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ABSTRACT 

Job shop is a typical environment for manufacturing high- 
variety and low-volume discrete parts. Good scheduling is crit- 
ical and challenging to the competitiveness of job shops. The 
Lagrangian relaxation neural network (LRNN) developed by [I] ,  
provides an approach of quantifiable quality and successful indus- 
trial applications. To further speed up scheduling for large-scale 
problems, in this paper, the parallelism of the LRNN approach is 
exploited for hardware implementation. New designs include a 
SIMD architecture, its associated instruction set and detailed cir- 
cuits. Logic level simulation of the circuit design shows consistent 
schedules with those obtained by a software implementation. The 
hardware implementation is expected to have a one to two orders 
speed-up over the software one. 

1. INTRODUCTION 

Job shop is a typical environment for manufacturing low-volume 
and high-variety discrete parts. In a job shop, parts with various 
due dates and priorities are to be processed on various types of 
machines. Job shop scheduling selects machines and beginning 
times for processing individual operations to achieve certain ob- 
jectives under the given machine capacity and computation time 
constraints. A good solution to scheduling problems can result in 
significant savings. For example. a scheduling system developed 
by IBM-Japan is estimated to save over a million dollars a year for 
a major steel company [ 2 ] .  

There are two main challenges for effective scheduling: solu- 
tion quality and solution finding speed. Theoretically, computation 
complexity of many job shop scheduling problems is NP [ 3 ] .  The 
generation of an optimal schedule often requires excessive compu- 
tation time regardless of the methodology. Instead. near- or sub- 
optimal solutions are adopted for practical applications and there 
have been many sub-optimal or heuristic methods [ 3 ] .  

Recently, there have been a series of scheduling methods with 
successful industrial applications [4] [5] developed under a com- 
mon framework of Lagrange relaxation (LR). These methods relax 
the coupling constraint(s) of a scheduling problem by applying the 
Lagrangian relaxation technique. The original scheduling problem 
is then decomposed into independent. simpler optimization sub- 
problems and a Lagrange multiplier optimization problem. Var- 
ious optimization techniques are developed for efficient solution 
with quantifiable optimality. To further advance the computation 
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efficiency of this class of methods, Luh et al. exploited the inher- 
ent parallelism of their LR-based job shop scheduling methods and 
designed a LR neural network (LRNN) algorithm [I ]  for parallel 
computing. 

In this paper. we further enhance the parallelism in LRNN and 
design parallel processing hardware for the parts of intensive com- 
putations in LRNN to speed up the computation. We first ana- 
lyze and modify the LRNN scheduling algorithm to be amenable 
for parallel hardware implementation. We then design for the al- 
gorithm a parallel processing architecture and its associated in- 
struction set. Finally, logic circuit implementation is designed, 
simulated, and then fabricated. The performance of our design 
is demonstrated by the preliminary testing result of the hardware 
implementation. 

The remainder of the paper is organized as follows. In section 
2, the problem formulation and the LRNN algorithm are presented. 
Section 3 describes a SIMD architectural design for the VLSI chip 
implementation. Section 4 presents two key modules of our circuit 
design. Verilog simulation results and the estimation of speedup. 
Finally. a summary of our design is given in Section 5 .  

2. MODIFIED L R "  ALGORITHM 

2.1. Problem Formulation 

Consider a job shop. where there are H machine types and each 
machine type may consist of a few identical machines. There cue 
I parts to be scheduled over a time horizon of I< time units. Part 
i has its due date D , ,  weight (or priority) factor IT,, and requires 
. J ,  sequential processing operations. Each operation requires the 
processing by a machine of a specific type for pre-specified units 
of time. Processing of each operation must satisfy the operation 
precedence constraint. i.e.. its processing may start only after the 
completion of its preceding operation. The number of operations 
assigned to machine type I ,  at time k: should not violate the ma- 
chine capacity constraint and it should no more than the number 
of machines available at that time, MA,/, , i.e., 

X6,,/A/! 5 A16./,. A . =  1.....1;; I t  = 1  . . . . .  H .  (i) 

where 6),/ 6.1, is a 0- 1 variable and equals 1 if operation , j  of part i is 
being processed by machine type I r  at time k:; it equals 0 otherwise. 
Vnriables 6, / b . l r  are determined once the beginning times /I,,/  of all  
operations are decided. 

The scheduling goal of on-time delivery for individual iobs is 
modeled as penalties on job delivery tardiness T, = 111ax[O> C, - 
F,] .  where C,  is the completion time of part i and is equal to the 
beginning time of the last operation of part i plus its processing 

I ,/ 
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time. The scheduling problem then boils down to determine be- 
ginning times b,, of individual operations to minimize the total 
weighted part tardiness E, x T, while satisfying all the con- 
straints. With linear constraints and additive objective function, 
mathematically, this formulation is a separable optimization prob- 
lem since all the constraints are linear and the objective function is 
additive. 

2.2. Solution by LR" 

Now apply Lagrangian relaxation to machine capacity constraints 
and obtain a "relaxed problem" as 

I b t j }  2 k h  1 . J  1) Inin L: WithL = 1 TI,T, f c (iTkh (E S i j k h  - n f k h  

(2) 

subject to individual part constraints, 

where 7 r k h  are the Lagrange multipliers. By exploiting the separa- 
bility, the relaxed problem can be decomposed into the following 
decoupled part subproblems for a given set of multipliers: 

Ji C i j  

min Li, ,withL, = Li*)Ti + 7 r k h i j , z  = 1:. . . ,I, (3) 
t h, } j-1 k = b , ,  

subject to operation precedence constraints of part i, 

where h,, denotes the machine type used by operation j of part 
i. Each &,kh in (2) is set, in the decomposition, to a value 0 or 1 
according to its definition. 

Let Lf denote the minimal subproblem cost of part i under the 
given multipliers. A dual problem is then obtained as 

The dual function D is concave and provides a lower bound to the 
original scheduling problem. Interested readers may refer to [ I ]  
for details. 

A surrogate subgradient method is adopted to solve the dual 
problem in (4). Under a given set of Lagrange multipliers, 7ri~h.1~. 

part subproblems can be solved independently among parts. After 
solving a part subproblem and obtaining the beginning times of 
individual operations. this method updates the subgradient of the 
dual function D based on the solution of the subproblem. One 
iteration of the method consists of solving all part subproblems 
and updating the corresponding subgradient once. The procedure 
iterates until a convergent dual solution is obtained. As there may 
be machine capacity violations in the dual solution, a heuristic then 
adjusts it to a feasible one. Solving a part subproblem is the most 
computation intensive of all. 

S-NBDP for Solviiig Subproblems 

Each part subproblem ( 3 )  is a multistage optimization problem. 
We design a simplified neuron-based dynamic programming (S- 
NBDP) algorithm for its solution, which combines the ideas of 
NBDP [6] and SDP [7] with consideration of hardware implemen- 
tation. The basic structure of the S-NBDP application to a pnrt 
subproblem is depicted in the dash-lined box of Fig. I ,  where state 
and comparison neurons perform backward DP [8] computation 
while a forward sweep procedure identifies the optimal schedule 

from results of the backward DP. Neurons are connected based on 
precedence constraints. In Fig. 1, an arrow indicates the direction 
of data flow. 

In the backward DP procedure for a part subproblem, a stage 
corresponds to an operation and a state corresponds to an opera- 
tion beginning time. The backward DP is a stage-by-stage iterative 
procedure starting from the last stage. In stage j ,  all state neu- 
rons of the stage computes in parallel their respective cumulative 
cost by adding up the stage-wise cost and the optimal cost-to-go 
(OCTG) of the state. The stage-wise cost of a state is the summa- 
tion of multipliezs associated with the machine type needed during 
the processing time of the stage (operation). The OCTG of a state 
represents the minimum cost to schedule the remaining part oper- 
ations after the state (time). For a state in the last stage. the OCTG 
equals to the tardiness penalty of the state. 

Figure 1: L R "  Structure. 

Comparison neurons then find the OCTGs for individual states 
of the preceding stage, i.e., stage j - 1. In the procedure, one 
comparison neuron (CN) inputs the output of another CN. For the 
example in Fig. 1, the CN for OCTG of state k compares and finds 
the smaller value between the cumulative cost of state k and the 
output of a CN for state k + 1. Such a comparison procedure is 
obviously sequential starting from the last state. However, soft- 
ware simulation results show that beginning time of an operation 
obtained in one LRNN iteration usually differs from that of the 
previous iteration by only few time units. It in turn suggests that 
only OCTGs of some adjacent states in a stage may actually need 
to be calculated. Such an observation motivates our simplification 
of the comparison procedure. 

In the simplified comparison procedure for a stage. a set of 
adjacent states is first identified based on beginning time obtained 
from the previous iteration. Each CN for a state in the set performs 
comparison normally as described in the previous paragraph. For 
a state not in the set. the CN does nothing but relaying the cumula- 
tive cost of the state. For each comparison neuron, there is a state 
flag to record which comparison operand is the minimum. In the 
case of Fig. 1. a flag value ' 1' indicates that the cumulative cost of 
current state is the minimum and '0' otherwise. Computations by 
both the state and comparison neurons are functionally repetitive 
from one stage to the next. 

New beginning times of individual operations are then identi- 
fied from state flags of all stages by a forward sweep procedure. 
It searches through state flags stage by stage starting from the first 
stage. Within a stage, the search is done state-by-state starting 
from the state corresponding to the earliest beginning time of that 
stage (operation). which is equal to 1 plus the completion time of 
previous stage. Whenever a flag of value 1 is found at a state of a 
stage, the time (state) is set as the beginning time of the operation 
(stage). The forward sweep completes S-NBDP for a part. 
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Sugradient arid multiplier updaring 

After solving a part subproblem in one iteration, the difference of 
machine usage at each time between schedules resultant from the 
current and previous iterations, di f f k h ,  is calculated. Each ele- 
ment of the subgradient y of the dual function D is updated by 
g k h  = 9i.i' + d i f f i , ; ' ,  where rz = 1 , 2 , .  . . , is the iteration 
index and ykh = - h I k h .  Multipliers are then updated according 
to the formula, x::+') = x::) + ai,:) x g:;) , by Lagrangian neu- 
rons. where Q is the step size parameter. Note that both updating 
can beadone in parallel among different ( I C ,  h )  pairs. 

( n + l )  

3. SIMD ARCHITECTURE 

To exploit the parallelism of L R " ,  a system as shown in Fig. 2 
is designed, which consists of a PC, a micro-controller, and sev- 
eral LRNN chips. Software in the PC takes problem inputs, struc- 
tures the data and generates controlling commands to the micro- 
controller. The micro-controller then feeds the data from PC to 
individual LRNN chips. controls their processing sequences, and 
returns their solutions to PC for output. Each L R "  chip imple- 
ments, with a limit on problem dimension, S-NBDP and the sur- 
rogate subgradient updating of multipliers. Chips can be cascaded 
for various problem dimensions. Based on the dual solution ob- 
tained by LRNN chips, the software in PC performs feasibility 
adjustment of the final solution. 

Figure 7: Overall system architecture. 

In this system, the LRNN chips carry out most of the compu- 
tation for finding a dual optimum. A SIMD architecture shown in 
Fig. 3 is designed to map the modified LRNN into a parallel hard- 
ware implementation. Under this architecture, an instruction de- 
coder decodes the instruction code from the micro controller into 
control signals for the whole chip. Processing elements (PES) carry 
out many arithmetic operations in parallel such as the addition in 
calculating the cumulative cost by each State Neuron, the compar- 
ison by each Comp'arison Neuron, and the updating of Lagrange 
multipliers. The parallelism of the first two types of operations is 
quite straight forward based on the modified LRNN structure and 
it is natural to have one PE to support each state and CN pair. As 
for multiplier (subgradient) updating, its parallelism is rooted in 
that one multiplier (gradient) is defined for each machine type at 
each time period. Since a state corresponds a time unit, it becomes 
obvious that the PE for the state can be used to store all the multi- 
pliers (gradients) of the corresponding time period, i.e., Qkh , X k h ,  

for all h. Similarly, the calculation of subgradient direction and 
the updating of Lagrange multipliers by the Lagrangian Neuron 
can also be carried out by individual PES. A forward sweep cir- 
cuit (FSC) then reads state flag values from PES and performs a 
sequential search to find out the beginning times of individual op- 
erations. The global memory stores input data items such as due 
dates and output data items such as operation beginning times. 

Figure 3: SIMD architecture of a LRNN Chip. 

4. CIRCUIT DESIGN 

Designs of PE and FSC are more involved than those of the global 
memory and the instruction decoder. Key design concepts of the 
two are described as follows. 

4.1. PE Design 

Figure 4: PE architecture. 

Fig. 4 depicts our circuit architecture design of PE. To perform 
arithmetic operations required by the LRNN algorithm, a standard 
circuit design for arithmetic logic unit (ALU) is adopted. The AL.U 
is capable of performing addition, comparison, etc. In executing 
most instructions, inputs to ALU are latched by two registers, rhe 
ACC (accumulator) and the DR (data register). Registers R1, R2, 
and R3 latch data for arithmetic operations conditioned on a pre- 
ceding ALU execution result. The local memory is required to 
store the Lagrange multipliers and the machine usage information 
for each machine type. A local bus communicates between local 
memory and registers such as ACC, DR, etc. within a PE. It also 
serves the global data communications with the global bus. Fi- 
nally, instead of using a 16-bit storage unit in the local memory to 
store each 1-bit state flag, we design a stack for string state flags. 

4.2. Forward Sweep Circuit 

The forward sweep circuit implements fonvnrd sweep steps for 
state flag search within a stage. Each state has a logic unit with 
three 1-bit inputs: a begin flag with '1' indicating that this state 
is the earliest beginning state for the search within this stage or 
'0' otherwise, the state flag of this state, and an input search flag. 
The logic unit has two 1-bit outputs: an output search flag feediiig 
to the next state as its input search flag and a time flag indicating 
the new beginning time. The search is a sequential procedure and 
always starts at the first state and completes at the last states. The 
search flag, that is initially 'O', will be set to '1' at the earliest 
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beginning state. Time flag of the logic unit is set to '1' #state flag 
of value ' I '  is found at this state when the input search flag also has 
a value ' I . ,  and the search flag is reset to '0'. Such a sequential 
search will require a long search time for a large-scale problem. 
Note that the output search flags should be 0 for states before the 
earliest beginning state and for states after the state where its time 
flag is set to ' 1'. So we adopt an idea similar to the "carry bypass" 
concept of the Manchester carry chain [9] to speed up the search. 

State 1 
State 2 
State 3 

4.3. Experimental Results 

Our circuit design is finished with 16 PES in one chip. A test prob- 
lem of 5 parts, 2 machine types and a time horizon of 16 time units 
is used for logic level simulation. Verilog is adopted as the logic 
simulator. A software implementation of our modified LRNN al- 
gorithm in C code serves as the benchmark. In specific, values of 
Lagrange multipliers obtained by the C code and by the Verilog 
simulation are compared. Tables 1 and Fig. 5 give the results re- 
spectively. Comparing the two sets of results. we clearly see that 
they are all the same. This is a justification of logical correctness 
of our circuit design. 

I1 State 9 0 
23 State 10 0 

0 State 11 12 

Figure 5:  Multipliers of type-I machine generated from Verilog 
simulator. 

State 6 
State 7 
State 8 

The proposed architecture has been fabricated by Taiwan Semi- 
conductor Manufacturing Co., using a single-poly quadruple-metal 
0.35-pm CMOS technology. The chip measures 4.56 mm x 4.24 
mm. There are 16 processing elements and 356k transistors in the 
chips. Preliminary testing results show that the chip works at a 
clock rate of 100 MHz while drawing only 742 mW from a 3.3V 
power supply. Under the above operating condition. 0.15ms is re- 
quired to complete 10 iterations for the previous 5-part test prob- 
lem. The software solution takes approximately 3.5ms on a K6-I1 
300MHz computer. More than 20 times of speed up is achieved. 
The gain is derived from the parallel computation by 16 PES and 
the simplification of the sequential pair-wise comparisons. With 
putting more PES in one LRNN chip and cascading the LRNN 
chips, two orders speed-up may be achieved for larger problems. 

15 State 14 0 
20 State 15 0 
0 State 16 0 

Table 1: Multipliers of type-I machine from C program. 

I MultiDliers I I Multioliers 1 

I 

State4 I 14 I State 12 I 0 
State 5 I 19 I State 13 I 0 1 

5. SUMMARY 

In this paper, a SIMD architecture has been designed to h p l e -  
ment the modified LRNN algorithm for speeding up the job shop 
scheduling problems solving. The design concepts of the archi- 
tecture and the circuit are presented. The logic-level simulation 
results show the feasibility of the SIMD architecture to implement 
the modified LRNN algorithm with parallel hardware efficiently. 
The preliminary performance testing of hardware implementation 
demonstrates the potential of one to two orders speed-up over the 
software one. 
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