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The problem of a planar anisotropic elastic layered half-plane subjected to concen-
trated forces and edge dislocations applied either in the layer or in the half-plane
is analysed. One of the objectives of this study is to develop an effective analytical
methodology to construct the exact full-field solution for this problem. By using the
Lekhnitskii formalism for anisotropic elastic material with the Fourier-transformation
technique, the explicit closed-form solutions for stresses in the layer and the half-
plane are obtained. The solutions are suitable for loadings that are acting on the
free surface or at the interface. The complete solutions for this problem consist only
of the simplest solutions obtained from an infinite homogeneous medium with con-
centrated forces and edge dislocations. The solutions include Green’s function for
applied loadings in an infinite medium and an infinite number of image singularities
that are induced to satisfy the boundary and interface conditions. It is shown that the
physical meaning of the solution is the image method. The magnitudes and locations
of image singularities are determined automatically from the mathematical method
presented in this study. Numerical results for the full-field stress distribution in the
layered half-plane medium subjected to concentrated forces or edge dislocations are
discussed in detail.

Keywords: anisotropic elastic material; layered half-plane;
Fourier transformation; image method

1. Introduction

Among the formalisms for two-dimensional linear anisotropic elasticity, the Lekhnit-
skii formalism (Lekhnitskii 1963) and the Stroh formalism (Stroh 1958) are the two
most widely used methods. The Lekhnitskii formalism begins with the stresses and
can be regarded as the generalization of the Airy stress function to anisotropic elas-
ticity. The Stroh formalism can be traced to the work of Eshelby et al . (1953) and
starts with the displacements. For a two-dimensional planar problem, the applied
loadings are usually considered in two different types: concentrated forces and edge
dislocations. In many applications, the elastic field due to loadings applied in the
interior of the material is made up of dislocations, which are defects in the mate-
rial. In order to understand the motion of a dislocation in an elastic material, one
needs to calculate the stress distribution induced by the dislocation. For homoge-
neous elastic material in an unbounded medium, the elastic field around dislocations
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or concentrated loadings is generally well known. In most engineering applications,
the geometrical configurations all have finite boundaries. Thus the analysis of elastic
fields for material with a finite boundary is necessary. Because of the complexity of
the problem with a finite boundary, there are few analytical results available in the
literature. On the other hand, the layered half-plane subjected to surface traction
is applicable in a number of engineering fields. For example, the coating of a thin
layer to protect soft matrices under contact and friction is a particular case of the
problem. Furthermore, a wide range of electronic components are now manufactured
by depositing semiconducting layers on supporting substrates. To develop our under-
standing of the characteristics of these devices, a detailed knowledge of the behaviour
of dislocations in thin-film structures is needed. In this study, the solutions of lay-
ered half-plane media with a traction-free boundary and a perfectly bonded interface
subjected to concentrated forces or edge dislocations in the interior of the material
are presented. The Lekhnitskii formalism will be employed in conjunction with the
Fourier-transform technique to obtain analytic explicit solutions.

Many research ventures start by addressing problems in a semi-infinite plane sub-
jected to concentrated forces or dislocations, the simplest example of a medium
with a boundary, for the first step of analysis. Head (1953) solved the problem
for an isotropic half-plane. Ting & Barnett (1993) discussed the relation between
the image force on a dislocation and a half-plane with a fixed boundary for an
anisotropic material. Further work, leading to a bimaterial which consists of two per-
fectly bound semi-infinite materials, has been done by Dundurs & Sendeckyj (1965)
for isotropic material and by Barnett & Lothe (1974), Suo (1990) and Ting (1992)
for the anisotropic case. The more advanced and complicated problem is supplied
by a loading in an infinite strip or in an infinite layer bonded on a semi-infinite sub-
strate. Buchwald (1964) showed that the solution of an isotropic infinite strip with
Fourier integrals consisted of classic beam stretching and bending solutions from
the singularities of the integrands. Nabarro & Kostlan (1978) and Moss & Hoover
(1978) solved the problem of an edge dislocation in an isotropic strip with free sur-
faces simultaneously. A similar problem of an orthotropic strip was completed by
Chou (1963). Stagni & Lizzio (1986) obtained the elastic field of an isotropic infi-
nite strip by means of the complex-variable method. They constructed the solution
by using Muskhelishvili’s (1975) complex potentials with the aid of Laurent’s series
expansions. Tullini & Savoia (1999) solved the interior problem of an orthotropic
strip subjected to a given continuous distribution of normal and shear loads. Wu &
Chiu (1995) and Chiu & Wu (1998) obtained the solution of an anisotropic infinite
strip subjected to dislocations and concentrated forces from eigenfunction expan-
sion by residue theory, respectively. The stress distribution of an edge dislocation in
an isotropic layered half-plane was investigated by Weeks et al . (1968) and Lee &
Dundurs (1973).

For anisotropic layered half-plane media, the problem becomes more complicated
than that of their isotropic counterparts, due to the presence of many elastic con-
stants. The goal of this study is to construct Green’s function for planar anisotropic
layered half-plane media subjected to concentrated forces or edge dislocations in the
interior. We will show that the solution obtained from the mathematical method pro-
posed in this study has its own physical meaning, the method of images. The method
of images is a technique that uses a simple fundamental solution in an infinite plane
to construct the solution for other more complicated problems.
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The use of the image method in solving two-dimensional isotropic problems deal-
ing with screw dislocations is well known and has been used successfully for simple
cases of multi-layered structures. It was found that an infinite number of image screw
dislocations were required. The concept of semi-reflection and semi-transmission mir-
rors were used to determine the magnitudes and locations of the image screw dis-
locations without solving the boundary-value problem (Chou 1966; Kamat et al .
1987; Öveçoğlu et al . 1987). The multiple-image problem for screw dislocations then
becomes a combinatorial problem of counting reflections and transmissions for a given
image path length. Basically, one can extend this methodology to include any number
of layers, but as the number of layers increases, obtaining an explicit solution becomes
extremely labourious and time consuming. Hence the work was not extended beyond
the five-layer case (with three finite lengths) by Kamat et al . (1987) and Öveçoğlu
et al . (1987). By using the Fourier-transform technique and a series expansion, an
effective analytical methodology was developed by Lin & Ma (2000) to construct
explicit analytical solutions for an anisotropic multi-layered medium with n layers
(the thickness in each layer is different), due to a screw dislocation in an arbitrary
layer. The mathematical approach proposed by Lin & Ma (2000) is indeed the image
method that provides an automatic determination for the magnitudes and locations
of all the image screw dislocations. This is the most general case for the problem
of screw dislocations in multi-layered media. For the isotropic edge-dislocation case,
however, the locations of the images are independent of the material property and
are the same as those for isotropic screw dislocations, but the image singularities
on the image point are more complicated than the anti-plane one (Ma & Lin 2001).
Due to the complexity and difficulty of the edge-dislocation problem, the solutions
for a strip obtained by Stagni & Lizzio (1986) cannot be easily represented in terms
of an infinite series, but must be expressed in terms of recursion formulae for the
unknown quantities. On the other hand, for an anisotropic half-plane problem, the
image point is not on the opposite side of the applied point. In general, the locations
of image singularities for an anisotropic half-plane are different and depend on the
anisotropic elastic constants (Ting 1996). In the planar anisotropic half-plane prob-
lem, only five image points are required; four points for the in-plane problem and
one point for the anti-plane problem. However, it is difficult to use the conventional
image method to obtain the solution of the anisotropic layered half-plane problem
directly.

In this study, an anisotropic layer perfectly bonded to an anisotropic dissimilar
half-plane (as shown in figure 1) and subjected to in-plane concentrated forces and
edge dislocations applied either in the thin layer or in the half-plane is investigated.
The main objective is to develop an effective mathematical method to construct ana-
lytical full-field solutions for this problem. The solution procedure follows Lekhnit-
skii’s formalism and the Fourier transform. The analytical solutions for the stresses
obtained in this study are exact and are expressed in an explicit closed form. The
complete solutions consist only of the simplest solutions for an infinite homoge-
neous medium with concentrated forces and edge dislocations. It can be shown that
the physical meaning of the solution obtained in this study is the image method.
The magnitudes and locations of image singularities will be determined automat-
ically from the mathematical method presented in the study. For the special case
when the thickness of the layer is infinitely large, the image singularities obtained
by Ting (1992) for anisotropic bimaterials are recovered. The given formulae will
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allow a thorough assessment of the significance of anisotropy in many areas of study.
Numerical results for the full-field stress distribution based on the analytical solutions
are presented.

2. Material constants and governing equations
of a planar anisotropic material

The equilibrium equations for the elastostatic problem in the absence of body forces
are

σij,j = 0, (2.1)

where the repeated indices imply summation and a subscript comma denotes differ-
entiation. The generalized Hooke’s law for an anisotropic, homogeneous and linearly
elastic solid is given by

σij = Cijklεkl, (2.2)

where εkl denotes the infinitesimal strain tensor and the Cijkl are the elasticity
constants, which are assumed to be fully symmetric and positive-definite.

Introducing the contracted notation, the stress–strain law in (2.2) can be written
in a matrix form as



σxx

σyy

σzz

σyz

σxz

σxy




=




C11 C12 C13 C14 C15 C16
C22 C23 C24 C25 C26

C33 C34 C35 C36
C44 C45 C46

sym. C55 C56
C66







εxx

εyy

εzz

εyz

εxz

εxy




(2.3)

or 


εxx

εyy

εzz

εyz

εxz

εxy




=




a11 a12 a13 a14 a15 a16
a22 a23 a24 a25 a26

a33 a34 a35 a36
a44 a45 a46

sym. a55 a56
a66







σxx

σyy

σzz

σyz

σxz

σxy




, (2.4)

where Cij and aij are the elastic stiffnesses and elastic compliances of an anisotropic
material, respectively.

For a general anisotropic material, the in-plane and anti-plane deformations are
coupled. When the compliance matrix (or stiffness matrix) of an anisotropic material
possesses the form

[aij ] =




a11 a12 a13 0 0 a16
a22 a23 0 0 a26

a33 a34 a35 a36

a44 a45 0
sym. a55 0

a66




, (2.5)

then the in-plane and anti-plane deformation will be uncoupled. The problem associ-
ated with the in-plane problem is known as the planar anisotropic problem. In fact,
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monoclinic materials with the symmetry plane at z = 0 not only satisfy the condition
of (2.5), but also require a34 = a35 = 0.

For a two-dimensional planar anisotropic problem, the stress–strain relations are
only dependent on six independent material constants and can be presented in the
matrix form as follows. For plane-stress problems,

εxx

εyy

εxy


 =


a11 a12 a16

a12 a22 a26
a16 a26 a66





σxx

σyy

σxy


 (2.6)

and σzz = σxz = σyz = 0. For plane-strain problems,
εxx

εyy

εxy


 =


s11 s12 s16

s12 s22 s26
s16 s26 s66





σxx

σyy

σxy


 (2.7)

and εzz = εxz = εyz = 0, where the sij are the reduced elastic compliances. The
relationship between sij and aij is

sij = aij − ai3aj3

a33
, i, j = 1, 2, 6. (2.8)

In many applications, the choice of the coordinate is very often dictated by the
boundary conditions of the problem and hence may not coincide with the symme-
try planes of the material. Therefore, transformation of the elastic compliances to a
different coordinate system is necessary. For the special case in which the transfor-
mation is a rotation, the z-axis with an angle θ, the elastic compliances in the new
coordinate system (x′, y′, z′) can be presented as

s′ = (T −1)TsT −1, (2.9)

where

T =


 cos2 θ sin2 θ sin 2θ

sin2 θ cos2 θ − sin 2θ
− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ


 .

For a two-dimensional problem, the in-plane stresses can be represented by the
Airy stress function Φ(x, y) as follows:

σxx =
∂2Φ

∂y2 , σyy =
∂2Φ

∂x2 , σxy = − ∂2Φ

∂x∂y
. (2.10)

In order to satisfy the compatibility equation, the governing equation of planar
anisotropy in the absence of body forces can be obtained as

s22
∂4Φ

∂x4 − 2s26
∂4Φ

∂x3∂y
+ (2s12 + s66)

∂4Φ

∂x2∂y2 − 2s16
∂4Φ

∂x∂y3 + s11
∂4Φ

∂y4 = 0 (2.11)

for plane strain and

a22
∂4Φ

∂x4 − 2a26
∂4Φ

∂x3∂y
+ (2a12 + a66)

∂4Φ

∂x2∂y2 − 2a16
∂4Φ

∂x∂y3 + a11
∂4Φ

∂y4 = 0 (2.12)

for plane stress. The two governing equations are similar, and the difference between
(2.11) and (2.12) is the material constants.

Proc. R. Soc. Lond. A (2002)



2374 C.-C. Ma and R.-L. Lin

3. Green’s function of an anisotropic infinite plane

Consider an anisotropic infinite space subjected to a line of uniformly distributed
forces f per unit length applied on the z-axis and in the direction that is normal to
the z-axis. In addition, there is a line dislocation at the z-axis, with Burgers’s vector
b normal to the z-axis. This is a two-dimensional planar anisotropic problem. For
the plane-strain problem, the governing equation is shown in (2.11). The expression
for the field variables will be found by applying a Fourier transform over the spatial
coordinate x with parameter ω. Take the Fourier-transform pairs of a function g(x, y),
defined as

g̃(ω, y) =
∫ ∞

−∞
g(x, y)e−iωx dx, g(x, y) =

1
2π

∫ ∞

−∞
g̃(ω, y)eiωx dω, (3.1)

and apply to the governing equation (2.11). Then (2.11) becomes an ordinary differ-
ential equation,

s22ω
4 + 2s26iω3 dΦ̃

dy
− (2s12 + s66)ω2 d2Φ̃

dy2 − 2s16iω
d3Φ̃

dy3 + s11
d4Φ̃

dy4 = 0, (3.2)

with the general solutions

Φ̃(ω, y) =
4∑

j=1

cjeςjωy, (3.3)

where cj are unknown constants to be determined and ςj are the roots of the following
characteristic equation:

s22 + 2is26ς − (2s12 + s66)ς2 − 2is16ς
3 + s11ς

4 = 0. (3.4)

There are four roots for ς, all of which are complex numbers. The magnitudes ςj
are related to the eigenvalues of the elastic constant pj of the Lekhnitskii or Stroh
formalism as

ςj = ipj , j = 1, 2, 3, 4,

where pk = αk + iβk, pk+2 = p̄k, k = 1, 2, and αk and βk are real, with βk > 0.
The general solutions for stresses and displacements of planar anisotropic material

in the Fourier-transform domain are represented in a compact matrix form as[
σ̃
ũ

]
= P 〈eiωp∗y〉c, (3.5)

where

σ̃ =
1
ω2

[
σ̃yy

σ̃xy

]
, ũ =

1
iω

[
ũx

ũy

]
,

P =




−1 −1 −1 −1
p1 p2 p3 p4

ξ(p1) ξ(p2) ξ(p3) ξ(p4)
η(p1) η(p2) η(p3) η(p4)


 , c =




c1
c2
c3
c4




and 〈eiωp∗y〉 is the diagonal matrix, i.e.

〈eiωp∗y〉 = diag[eiωp1y, eiωp2y, eiωp3y, eiωp4y],
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in which ux and uy are displacement components in the x- and y-axis, respectively,
and

ξ(pj) = s11p
2
j + s12 − s16pj , η(pj) = s12pj +

s22

pj
− s26.

Consider the loadings f and b which are applied at (x, y) = (0, d) in an infinite
plane. The jump conditions for applied forces and dislocations are[

σ̃
ũ

]∣∣∣∣
y=d+

−
[
σ̃
ũ

]∣∣∣∣
y=d−

=
[

−f
−(1/iω)b

]
, (3.6)

where

f =
[
fy

fx

]
and b =

[
bx

by

]
.

Substituting (3.5) into (3.6), we get

c+ − c− =
1
ω2 〈e−iωp∗d〉q, (3.7)

where

q =




q1
q2
q3
q4


 = P −1

[
−f
b

]
.

The vector q can be regarded as the strength of the applied loadings for anisotropic
infinite plane rather than the force f and dislocation b.

After taking the inverse Fourier transform, Green’s functions of stresses and dis-
placements for the infinite plane are

[
σyy

σxy

]
=

1
π

Re




− iq1

x + p1(y − d)
− iq2

x + p2(y − d)
ip1q1

x + p1(y − d)
+

ip2q2

x + p2(y − d)




=
1
π

Re




2∑
j=1

−iqj

x + pj(y − d)
2∑

j=1

ipjqj

x + pj(y − d)




,

[
ux

uy

]
= − 1

π
Re

{
ξ(p3)q1 ln(x + p1(y − d)) + ξ(p4)q2 ln(x + p2(y − d))
η(p3)q1 ln(x + p1(y − d)) + η(p4)q2 ln(x + p2(y − d))

}
,




(3.8)

where Re denotes the real part. The stresses display a singularity of order 1/r as the
distance r from the applied loadings tends to zero. In the next section, we will show
that Green’s functions for the layered half-plane derived in this study are composed
of the fundamental solutions of an infinite plane as presented in (3.8).
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1

2

x

y

f
b

d
h

half-plane

layer

Figure 1. Configuration and coordinate system of an anisotropic layered half-plane.

4. Green’s function for an anisotropic layered half-plane

Consider a two-dimensional problem of an anisotropic layered half-plane subjected
to a concentrated force and an edge dislocation, as shown in figure 1. Assume the
thin layer with thickness h is occupied by material 1 and is perfectly bonded to
the half-plane occupied by material 2. The x-axis is taken to be the surface of the
thin layer. The thin layer occupies 0 < y < h, while the underlying half-plane (the
substrate) occupies h < y < ∞. A concentrated force f and an edge dislocation with
Burgers’s vector b are applied at (x, y) = (0, d), d > 0, which may be located in the
thin layer, the half-plane, the free surface or the interface of the layered half-plane.
In each case, it is required to evaluate the stresses arising in both the thin layer
and the half-plane. From the general solution presented in (3.5), the solutions in
the Fourier-transform domain for materials 1 (thin layer) and 2 (half-plane) can be
expressed as [

σ̃(1)

ũ(1)

]
= P (1)〈eiωp(1)

∗ y〉c(1), (4.1)[
σ̃(2)

ũ(2)

]
= P (2)〈eiωp(2)

∗ y〉c(2). (4.2)

The superscripts (1) and (2) on the field quantities are employed to label materials 1
and 2, respectively. The boundary conditions on the top surface of the thin layer are
traction free, thus

σ̃(1)(ω, 0) = 0.

In terms of c
(1)
j from (4.1), we have

c
(1)
1 + c

(1)
2 + c

(1)
3 + c

(1)
4 = 0, (4.3)

p
(1)
1 c

(1)
1 + p

(1)
2 c

(1)
2 + p

(1)
3 c

(1)
3 + p

(1)
4 c

(1)
4 = 0. (4.4)

The continuity conditions of stresses and displacements at the interface y = h are[
σ̃(1)

ũ(1)

]
=

[
σ̃(2)

ũ(2)

]
at y = h. (4.5)

We rewrite (4.5) in terms of c(1) and c(2) as

P (1)〈eiωp(1)
∗ h〉c(1) = P (2)〈eiωp(2)

∗ h〉c(2). (4.6)

The bounded solution of stresses and displacements of the half-plane requires that

c
(2)
3 = c

(2)
4 = 0. (4.7)

The complete solutions for the applied loadings in the interior of thin layer and in
the half-plane are different. Thus the problems are considered for two situations.
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1+

x

yf

b
1−

d

Figure 2. The jump conditions for applied loadings at the layer.

(a) The loadings are applied in the thin layer (0 � d < h)

When the loadings are applied in the thin layer, the jump conditions for the thin
layer are employed, [

σ̃(1)

ũ(1)

]∣∣∣∣
y=d+

−
[
σ̃(1)

ũ(1)

]∣∣∣∣
y=d−

=
[

−f
−(1/iω)b

]
. (4.8)

The associated configuration of the jump condition is shown in figure 2. When we
express (4.8) in terms of c(1), we have

(c(1))+ − (c(1))− =
1
ω2 〈e−iωp(1)

∗ d〉q(1), (4.9)

where superscripts ‘+’ and ‘−’ indicate the undetermined constant c(1) in (4.1) for
0 � y � d and d � y � h, respectively, and

q(1) = (P (1))−1
[
−f
b

]
.

With the aid of boundary conditions (4.3), (4.4) and (4.7), continuity conditions
(4.6) and by omitting the algebraic derivation, the undetermined constants c

(1)
j and

c
(2)
k can be expressed explicitly and are summarized as

c
(1)
j =

2∑
k=1

b′
jkc

(2)
k eiω(p(2)

k −p
(1)
j )h, (4.10)

c
(2)
k =

1
ω2

(−1)k

det | ∗ |

4∑
l=1

4∑
m=1

p−
lmb′

m(3−k)q
(1)
l e−iω((p(1)

m +p
(2)
k )h+p

(1)
l d), (4.11)

where

det | ∗ | =
3∑

j=1

4∑
k=j+1

p−
kjBjke−iωp+

jkh,

Bjk = b′
j1b

′
k2 − b′

j2b
′
k1,

b′
ij =

4∑
k=1

[P (1)
ik ]−1[P (2)

kj ],

p±
ij = p

(1)
i ± p

(1)
j .
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The explicit solutions of stress functions in the Fourier-transform domain for the
layered half-plane are

Φ̃(1) =
4∑

j=1

c
(1)
j eip(1)

j ωy, (4.12)

Φ̃(2) =
2∑

k=1

c
(2)
k eip(2)

k ωy. (4.13)

Because the denominators in (4.10) and (4.11) are so complicated, it is not possible to
obtain the inverse Fourier transform directly. In order to obtain the explicit analytical
full-field solutions for the inverse Fourier transform, the denominator det | ∗ | in c

(1)
j

and c
(2)
k should be reformulated. By examining the structure of det | ∗ |, the term

with magnitude p−
21B12e−ip+

12ωh is taken out from det | ∗ |, so that

1
det | ∗ | =

1

p−
21B12e−ip+

12ωh(1 − det | · |)
, (4.14)

where

det | · | = 1 − det | ∗ |
p−
21B12e−ip+

12ωh
.

It can be shown that det | · | < 1 for ω > 0. By the expansion of (4.14) into a power
series of det | · |, we obtain

1

p−
21B12e−ip+

12ωh(1 − det | · |)
=

eip+
12ωh

p−
21B12

∞∑
n=0

(det | · |)n.

Because only five terms are included in det | · |,
∑∞

n=0(det | · |)n can be expressed
explicitly as

eip+
12ωh

p−
21B12

∞∑
n=0

(det | · |)n =
∑

Me−iωgh, (4.15)

where

M =
υ

(p−
21B12)n+1

(p−
13B13)n1(p−

23B23)n2(p−
14B14)n3(p−

24B24)n4(p−
34B34)n5 , (4.16)

g = n1p
+
13 + n2p

+
23 + n3p

+
14 + n4p

+
24 + n5p

+
34 − (n + 1)p+

12, (4.17)

∑
=

∞∑
n=0

n∑
n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

n−n1−n2−n3∑
n4=0

, (4.18)

n5 = n − n1 − n2 − n3 − n4, (4.19)

υ =
n!

n1!n2!n3!n4!n5!
, (4.20)

and ‘!’ denotes factorial. By omitting the details of the derivation, the solutions for
the stress functions in (4.12) and (4.13) can be expressed in the explicit forms as
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follows:

Φ̃(1) =
1
ω2

∑ 4∑
j=1

2∑
k=1

4∑
l=1

4∑
m=1

(−1)kb′
jkb′

m(3−k)p
−
lmq

(1)
l Meiω(p(1)

j y−(p(1)
j +p(1)

m +g)h−p
(1)
l d),

(4.21)

Φ̃(2) =
1
ω2

∑ 2∑
k=1

4∑
l=1

4∑
m=1

(−1)kb′
m(3−k)p

−
lmq

(1)
l Meiω(p(2)

k y−(p(1)
m +p

(2)
k +g)h−p

(1)
l d).

(4.22)

Now, the solutions for Φ̃(1) and Φ̃(2) are linear combinations of exponential func-
tions, i.e. MeiωG; each term represents Green’s function in the transform domain
for concentrated loadings in an infinite homogeneous medium. The term with G in
the exponential functions indicates the location of the loading, and M represents the
magnitude of the loading. The location of the loading depends on the thickness of the
thin layer h, the position of applied loadings d and eigenvalues pj . The magnitude of
M only depends on material constants. Thus four terms in (4.21) are fundamental
solutions of an infinite plane subjected to concentrated forces and edge dislocations.
All the remaining terms in (4.21) and all the terms in (4.22) are image singularities
that are induced to satisfy the boundary and interface continuity conditions. Hence
this method is referred to as the generalization method of images.

Since the solutions in the transformed domain expressed in (4.21) and (4.22)
are exponential functions of ω, only the following inverse Fourier transformation
is required,

1
2π

∫ ∞

−∞
eiω(py+H)eiωx dω =

1
π

Re
[

i
x + py + H

]
,

where H is an arbitrary constant. Therefore, the inverse Fourier transformations
for (4.21) and (4.22) can easily be obtained term by term. Finally, the explicit closed-
form solutions of stresses for the layered half-plane are presented as follows,

σ
(j)
yy

σ
(j)
xy

σ
(j)
xx


 =


ψ(j)|α=0

ψ(j)|α=1

ψ(j)|α=2


 , j = 1, 2, (4.23)

where

ψ(1)(x, y) =
1
π

∞∑
n=0

n∑
n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

n−n1−n2−n3∑
n4=0

4∑
j=1

4∑
l=1

4∑
m=1

Re
[ i(−1)αBjmp−

lmq
(1)
l M(p(1)

j )α

x + p
(1)
j y − (p+

jm + g)h − p
(1)
l d

]
(4.24 a)

=
1
π

2∑
j=1

Re
[ i(−1)α+1q

(1)
j (p(1)

j )α

x + p
(1)
j (y − d)

]
(4.24 b)

+
1
π

2∑
j=1

4∑
l=3

Re
[
p−

l(3−j)

p−
21

i(−1)j+αq
(1)
l (p(1)

j )α

x + (p(1)
j y − p

(1)
l d)

]
(4.24 c)
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+
1
π

4∑
j=1

4∑
l=1

4∑
m=1

(1 − δ(j+m)3) Re
[ i(−1)αBjmp−

lmq
(1)
l M(p(1)

j )α

x + p
(1)
j y − (p+

jm + g)h − p
(1)
l d

]
(4.24 d)

+
1
π

∑′ 4∑
j=1

4∑
l=1

4∑
m=1

Re
[ i(−1)αBjmp−

lmq
(1)
l M(p(1)

j )α

x + p
(1)
j y − (p+

jm + g)h − p
(1)
l d

]
(4.24 e)

and

ψ(2)(x, y) =
1
π

∞∑
n=0

n∑
n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

n−n1−n2−n3∑
n4=0

2∑
k=1

4∑
l=1

4∑
m=1

Re
[ i(−1)k+αb′

m(3−k)p
−
mlq

(1)
l M(p(2)

k )α

x + p
(2)
k (y − h) − (p(1)

m + g)h − p
(1)
l d

]
(4.25 a)

=
1
π

2∑
k=1

2∑
m=1

Re
[

1
B12

i(−1)k+α+mb′
m(3−k)q

(1)
3−m(p(2)

k )α

x + p
(2)
k (y − h) − (p(1)

m − p+
12)h − p

(1)
3−md

]
(4.25 b)

+
1
π

2∑
k=1

4∑
l=1

4∑
m=1

(1 − δ(l+m)3)

× Re
[ i(−1)k+αb′

m(3−k)p
−
mlq

(1)
l M(p(2)

k )α

x + p
(2)
k (y − h) − (p(1)

m + g)h − p
(1)
l d

]
(4.25 c)

+
1
π

∑′ 2∑
k=1

4∑
l=1

4∑
m=1

Re
[ i(−1)k+αb′

m(3−k)p
−
mlq

(1)
l M(p(2)

k )α

x + p
(2)
k (y − h) − (p(1)

m + g)h − p
(1)
l d

]
,

(4.25 d)

in which ∑′
=

∞∑
n=1

n∑
n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

n−n1−n2−n3∑
n4=0

and δjk is Kronecker’s delta. It is noted that the whole-field solutions of stresses in
the layered half-plane (ψ(1)(x, y) for the thin layer and ψ(2)(x, y) for the half-plane)
can be explicitly expressed with compact forms, which are presented in (4.24 a)
and (4.25 a). There are eight summation operators in ψ(1) and ψ(2), but only one
summation operator has infinite summation numbers, i.e.

∑∞
n=0 in ψ(1) and ψ(2). The

infinite summation operator controls the convergence of the solution. Therefore, it is
necessary to add all the terms in the infinite summation operator for the numerical
calculation.

In order to explain the physical meaning of the terms in (4.24 a), the terms with
n = 0 in the solution are taken out and are expressed in (4.24 b)–(4.24 d). If the
thickness of the layer is infinitely large (h → ∞), the layered half-plane solution will
reduce to the half-plane solution, all the terms in (4.24 d) and (4.24 e) will be zero
and only the terms in (4.24 b) and (4.24 c) will be left. The term in (4.24 b) with one
summation is the same as that presented in (3.8) and is the solution for an infinite
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plane with a concentrated force f and an edge dislocation b applied at the location
(0, d). The terms in (4.24 c) with two summations are the image singularities that
satisfy the free-surface condition of the top surface. The locations of these image
singularities are determined by solving the equation x + p

(1)
j y − p

(1)
l d = 0 (j = 1, 2

and l = 3, 4) for x and y. There are four image singularities, which are located outside
the layered half-plane and the results are identical to those obtained for the half-
plane problem by Ting (1992). The image singularity at each image point consists
of a concentrated force and an edge dislocation. It can be verified that all the terms
in (4.24 d) and (4.24 e) are the multiple images of the free surface and interface of
the layered half-plane. The locations of all the image singularities can be determined
by solving the equation x + p

(1)
j y − (p+

jm + g)h − p
(1)
l d = 0 and are dependent on d,

h and the material properties of the thin layer (i.e. material 1).
Similarly, the complete solutions for the half-plane are presented in (4.25 a), and

are rewritten in an alternative form, as presented in (4.25 b)–(4.25 d) by taking n = 0
out of (4.25 a). The terms in (4.25 b) represent the solutions for the bimaterials that
consist of two anisotropic half-planes bonded together along the interface. The solu-
tion in (4.25 b) consists of the first four image singularities related to the interface.
The locations of these image singularities can be determined by setting the denom-
inator of (4.25 b) equal to zero; the results are dependent on d, h and the material
properties for both materials.

(b) The loadings are applied in the half-plane (h � d < ∞)

The general solutions in the Fourier-transform domain for the loadings applied
in the half-plane are the same as those presented in (4.1) and (4.2) for materials 1
and 2, respectively. If the applied loadings are located in material 2, then the jump
conditions are [

σ̃(2)

ũ(2)

]∣∣∣∣
y=d+

−
[
σ̃(2)

ũ(2)

]∣∣∣∣
y=d−

=
[

−f
−(1/iω)b

]
. (4.26)

In terms of the unknown constants c(2), we have

(c(2))+ − (c(2))− =
1
ω2 〈e−iωp(2)

∗ d〉q(2), (4.27)

where

q(2) = (P (2))−1
[
−f
b

]
.

With the boundary conditions expressed in (4.3) and (4.4), and the continuity con-
dition in (4.6), constants c

(1)
j and c

(2)
k are determined and are presented in a compact

form as

c
(1)
j =

−1
ω2

4∑
k=3

b′
jkq

(2)
k eiω((p(2)

k −p
(1)
j )h−p

(2)
k d)

+
1

ω2 det | ∗ |

2∑
k=1

4∑
l=3

3∑
m=1

4∑
r=m+1

(−1)l+s+tb′
jkp−

stB
kl
mrq

(2)
l

× eiω((p(2)
l −p

(1)
j +p+

mr)h−p
(2)
l d), (4.28)

Proc. R. Soc. Lond. A (2002)



2382 C.-C. Ma and R.-L. Lin

c
(2)
k =

1
ω2 q

(2)
k e−iωp

(2)
k

+
1

ω2 det | ∗ |

4∑
l=3

3∑
m=1

4∑
r=m+1

(−1)l+s+tp−
stB

kl
mrq

(2)
l eiω((p(2)

l +p+
mr)h−p

(2)
l d),

(4.29)

where

det | ∗ | =
3∑

m=1

4∑
r=m+1

(−1)s+tp−
stB

33
mre

iωp+
mrh,

s = 3 − m + 1
2(3 − r)(4 − r) + 1

2(m − 2)(m − 1),

t = 10 − m − r − s,

b′′
ij =

4∑
k=1

[P (2)
ik ]−1[P (1)

kj ],

Bkl
mr = b′′

kmb′′
(7−l)r − b′′

krb
′′
(7−l)m,

p±
ij = p

(1)
i ± p

(1)
j .

The solutions of stress functions in the transformed domain are

Φ̃(1) =
4∑

j=1

c
(1)
j eip(1)

j ωy, (4.30)

Φ̃(2) =
2∑

k=1

c
(2)
k eip(2)

k ωy. (4.31)

By using the method as discussed in § 4 a, the denominator det |∗| in (4.28) and (4.29)
can be reformulated by the series expansion as

1
det | ∗ | =

1

p−
21B

33
34eiωp+

34h(1 − det | · |)

=
e−iωp+

34h

p−
21B

33
34

∞∑
n=0

(det | · |)n

=
∑

Meiωgh, (4.32)

where

M =
υ

(p−
21B

33
34)n+1

(p−
31B

33
24)n1(p−

23B
33
14)n2(p−

34B
33
12)n3(p−

14B
33
23)n4(p−

42B
33
13)n5 ,

g = n1p
+
24 + n2p

+
14 + n3p

+
12 + n4p

+
23 + n5p

+
13 − (n + 1)p+

34,∑
=

∞∑
n=0

n∑
n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

n−n1−n2−n3∑
n4=0

,

n5 = n − n1 − n2 − n3 − n4,

υ =
n!

n1!n2!n3!n4!n5!
.
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1

2

x

y
h 30º

135º

η2

ξ 2

η1 ξ 1

Figure 3. The configuration for rotating the principal axis of orthotropic materials 1 and 2.

The closed-form solutions of stresses in the layered half-plane are expressed explic-
itly as follows, 


σ

(j)
yy

σ
(j)
xy

σ
(j)
xx


 =




ψ(j)|α=0

ψ(j)|α=1

ψ(j)|α=2


 , j = 1, 2, (4.33)

with

ψ(1)(x, y)

=
1
π

4∑
j=1

4∑
l=3

Re
[ i(−1)αb′

jlq
(2)
l (p(1)

j )α

x + p
(1)
j (y − h) + p

(2)
l (h − d)

]

+
1
π

∞∑
n=0

n∑
n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

n−n1−n2−n3∑
n4=0

4∑
j=1

2∑
k=1

4∑
l=3

3∑
m=1

4∑
r=m+1

Re
[ i(−1)l+s+t+αb′

jkp−
tsB

kl
mrMq

(2)
l (p(1)

j )α

x + p
(1)
j (y − h) + (p+

mr + g)h + p
(2)
l (h − d)

]
(4.34 a)

=
1
π

4∑
j=3

4∑
l=3

Re
[
(b′

jl − (−1)l
b′
j1B

1l
34 + b′

j2B
2l
34

B33
33

)
i(−1)αq

(2)
l (p(1)

j )α

x + p
(1)
j (y − h) + p

(2)
l (h − d)

]
(4.34 b)

+
1
π

2∑
j=1

4∑
l=3

Re
[ i(−1)αb′

jlq
(2)
l (p(1)

j )α

x + p
(1)
j (y − h) + p

(2)
l (h − d)

]
(4.34 c)

+
1
π

4∑
j=1

2∑
k=1

4∑
l=3

3∑
m=1

λ∑
r=m+1

Re
[ i(−1)l+s+t+αb′

jkp−
tsB

kl
mrMq

(2)
l (p(1)

j )α

x + p
(1)
j (y − h) + (p+

mr + g)h + p
(2)
l (h − d)

]
(4.34 d)

+
1
π

∑′ 4∑
j=1

2∑
k=1

4∑
l=3

3∑
m=1

4∑
r=m+1

Re
[ i(−1)l+s+t+αb′

jkp−
tsB

kl
mrMq

(2)
l (p(1)

j )α

x + p
(1)
j (y − h) + (p+

mr + g)h + p
(2)
l (h − d)

]
, (4.34 e)
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where

λ =

{
3, j = 3, 4,

4, j = 1, 2,

and

ψ(2)(x, y) =
1
π

2∑
k=1

Re
[
i(−1)α+1q

(2)
k (p(2)

k )α

x + p
(2)
k (y − d)

]

+
1
π

∞∑
n=0

n∑
n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

n−n1−n2−n3∑
n4=0

2∑
k=1

4∑
l=3

3∑
m=1

4∑
r=m+1

Re
[

i(−1)l+s+t+αp−
tsB

kl
mrMq

(2)
l (p(2)

k )α

x + p
(2)
k (y − h) + (p+

mr + g)h + p
(2)
l (h − d)

]
.

(4.35)

The terms in (4.34 b) represent the four image singularities related to the interface.
The terms in (4.35) with one summation represent Green’s function of material 2 in
an infinite plane with a concentrated force f and an edge dislocation b applied at
the location (0, d).

The analytical solutions of stresses for loadings applied either in the layer or in the
half-plane can be expressed in compact forms. Each term in the complete solution
represents Green’s functions of simplest solutions for concentrated forces and edge
dislocations in an infinite plane. To conclude, the physical meaning of the solutions
is, indeed, the image method. The mathematical derivation in this study provides
an automatic determination for the magnitude and locations of all the image singu-
larities.

If the loadings are applied on the free surface (d = 0) of material 1 or at the
interface (d = h), the solutions can be obtained directly from that derived in § 4 a
or § 4 b. When the loadings are applied on the free surface of material 1, the complete
solutions can be obtained from (4.24 a) and (4.25 a) by setting d = 0. However, if the
loadings are applied at the interface, the solutions can be constructed from (4.34 a)
and (4.35) by setting d = h.

5. Numerical results for stresses

In this section, the full-field stress distributions of a layered half-plane subjected to
concentrated forces or edge dislocations applied at different locations are investigated.
The material of T300/934 graphite/epoxy is employed for numerical calculations.
The engineering constants of the material in its principal coordinate are (Gibson
1994)

E11 = 131 GPa, E22 = 10.3 GPa, G12 = 6.9 GPa, ν12 = 0.22,

where E11and E22 are Young’s moduli, G12 is the shear modulus and v12 is Poisson’s
ratio. The corresponding elastic compliance constants are

s11 s12 s16
s12 s22 s26
s16 s26 s66


 =


 7.63 −1.68 0

−1.68 97.1 0
0 0 144.5


 × 10−3 (GPa−1).
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Figure 4. (a) Full-field distribution of σyy for the layered half-plane subjected to a surface con-
centrated vertical force fy (σyyh/fy). (b) Full-field distribution of σxy for the layered half-plane
subjected to a surface concentrated vertical force fy (σxyh/fy).

In order to model the planar anisotropic of the material, the principal axis of thin
layer and half-plane are rotated 1

6π and 3
4π, respectively, with respect to the x, y coor-

dinate of the layered half-plane. The associated geometrical configuration is shown
in figure 3, where (ξ1, η1) and (ξ2, η2) indicate the principal axis of materials 1 and 2,
respectively. The elastic compliance constants of materials 1 and 2 can be obtained
by using (2.9) and are expressed as follows,

s11 s12 s16
s12 s22 s26
s16 s26 s66


 =


36.91 −8.59 46.71

−8.59 81.63 30.76
46.71 30.76 117.3


 × 10−3 (GPa−1)

for material 1, and
s11 s12 s16

s12 s22 s26
s16 s26 s66


 =


 61.57 −10.89 −44.73

−10.89 61.57 −44.73
−44.73 −44.73 108.1


 × 10−3 (GPa−1)
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Figure 5. (a) Full-field distribution of σyy for the layered half-plane subjected to a concentrated
horizontal force fx in the layer (σyyh/fx). (b) Full-field distribution of σxy for the layered
half-plane subjected to a concentrated horizontal force fx in the layer (σxyh/fx).

for material 2. A computational program for the numerical calculation of the full-
field configuration of stresses is constructed by using the explicit formulation of the
solutions presented in the previous section. To generate the full-field stress contours,
the series solution is truncated if the numerical calculation is to within an accuracy
of 0.01%. In the stress-distribution contours, short dashed lines and solid lines are
used to indicate negative and positive values, respectively.

Parts (a) and (b) of figure 4 show the contours of stress components σyy and σxy

in the layered half-plane due to a surface vertical concentrated force with magni-
tude fy applied at (x, y) = (0, 0), respectively. Both σyy and σxy are continuous
at the interface and the inclination of the contour is due to the anisotropy of the
material.

Figures 5 and 6 are stress contours, achieved by applying a horizontal concentrated
force fx and an edge dislocation with vertical Burgers’s vector by in the thin layer
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Figure 6. (a) Full-field distribution of σyy for the layered half-plane subjected to a dislocation
with Burgers’s vector by in the layer (σyys66h/by). (b) Full-field distribution of σxy for the layered
half-plane subjected to a dislocation with Burgers’s vector by in the layer (σxys66h/by).
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Figure 7. Image points of the layer and the half-plane for applied loadings at (x, y) = (0, 0.5h).
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Figure 8. (a) Full-field distribution of σyy for the layered half-plane subjected to a disloca-
tion with Burgers’s vector bx at the interface (σyys66h/bx). (b) Full-field distribution of σxy

for the layered half-plane subjected to a dislocation with Burgers’s vector bx at the interface
(σxys66h/bx).

at (x, y) = (0, 0.5h), respectively. The stresses σyy and σxy are continuous at the
interface and are zero on the free surface. Figure 7 shows the image points of the layer
(circles, 137 points) and the half-plane (triangles, 113 points), within −5h � y � 5h,
for applied loadings at (0, 0.5h) in the layer, as indicated in figures 5 and 6. We can
see that the image points for the layer spread out all over the plane, except at the
layer. However, the image points for the half-plane are occupied only in the region
y � h. Usually, thousands of image points are used to obtain the result to within an
accuracy of 0.01%.

Figure 8 shows the stress contours of a layered half-plane subjected to an inter-
face edge dislocation bx at (x, y) = (0, h). Figures 9 and 10 are stress distributions
of a layered half-plane subjected to a vertical concentrated force fy and an edge
dislocation bx applied at (x, y) = (0, 1.3h) in the half-plane, respectively.
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Figure 9. (a) Full-field distribution of σyy for the layered half-plane subjected to a concentrated
vertical force fy in the half-plane (σyyh/fyy). (b) Full-field distribution of σxy for the layered
half-plane subjected to a concentrated vertical force fy in the half-plane (σxyh/fy).

6. Concluding remarks

This study presents analytical investigations of an anisotropic layered half-plane sub-
jected to concentrated forces and edge dislocations. By using the Fourier-transform
technique and a series expansion in the transformed domain, analytical full-field
solutions for stresses are obtained in an explicit closed form. The complete solution
in series form consists of simple solutions for an infinite homogeneous medium with
concentrated loadings. The analytical solution includes two parts: Green’s function
for applied loadings and an infinite number of image singularities that are induced
to satisfy the boundary and interface conditions. The physical meanings of the solu-
tion can be regarded as the image method for the planar anisotropic problem. The
mathematical method introduced in this study provides an automatic determination
for the locations and magnitudes of all the image singularities. A computational pro-
gram for calculating full-field stress distributions of the layered half-plane is easily
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Figure 10. (a) Full-field distribution of σyy for the layered half-plane subjected to a dislocation
with Burgers’s vector bx in the half-plane (σyys66h/bx). (b) Full-field distribution of σxy for
the layered half-plane subjected to a dislocation with Burgers’s vector bx in the half-plane
(σxys66h/bx).

constructed from the explicit formulation of the solutions. Detailed numerical results
of full-field stress distributions are provided in this study for applying concentrated
forces and/or edge dislocations on the boundary or in the interior of the layered
half-plane.

The study of dislocations in multi-layered structures is important as a means of
understanding the mechanical properties of composites and thin films. The motion
of a dislocation is related to the image force or the Peach–Koehler (Peach & Koehler
1950) force exerted on the dislocation. The image force that exerts on the dislocation
is the negative of the gradient of the interaction energy that depends on the location
of the dislocation. The force on the dislocation is most conveniently obtained from
the Peach–Koehler formula. A method for evaluating the image forces on disloca-
tions in the thin film is required to investigate the problem. The solutions available
in the literature have been obtained for relatively simple problems, such as isotropic
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screw or edge dislocations, most of which used multiple-image analysis. However,
this method is not applicable for the problem of edge dislocations in a multi-layered
anisotropic medium. The explicit form of the image force acting on the edge dislo-
cation in an anisotropic thin-film structure can be easily obtained from the results
provided in this study. The image force on the edge dislocation can be calculated as
the summation of force due to the stress fields of all the image singularities in the
thin-film solution. A detailed investigation of the micro-mechanical behaviour for the
interactions of edge dislocations in an anisotropic thin-film structure will be given in
a subsequent paper.

The authors thank the National Science Council, Republic of China, and gratefully acknowledge
grant no. NSC 89-2212-E002-018 to the National Taiwan University.
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