance is very good. The peak signal-to-noise ratio
(PSNR) value of these recovered images, as shown in
Tables 1 and 2 for the basket of fruit and ‘‘Suonatore di
Differaro,’’ respectively. We define the PSNR as follows:

PSNRIR 5 (
i51

128

(
j51

128

@R~i, j ! 2 R8~i, j !#2/~128 3 128

3 maxIR2!, (63)

PSNRIG 5 (
i51

128

(
j51

128

@G~i, j ! 2 G8~i, j !#2/~128 3 128

3 maxIG2!, (64)

PSNRIB 5 (
i51

128

(
j51

128

@B~i, j ! 2 B8~i, j !#2/~128 3 128

3 maxIB2!, (65)

PSNR 5 ~PSNRIR1PSNRIG1PSNRIB!/3, (66)

where PSNRIR, PSNRIG, and PSNRIB denote the PSNR
of red, green, and blue bands of the color images respec-
tively, and PSNR denotes the average PSNR value of
three bands of the color images, from Eqs. (63)–(66).
R(i, j), G(i, j), and B(i, j) represent tristimulus values
of the R–G–B color space of the standard template image,
and R8(i, j), G8(i, j), and B8(i, j) represent those of the
recovered image. Also, maxIR, maxIG, and maxIB indi-
cate the maximum peak value of R(i, j), G(i, j), and
B(i, j) individually. From these PSNR tables we can ob-
tain approximately 30–40 dB average PSNR for
computer-simulated images. Results from five other im-
ages are not displayed here to save space: ‘‘Vaso di Fiori,’’
‘‘Apple and Bottle,’’ ‘‘The Musketeer and Pigeon,’’ ‘‘Fruits
of the Midi,’’ and ‘‘The Artist’s House at Arles’’, here we
list only the PSNR values of ‘‘Vaso di Fiori’’ in Table 3 for
reference.

B. Real Images Taken under Different Illuminations
Are Captured by the Camera

1. Experimental Setup
Figure 4 shows a sketched map of the obtaining of the
real images taken under different illuminations. In or-
der to demonstrate the recovery performance for color im-
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Fig. 2. Basket of fruit, one original (real) image (top left) taken under standard illumination and three computer-simulated images
taken under yellow (top right), green (bottom left), and blue (bottom right) illumination. In each set: (b) color histogram of (a), (c)
normalized histogram of (b), (d) recovered image by use of the color histogram normalization algorithm.
ages under several illuminants, an additional seven im-
ages of each picture were captured under lighter, darker,
red, yellow, green, blue, and magenta, by changing the
standard source. Similarly, we obtained these real im-
ages, using our image-acquisition facility, with a Sharp
VL-H450 DIS Hi8 and an Adobe Premiere 4.0 montage.
The illumination intensity should be controlled to avoid
clipping in any color band.
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2. Experimental Results
We now present the experimental results for real images
taken under different illuminations. In Fig. 5 the origi-
nal image set is not shown, because it is exactly the same
as in Fig. 2. The top left set (a)–(d) is for the real image
of the basket of fruit taken under lighter illumination; the
test image is at the upper left [label (a)]. The upper right
figure [label (b)] and the lower left figure [label (c)] are the
Fig. 3. (a) ‘‘Suonatore di Differaro,’’ one original (real) image (top left) taken under standard illumination and three computer-simulated
images taken under darker (top right), red (bottom left), and magenta (bottom left) illumination. In each set: (b) color histogram of (a),
(c) normalized histogram of (b), (d) recovered image by use of the color histogram normalization algorithm.
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color histogram and the normalized one, respectively, of
this test image. There is no need to go into the details of
the linear algebra operations; refer to the system diagram
Fig. 1. We can obtain a matrix that represents the affine
transformation between these two images’ histograms.
The recovered image is showed in the lower right figure
[label (d)]. The rest of Fig. 5 shows the other experi-
ments of the same image under different illumination
conditions: yellow, green, and blue. The rest may be de-
duced by analogy with Fig. 2. Figure 6 shows the same
procedure for ‘‘Suonatore di Differaro.’’ These images are
taken under lighter, darker, red, and magenta different il-
luminations as the test images to be recovered. In gen-
eral, the recovery is quite accurate.

The PSNR values of the recovered images in Figs. 5
and 6 are listed in Table 4 and Table 5, respectively. We
can obtain approximately 20–30-dB average PSNR for
real images. The results for five other images are not
displayed here to save space; we list only the PSNR value
of ‘‘Vaso di Fiori,’’ as shown in Table 6. Tables 4, 5, and 6
may be compared with Tables 1, 2, and 3, respectively, to
find the differences represented by the PSNR’s of the
computer-simulated images.

Table 1. PSNR Values of The Basket of Fruit with
Computer-Simulated Images (Unit: dB)

Illuminant PSNRIR PSNRIG PSNRIB PSNR

Lighter 29.6448 28.8880 31.5366 30.0231
Darker 53.5273 53.4203 53.5026 53.4834
Red 28.9196 39.6264 47.6474 38.7311
Yellow 29.1828 28.4405 40.5630 32.7288
Green 47.2439 28.0734 47.8528 41.0567
Blue 46.5986 39.9857 30.5410 39.0418

Table 2. PSNR Values of ‘‘Suonatore di Differaro’’
with Computer-Simulated Images (Unit: dB)

Illuminant PSNRIR PSNRIG PSNRIB PSNR

Lighter 28.3394 29.5358 36.5034 31.4595
Darker 53.4382 53.3757 53.1234 53.3124
Red 29.1580 33.3205 40.3023 34.2603
Yellow 27.5659 28.4128 34.0331 30.0039
Green 32.3723 30.0957 36.8836 33.1172
Blue 44.1714 42.5236 34.6164 40.4371
Magenta 29.7260 36.9556 36.5139 34.3985

Table 3. PSNR Values of ‘‘Vaso di Fiori’’ with
Computer-Simulated Images (Unit: dB)

Illuminant PSNRIR PSNRIG PSNRIB PSNR

Lighter 33.8648 29.3721 30.4534 31.2301
Darker 53.2074 53.3598 53.4744 53.3472
Red 31.3609 34.9147 40.6631 35.6462
Yellow 33.1372 28.1924 35.3757 32.2351
Green 43.6596 28.2873 40.5575 37.5015
Blue 40.3268 35.4152 28.5746 34.7722
Magenta 32.7767 40.8628 29.6980 34.4458
C. Characteristics of the Color Histogram Based on Its
Appearance
From these figures, either computer-simulated images or
real images, we can easily find that the position, size, and
shape of the color distribution in R–G–B space depends
on changes in illumination conditions. For example, for
images taken under lighter illuminant, the range of the
distribution becomes larger, i.e., the values of R–G–B
space are larger; similarly, the range of the distribution
becomes smaller for images taken under darker illumi-
nant. Under green illuminant, the position and shape of
the distribution are deflected slightly toward the G axis;
i.e., the values of the green band are large; and the posi-
tion and shape of the distribution are deflected slightly to-
ward the R–G axis for images taken under yellow illumi-
nant.

We found a significant difference between the results of
the computer-simulated images and the results of the real
images as given in the PSNR tables. For the computer-
simulated images, when the images are fabricated under
green illuminant, the performance of the green band of re-
covered images is worse; in other words, the value of
PSNRIG is smaller, and so forth. Conversely, for real im-
ages, when the images are taken under green illuminant,
the performance of the green band of recovered images is
better; in other words, the value of PSNRIG is larger, and
so forth. On the other hand, when the images are taken
under darker illuminant, the performance of the three
bands of recovered images is nearly the same for all cases.
Under yellow illuminant, the performance of the red and
green bands may be better than the blue band in the real-
image cases, but the result is just the opposite for
computer-simulated images. Some reasons for these
phenomena are, for example, for the real images taken
under red illuminant, the red component of the images is
emphasized but the both green and blue components are
attenuated. However, for the computer-simulated im-
ages, the red component of the images is emphasized but
both green and blue components remain unchanged.
This may be the reason that the performance of the red
band of the recovered image is better for the real images
but is worse for the computer-simulated images.

D. Discussion of Image-Recovery Performance
For computer-simulated images, the recovered images are
quite close to the standard template images; the recovery
performance reaches 30 dB and upward. This is because
the noise in the computer-simulated images is uniform
and much less than in the real images. However, for
practical real-image experiments, although the color dis-
tortion of the recovered images cannot be removed en-
tirely, as it can be for computer-simulated images, the de-
gree of color distortion has been reduced greatly. In
comparison with the standard template image, the color
change corresponding to illumination change clearly us
much improved and considerably smooth. The reason
that the recovered images of the real images are not as
good as those of the computer-simulated images is that
there is nonlinear distortion in color in the real images.
In general, the 20-dB recovery performance is regarded as
good recovery for practical real-image experiments, for
human viewing.
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E. Why the Simplified Affine Model Is Preferred to the
General Affine Model

1. Histogram Matching Between the Two Affine Models
Now we will demonstrate that the color histogram algo-
rithm considered in the proposed simplified affine model
(with respect only to translation, scaling, and rotation) is
better than the algorithm considered in a general affine
model for illumination-varying applications. In Fig. 7 we
can see that the color histogram of the recovered image
with use of the proposed affine model is 9 dB higher in
PSNR than with the general affine model and closer to
the color histogram of the standard image. In Figs. 7(g)
and 7(h), the red points indicate the color histogram of the
standard image, the blue points indicate the color histo-
gram of the recovered image, and the black points indi-
cate the overlap between the two parts. Obviously, the
overlap in Fig. 7(g) is larger than that in Fig. 7(h), so the
assumption that the color histogram algorithm consid-
ered in the proposed affine model is better than in a gen-
eral affine model for the illumination varying application,
is supported again.

2. Comparison of Numerical Affine Parameters of the
Two Affine Models
On the other hand, by using the recent method of Refs. 23
and 24, we can normalize the 3D color histogram under
general affine distortions. The affine matrices can be es-
timated very accurately in noise-free cases.23 As shown as
Fig. 8, we can find that the results of applying the simpli-
fied affine model and the general affine model to estimate
affine matrices under general affine distortions in noise-
free cases are all very precise. So both the simplified af-
fine model and the general affine model are feasible in
noise-free cases for simulated illumination-change appli-
cations. Note that the 0.1-dB difference in the PSNR is
perhaps due to the quantized truncation error during
computer calculation. At the same time, we find that the
range of the estimated shearing parameter on each axis is
between 62 in the color histogram, whether for computer-
simulated images or for real images. From our experi-
ments the range of the values between 64 does not affect
the results of the estimated affine matrix. So the effect
of shearing can be neglected in image recovery for
illumination-varying applications. As for the skew effect
of the color histogram due to illumination changes, we
find that the ratios of each eigenvalue of each axis be-
tween the standard image and the illumination-change
images are almost constant, whether for computer-
simulated images or for real images. This indicates that
the shape of the color histogram does not change dramati-
cally, so the assumption to neglect the effect of skew is
reasonable.

3. Comparison of Image-Recovery Performance of the
Two Affine Models
From the experimental results of the PSNR, as shown in
Tables 7–9, we can see the difference between the two
Fig. 4. Sketched map of the obtaining of the real images taken under different illuminations.
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Fig. 5. (a) Basket of fruit, four real images taken under lighter (top left), yellow (top right), green (bottom left), and blue (bottom right)
illumination. In each set: (b) color histogram of (a), (c) normalized histogram of (b), (d) recovered image by use of the color histogram
normalization algorithm.
models clearly. For three real images, the PSNR of each
recovered image with use of the general affine model is
4–5 dB lower than that of the proposed simplified affine
model on average, or even lower—11 dB. It may be that
the PSNR is lower when the color histogram normaliza-
tion algorithm is considered in the general affine model
for noisy real images because of the problem of noise sen-
sitivity when we estimate the affine matrix with respect
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to the coefficients of the skew. That is, when we intend to
solve the effect of skew in the general affine model, we
must determine three rotation angles in the normalized
color histogram corresponding to orthogonal eigenvectors;
but estimations of the three rotation angles are noise sen-
sitive and can easily affect the accuracy of the whole color
histogram normalization algorithm. With the general af-
fine model, unlike with simplified algorithm, we consider
Fig. 6. (a) ‘‘Suonatore di Differaro,’’ four real images taken under lighter (top left), darker (top right), red (bottom left), and magenta
(bottom right) illumination. In each set: (b) color histogram of (a), (c) normalized histogram of (b), (d) recovered image by use of the
color histogram normalization algorithm.
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only the reflection of the normalized color histogram and
apply tensor theories to solve the problem without using
skew rotation. We think that is why the PSNR is lower
when the color histogram normalization algorithm is con-
sidered in the general affine model. It is worth mention-
ing that when we perceive the variation of the color his-
togram due to illumination-change directly through the
senses, we find that the color histogram is always within
first octant in R–G–B color space whatever the illumina-
tion changes may be. Hence an affine model that corre-
sponds to such affine transformations should be a limited
and restricted affine model, and the simplified affine
model conforms to these conditions.

F. Discussion of Other Factors Not Considered
As is well known, the difficulties in studying color con-
stancy come from many natural factors, including
shadow, illumination conditions, and specular reflection.5

Here we have focused on illumination color; shadow and

Table 4. PSNR Values of The Basket of Fruit with
Real Images (Unit: dB)

Illuminant PSNRIR PSNRIG PSNRIB PSNR

Lighter 18.6641 18.4261 17.8034 18.2980
Darker 21.0168 21.7757 21.1011 21.2979
Red 23.3661 19.2069 17.3586 19.9772
Yellow 25.9697 28.6324 19.8970 24.8330
Green 21.1517 25.0523 22.1846 22.7962
Blue 21.5079 25.1744 27.9541 24.8788

Table 5. PSNR Values of ‘‘Suonatore di Differaro’’
with Real Images (Unit: dB)

Illuminant PSNRIR PSNRIG PSNRIB PSNR

Lighter 32.0487 32.8700 30.2986 31.7391
Darker 22.2110 24.0862 24.3619 23.5531
Red 23.6601 23.0507 20.7801 22.4970
Yellow 29.4005 30.8958 22.1842 27.4935
Green 25.4368 27.0449 22.5219 25.0012
Blue 24.2970 25.8839 25.7457 25.3089
Magenta 20.5472 21.0030 23.7332 21.7612

Table 6. PSNR Values of ‘‘Vaso di Fiori’’ with Real
Images (Unit: dB)

Illuminant PSNRIR PSNRIG PSNRIB PSNR

Lighter 28.5373 29.1762 28.4016 28.7050
Darker 22.7644 24.6875 24.0188 23.8235
Red 23.1677 18.2578 14.2002 18.5426
Yellow 28.3944 22.5648 18.1098 23.0230
Green 21.2094 26.6574 19.3652 22.4107
Blue 19.7930 22.3820 27.1819 23.1189
Magenta 19.7719 20.5447 24.2883 21.5350
specular reflective effects have not been considered here.
Maybe this is the reason that the method does not always
work as well for some real images. It should be men-
tioned that in the color subtractive system the yellow dye
acts as a variable absorber of blue light, and the magenta
dye acts as a variable absorber of green light. This
means that the images taken under yellow illumination
can be regarded as images taken under red and green,
two different illuminations at the same time; similarly,
the magenta illumination can be regarded as the combi-
nation of red and blue illuminations. Therefore, if the re-
covery performance of the image made under yellow or
magenta illumination is good, it can be expected that the
result should be good when the image is illuminated by
two different illuminations at the same time. Finally, we
emphasize that because the effect of translation, scale,
and rotation are dominant in the appearance of the color
histogram corresponding to the illumination changes, we
have discussed only these three cases of the color histo-
gram in this paper.

5. CONCLUSIONS
Many researchers have used color information to recog-
nize objects in recent years, but the color of an object var-
ies with changes in illumination source, illumination ge-
ometry, viewing angle, and miscellaneous sensor
parameters. Therefore normalization of the color distri-
bution of observed images is an important task for image
recovery. In this paper we have proposed a novel color
histogram normalization by use of the proposed simplified
affine model to recover color images. The algorithm uses
the statistical properties (covariance matrix) of the color
histogram in R–G–B coordinate and tensor theories to
achieve image normalization. Then, comparing the nor-
malized color histogram of the standard image with the
that of the tested image and performing some operations
of simple linear algebra, we estimated the matrix of affine
transformation between two images under different illu-
minations. The image recovered was close to the stan-
dard image with use of the estimated affine transforma-
tion. The experiment was divided into two parts to test
the performance of the proposed algorithm in different
circumstances. In the first experiment we applied
image-processing software to simulate the illuminant-
changed images; we also obtained real images, taken un-
der different illuminations by a camera. From the ex-
perimental results, for both computer-simulated images
and real images, we found that most of recovered images
were quite close to the original images, in particular, the
computer-simulated images were less noisy than the real
images. In other words, the recovery performance was
quite successful and satisfactory for both cases. We ex-
plained the noise-sensitive skew-rotation estimation with
the general affine model, and we demonstrated that the
proposed simplified affine model without using skew rota-
tion is better than the general affine model for such ap-
plications.
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Fig. 7. Comparison of the color histogram normalization algorithm with two different affine models: (a) original image, (b) real image
(under yellow illumination), (c) color histogram of (a),(d) color histogram of (b),(e) color histogram of the recovered image whose algorithm
is considered in the proposed simplified affine model, (f) color histogram of the recovered image whose algorithm is considered in the
general affine model, (g) color histogram of the companison between the original image and the recovered image by use of the proposed
simplified affine model, (h) color histogram of the comparison between the original image and the recovered image by use of the general
affine model. The PSNR of (e) is ;9 dB higher than that of (f).
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Fig. 8. Comparison of the difference in the estimation of the affine transformation coefficient by the simplified affine model and the
general affine model. It can be seen that the former is a little more accurate than the latter. So the estimation of the coefficient by
using either simplified affine model or general affine model is feasible for noise-free case of such illuminant-changing application. Note
that PSNR of recovered image by using color histogram normalization algorithm considered in the simplified affine model is 47.8546, and
PSNR of recovered image considered in the general affine model is 47.7566; the difference 0.1 dB maybe is due to the quantized trun-
cation error during computer calculation.
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