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Abstract

A graph is distance-hereditary if the distance between any two vertices in a connected induced
subgraph is the same as in the original graph. In this paper, we study metric properties of
distance-hereditary graphs. In particular, we determine the structures of centers and medians of
distance-hereditary and related graphs. The relations between eccentricity, radius, and diameter
of such graphs are also investigated.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Distance; Eccentricity; Diameter; Radius; Center; Median; Distance-hereditary graph; Chordal
graph; Ptolemaic graph

1. Introduction

This paper investigates metric properties of centers and medians of distance-
hereditary graphs.

Suppose G = (V; E) is a graph with vertex set V and edge set E. The distance
dG(x; y) or d(x; y) between two vertices x and y in the graph G is the minimum
number of edges of an x–y path in G. The eccentricity eG(v) of a vertex v in G is
maxx∈V d(v; x). The diameter diam(G) of G is the largest eccentricity of a vertex in
G, and the radius rad(G) is the smallest. The center of G is the set

C(G) = {v∈V : eG(v)6eG(x) for all x∈V}:
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The distance sum DG(v) of v is
∑

x∈V dG(v; x). The median of G is the set

M (G) = {v∈V : DG(v)6DG(x) for all x∈V}:
Suppose w is a real-valued function on V . The w-distance sum DG;w(v) of v is∑

x∈V dG(v; x)w(x). The w-median of G is the set

Mw(G) = {v∈V : DG;w(v)6DG;w(x) for all x∈V}:
The local w-median of G is the set

LMw(G) = {v∈V : DG;w(v)6DG;w(x) for all x adjacent to v}:
We very often also call the subgraph induced by the center (respectively, median,
w-median, local w-median) simply the center (respectively, median, w-median, local
w-median) of the graph.

The problem of determining shapes of centers and medians for di@erent classes of
graphs have been extensively studied in the literature, see Refs. [1,3–5,6,10,11,14,15,18–
42]. The earliest such kind of result due to Jordan [18] is that the center or the median
of a tree is either a single vertex or two adjacent vertices. Slater [30,31] examined the
structure of variations of centers for trees. Proskurowski [26] proved that the center of
a maximal outplanar graph is one of seven special graphs. As a generalization, he [27]
found all possible centers of 2-trees and showed that the center of a 2-tree is bicon-
nected. Laskar and Shier [19] proved that the center of a connected chordal graph is
connected. Chang [5] showed that the center of a connected chordal graph is distance
invariant and biconnected. He also gave a characterization of a biconnected chordal
graph of diameter 2 and radius 1 to be the center of some chordal graph. Yushmanov
[38,40] showed that the center of a connected chordal graph is m-convex and is either
a complete graph or its connectivity is no smaller than the connectivity of the block
in which it lies. Soltan and Chepoi [36] proved that the center of a connected chordal
graph has diameter at most 3.

Slater [31] studied the structure of various types of medians for trees. He [32] also
proved that for every graph H there exists a graph G whose median is H , and that the
median of a 2-tree is isomorphic to K1, K2 or K3. Yushmanov [41] and Nieminen [25]
showed that the median of a Ptolemaic graph is a complete graph. Lee and Chang [20]
proved that the w-median of a connected strongly chordal graph is a complete graph
when the function w is positive. Wittenberg [37] proved that for any chordal graph
the local w-median coincides with the w-median if a certain neighborhood condition
holds.

Many results on centers and medians are on graphs with tree-like structures. In this
paper, we focus on distance-hereditary graphs, which include trees and cographs. The
paper is organized as follows. In Section 2, we survey some properties of distance-
hereditary graphs. We also introduce the concept of concavity of a path, and derive
two lemmas that are useful in this paper. Section 3 shows that the center of a distance-
hereditary graph (respectively, bipartite distance-hereditary graph) is either a connected
graph with diameter at most 3 or a cograph (respectively, an independent set of G).
Section 4 shows that the w-median of a distance-hereditary graph with a positive
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function w is a cograph, and the w-median of a bipartite distance-hereditary graph G
with a positive function w is either a connected cograph or an independent set of G.
In Section 5, we show that the w-median of a distance-hereditary graph with a positive
function w “nearly” coincides with its local w-median.

2. Preliminaries of distance-hereditary graphs

This section gives a brief introduction to distance hereditary and related graphs. We
also introduce the concept of concavity of a path, and give two related lemmas that
are useful in the paper.

Suppose S is a vertex subset of a graph G = (V; E). Denote G[S] the subgraph of G
induced by S. The deletion of S from G, denoted by G − S, is the induced subgraph
G[V−S]. The neighborhood NG(v) or N (v) of a vertex v is the set of all vertices
adjacent to v. An induced (or chordless) path is a path v1; v2; : : : ; vn in which vi is not
adjacent to vj whenever |i− j| �= 1. A vertex subset S of a graph G is called m-convex
if all the vertices of all the induced path joining vertices of S lie in S. Two vertices
x and y are connected if there is an x–y path in G; otherwise they are disconnected.
The distance between two vertex subsets A and B is dG(A; B) = min{dG(a; b): a∈A
and b∈B}.

The hanging hu of a connected graph G = (V; E) at a vertex u∈V is the collec-
tion of sets L0(u); L1(u); : : : ; Lt(u) (or L0; L1; : : : ; Lt if there is no ambiguity), where
t = maxv∈V dG(u; v) and Li(u) = {v∈V : dG(u; v) = i} for 06i6t. Li(u) is called the
level i of the hanging hu. For any 16i6t and any vertex v∈Li, let N ′(v) =N (v)∩Li−1.

A graph G is distance hereditary if each connected induced subgraph F of G has
the property that dF(u; v) =dG(u; v) for every pair of vertices u and v in F . Distance-
hereditary graphs were introduced by Howorka [16]. The characterizations and recogni-
tions of distance-hereditary graphs have been studied in [2,8,13,16]. A graph is chordal
if every cycle of length greater than three has a chord. A cograph is a graph containing
no induced path of four vertices, see [7]. A graph is Ptolemaic if for any four vertices
x, y, z, w of it, the Ptolemy inequality d(x; y)d(z; w)6d(x; z)d(y; w) + d(x; w)d(y; z)
holds. It was shown in [17] that G is Ptolemaic if and only if G is distance hereditary
and chordal. Some containment relationships among these and other families of graphs
are as follows:

trees ⊂ block graphs ⊂ Ptolemaic graphs ⊂ distance-hereditary graphs,
trees ⊂ bipartite distance-hereditary graphs ⊂ distance-hereditary graphs,
cographs ⊂ distance-hereditary graphs,
Ptolemaic graphs ⊂ strongly chordal graphs ⊂ chordal graphs.

Theorem 1 (Bandelt and Mulder [2], D’Atri and Moscarini [8], Hammer and Ma@ray
[13], Howorka [16]). For any connected graph G = (V; E) the following statements
are equivalent:

(1) G is a distance-hereditary graph.
(2) Every cycle of length at least 7ve in G has two crossing chords.
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(3) Every induced path in G is a shortest path.
(4) For every hanging hu = (L0; L1; : : : ; Lt) of G and every pair of vertices x, y∈Li

(16i6t) that are in the same component of G − Li−1, N ′(x) =N ′(y).

Theorem 2 (Bandelt and Mulder [2], D’Atri and Moscarini [8], Hammer and Ma@ray
[13], Howorka [16]). Suppose hu = (L0; L1; : : : ; Lt) is the hanging of a connected dis-
tance-hereditary graph G at u. Then, every Li induces a cograph. Moreover, if G is
bipartite, then every Li is an independent set of G.

Suppose G = (V; E) is a graph. For two vertices x and y in V , let

Vxy = {v∈V : dG(x; v)¡dG(y; v)}:
DeMne the function ‘u from V to non-negative integers by: ‘u(v) = k whenever
dG(u; v) = k, or equivalently, v is in Lk for the hanging hu = (L0; L1; : : : ; Lt) of G at u.
A path P : x0; x1; : : : ; xk is u-concave downward if ‘u(x0)¿‘u(x1)¿ · · ·¿‘u(xr−1)¿
‘u(xr) = ‘u(xr+1) = · · · = ‘u(xr′)¡‘u(xr′+1)¡ · · ·¡‘u(xk−1)¡‘u(xk) for some 06r6
r′6k with 06r′ − r61. P is monotone if r = k or r′ = 0.

The following two lemmas are useful in this paper. Note that they are trivial for the
case when the distance-hereditary graphs are trees.

Lemma 3. Suppose hu = (L0; L1; : : : ; Lt) is the hanging of a connected distance-
hereditary graph G at u. For any two vertices x and y in G, there exists a shortest
x–y path which is u-concave downward.

Proof. Suppose P : x = x0; x1; : : : ; xk =y is a shortest x–y path, where dG(x; y) = k. We
may assume that P is chosen such that s(P) =

∑k
j=0 ‘u(xj) is as small as possible. Let

i be the largest index such that x0; x1; : : : ; xi is u-concave downward. Note that i¿1.
In fact i = k and so the lemma holds. Suppose to the contrary that i¡k. Then one of
the following cases holds:

(1) ‘u(xi−1) = ‘u(xi)¿‘u(xi+1).
(2) ‘u(xi−1)¡‘u(xi) = ‘u(xi+1).
(3) ‘u(xi−1) = ‘u(xi) = ‘u(xi+1).
(4) ‘u(xi−1)¡‘u(xi)¿‘u(xi+1).

For case (1) or (2), by Theorem 1 (4), xi−1 is adjacent to xi+1, a contradiction to that
P is a shortest path. For case (3) or (4), by Theorem 1 (4), xi−1 and xi+1 have a
common neighbor x′i with ‘u(x′i) = ‘u(xi−1)− 1. Then, the path P′ resulting from P by
replacing xi with x′i is also a shortest x–y path whose s(P′)¡s(P), a contradiction to
the choice of P. This completes the proof of the lemma.

Lemma 4. Suppose P : x0; x1; : : : ; xk is an induced path of a distance-hereditary graph
G = (V; E). If k = 2 with G chordal or k¿3, then Vx0x1 is a proper subset of Vxk−1xk .

Proof. Suppose hx0 = (L0; L1; : : : ; Lt) is the hanging of G at x0. Assume that there
exists some vertex v∈Vx0x1−Vxk−1xk . By Lemma 3, there exists an x0-concave downward
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shortest v–xk path P′ : v=y0; y1; : : : ; yr; : : : ; yr′ ; : : : ; yk′ = xk , where yr (respectively, yr′)
is the Mrst (respectively, last) vertex of P′ in a smallest level Lf with 06r′ − r61.

For the case when f¿2, yr and xf are in the same component of G−Lf−1. Accord-
ing to Theorem 1 (4), yr is adjacent to xf−1 and so v=y0; y1; : : : ; yr; xf−1; xf−2; : : : ; x1;
x0 is a shortest v–x0 path, contradicting that v∈Vx0x1 .

For the case when f = 0, v=y0; y1; : : : ; yr; x1; x2; : : : ; xk−1; xk is a shortest v–xk path,
contradicting that v �∈Vxk−1xk .

Now, suppose f = 1. For the case when k¿3, yr′+1 and x2 are in the same compo-
nent of G−L1. According to Theorem 1 (4), yr′ is adjacent to x2 and so v=y0; y1; : : : ;
yr′ ; x2; x3; : : : ; xk−1; xk is a shortest v–xk , contradicting that v �∈Vxk−1xk . For the case when
k = 2 and G is chordal, yr′ and x1 adjacent to x2 imply that they are also adjacent to
x0, i.e., yr′x0x1x2yr′ is a cycle of G. By the deMnition of a chordal graph, yr′ is adja-
cent to x1. If r = r′, then dG(v; x1)6dG(v; x0), contradicting that v∈Vx0x1 . If r = r′ − 1,
then x0x1x2yr′yrx0 is a cycle of G. By Theorem 1 (2), yr is adjacent to x1, and hence
dG(v; x1)¡dG(v; x2) contradicting that v �∈Vxk−1xk .

Therefore, Vx0x1 is a subset of Vxk−1xk ; and in fact a proper subset as
xk−1∈Vxk−1xk − Vx0x1 . This completes the proof of the lemma.

3. Centers

The purpose of this section is to investigate the shapes of centers of distance-heredit-
ary graphs. We in fact study centers in a more general setting as follows. Suppose S is
a non-empty subset of V in a graph G = (V; E). The S-eccentricity eG; S(v) of a vertex
v in G is maxx∈S d(v; x).

The S-center of G is CS(G) = {v∈V : eG; S(v)6eG; S(x) for all x∈V}.
The anticenter of G is AC(G) = {v∈V : eG(v)¿eG(x) for all x∈V}.
The S-anticenter of G is ACS(G) = {v∈V : eG; S(v)¿eG; S(x) for all x∈V}.

Theorem 5. Suppose S is a non-empty vertex set of a distance-hereditary graph
G = (V; E). If H is a connected component of G[T ], where T ⊆V with eG; S(x) = eG; S

(y) for every two vertices x and y in T, then diam(H)63. If moreover G is Ptolemaic,
then diam(H)62.

Proof. Suppose x and y are two vertices in V (H) such that dH (x; y) = diam(H) = k.
Choose an induced x–y path P : x = x0; x1; : : : ; xk =y in H . Note that P is also an
induced path of G and eG; S(x0) = eG; S(x1) = · · · = eG; S(xk). Let eG; S(x1) =dG(x1; z) for
some vertex z∈S. Then, for 06i6k, we have

dG(xi; z)6eG; S(xi) = eG; S(x1) =dG(x1; z); i:e:; z∈Vxix1 or dG(xi; z) =dG(x1; z):

We Mrst prove that k63. Suppose to the contrary that k¿4. If z∈Vx0x1 , then
z∈Vx2x3 and z∈Vx3x4 by Lemma 4. These imply that eG; S(x4)¿dG(x4; z) =dG(x3; z)+1 =
dG(x2; z)+2¿dG(x1; z) = eG; S(x1), a contradiction. Hence dG(x0; z) =dG(x1; z). We then
hang G at z. Note that x0 and x1 are in the same level. If x2 is in level dG(x2; z) =
dG(x1; z) − 1, then x0 is adjacent to x2 by Theorem 1 (4), a contraction. Hence
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dG(x1; z)6dG(x2; z). Since dG(x0; z) =dG(x1; z), we have z �∈Vx1x0 . By Lemma 4, z �∈Vx3x2

and so dG(x2; z)6dG(x3; z). Therefore, dG(x0; z) =dG(x1; z)6dG(x2; z)6dG(x3; z)
6dG(x1; z) and so dG(x0; z) =dG(x1; z) =dG(x2; z) =dG(x3; z). Now, consider the hang-
ing of graph G at z. Then x0; x1; x2; x3 are in the same level. By Theorem 1 (4), there
exists a vertex z∗ adjacent to x0, x1, x2, and x3. Note that z∗x0x1x2x3z∗ is a cycle of
length 5 without crossing chords, a contradiction. Hence k63, i.e., diam(H)63.

Next, we prove that k62 when G is Ptolemaic. Suppose to the contrary that k¿3. If
z∈Vx0x1 , then z∈Vx1x2 by Lemma 4. This implies that eG; S(x2)¿dG(x2; z)¿dG(x1; z) =
eG; S(x1), a contradiction. Hence z �∈Vx0x1 and so dG(x0; z) =dG(x1; z) and z �∈Vx1x0 . Then,
by Lemma 4, z �∈Vx2x1 and z �∈Vx3x2 . Therefore, dG(x0; z) =dG(x1; z)6dG(x2; z)6dG(x3; z)
6dG(x1; z) and so dG(x0; z) =dG(x1; z) =dG(x2; z) =dG(x3; z). Again, we can get a cycle
z∗x0x1x2x3z∗ of length 5 without crossing chords, a contradiction. Hence k62, i.e.,
diam(H)62.

Corollary 6. Suppose S is a non-empty vertex set in a distance-hereditary graph G.
If H is a connected component of the subgraph induced by CS(G) or ACS(G), then
diam(H)63. If moreover G is Ptolemaic, then diam(H)62.

The distance-hereditary graphs G1 and G2 and the Ptolemaic graphs G3

and G4 in Fig. 1 show that the bounds in Corollary 6 are sharp. Note that C(G1) =
{a1; b1; c1; d1; e1; f1}, AC(G2) has a connected component G2[{a2; b2; c2; d2}], C(G3) =
{a3; b3; c3; d3; e3}, and AC(G4) has a connected component G4[{a4; b4; c4; d4; e4}].

Because distance-hereditary graphs have a “tree like” structure of adjacency, one may
expect that their centers are “small” and “compact”. The following lemma supports such
expectations.

Lemma 7. If V1 and V2 are the vertex sets of two distinct components of the S-center
of a distance-hereditary graph G = (V; E), then dG(V1; V2) = 2.

Proof. Assume that dG(V1; V2)¿3. Then there exists an induced path P : x0; x1; : : : ; xk ,
where k¿3, x0∈V1, xk ∈V2, but x1; xk−1 �∈CS(G). Assume z is a vertex in S with
dG(xk−1; z) = eG; S(xk−1). Since xk ∈CS(G) and xk−1 �∈CS(G), dG(xk ; z)6eG; S(xk)¡eG;S

(xk−1) =dG(xk−1; z) and so z∈Vxkxk−1 . By Lemma 4, we then have z∈Vx1x0 . Let hz =
(L0; L1; : : : ; Lt) be the hanging of G at z. Since x0∈CS(G) and xk−1 �∈CS(G), we have
dG(x0; z)6eG; S(x0)¡eG;S(xk−1) =dG(xk−1; z). Therefore, the relative positions of x0; x1;
xk−1; xk are as shown in Fig. 2(a). Thus, there exists a vertex xj in the path P such
that xj and xk are in the same level, say Li, of hz, and xjxj+1xj+2 : : : xk is a path in
G − Li−1 (see Fig. 2(b)). Then, by Theorem 1 (4), xk is adjacent to xj−1, contrary to
that P is an induced path. Therefore, dG(V1; V2)62.

Theorem 8. If G is a distance-hereditary graph, then the S-center CS(G) is either a
connected graph of diameter 3 or a cograph. If moreover G is a bipartite distance-
hereditary graph, then the S-center CS(G) is either a connected graph of diameter
63 or an independent set of G.
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Fig. 1. Examples for which the bounds in Corollary 6 are sharp.

Proof. First, if H =G[CS(G)] is connected, then the theorem follows immediately
from Theorem 5. Hence, we may assume that H is disconnected. Choose any two
distinct components H1 and H2. Then, by Lemma 7, there exists an induced path
xzy in G such that x∈V (H1), y∈V (H2) and z �∈CS(G). Suppose w is a vertex in S
with dG(w; z) = eG; S(z). Then dG(w; x)6eG; S(x)¡eG;S(z) =dG(w; z) and so dG(w; z) =
dG(w; x) + 1. Similarly, dG(w; z) =dG(w; y) + 1.

Let hw = (L0; L1; : : : ; Lt) be the hanging of G at w. Note that x and y lie on the same
level Li of hw and z∈Li+1. Now for every vertex x′∈H1, dG(w; x′)6eG; S(x′)¡eG;S(z)
=dG(w; z) and so x′∈Lr for some r6i. In fact r = i. Suppose to the contrary that
x′∈Lr for some r6i− 1. Then H1 has an x–x′ path P laying above level i +1. Hence
P contains an edge uv such that y and u are in the same component of G − Li−1 and
v∈Li−1. Thus, by Theorem 1 (4), y is adjacent to v and hence y∈H1, a contradiction.
Therefore, every vertex of H1 lies on level Li. Hence H1 is a cograph by Theorem 2.
Moreover, if G is also bipartite, then Li is an independent set of G by Theorem 2, and
so is H1. This completes the proof of the theorem.

As described in [5], Hedetniemi proved that any graph H is isomorphic to the center
of some graph G of diameter 4 and radius 2. When H is a cograph, an analogous
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Fig. 2. For the proof of Lemma 7.

result for distance-hereditary graph G is the following theorem. Using the proof of this
theorem, we can construct a distance-hereditary graph whose center induces a graph
with arbitrary number of components. Also the center of a bipartite distance-hereditary
graph can be an independent set of arbitrarily large size.

Theorem 9. For any given cograph H there exists a connected distance-hereditary
graph G whose center is isomorphic to H.

Proof. We construct G by adding four new vertices u, v, w, x into H such that v and
w are adjacent to all vertices of H , u is adjacent only to v and x only to w. It is clear
that G is a distance-hereditary graph whose center is isomorphic to H .

4. Medians

This section discusses the structures of medians of distance-hereditary graphs. We
again study medians in a more general setting. Suppose S is a non-empty subset of V .
The S-distance sum DG;S(v) is equal to

∑
x∈S dG(v; x). The S-w-distance sum DG;S;w(v)

of v is
∑

x∈S dG(v; x)w(x). The S-median (also called the S-centroid [31]) of G is the
set

MS(G) = {v∈V : DG;S(v)6DG;S(x) for all x∈V}:
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The S-w-median of G is the set

MS;w(G) = {v∈V : DG;S;w(v)6DG;S;w(x) for all x∈V}:
The antimedian of G is the set

AM(G) = {v∈V : DG(v)¿DG(x) for all x∈V}:

Lemma 10 (Entringer et al. [10], Slater [31]). If a and b are two adjacent vertices of
a graph G = (V; E) with a function w on V, then DG;w(a)−DG;w(b) =w(Vba)−w(Vab).

Proof. The lemma follows immediately from the fact that

DG;w(a) − DG;w(b) =
∑

x∈Vab

{dG(x; a) − dG(x; b)}w(x)

−
∑

x∈Vba

{dG(x; a) − dG(x; b)}w(x):

Lemma 11. Suppose P : x0; x1; : : : ; xk is an induced path of a distance-hereditary graph
G = (V; E) with a function w¿0 (respectively, w¿0) on V. If either k¿2 with G
chordal or k¿3, then DG;w(x0)−DG;w(x1)¿ (respectively, ¿) DG;w(xk−1)−DG;w(xk).

Proof. The lemma follows immediately from Lemmas 4 and 10.

Theorem 12. For any S ⊆V of a Ptolemaic graph G = (V; E) with a function w¿0,
the S-w-median MS;w(G) is m-convex.

Proof. Assume MS;w(G) is not m-convex. Then there exists an induced path P : x0; x1;
: : : ; xk in G with k¿2 such that x0; xk ∈MS;w(G) but x1; xk−1 �∈MS;w(G). Then, by
Lemmas 10 and 4, we have

0 ¿ DG;S;w(x0) − DG;S;w(x1)

= w(Vx1x0 ∩ S) − w(Vx0x1 ∩ S)

¿w(Vxkxk−1 ∩ S) − w(Vxk−1xk ∩ S)

= DG;S;w(xk−1) − DG;S;w(xk)¿0;

a contradiction. So, MS;w(G) is m-convex.

Corollary 13 (Soltan [35]). The median of a Ptolemaic graph is connected.

Corollary 14 (Slater [31]). For any subset S of the vertices of a tree T, the S-median
of T is connected.

Theorem 15. Suppose G = (V; E) is a distance-hereditary graph with a function w¿0.
If H is a connected component of G[T ], where T ⊆V having DG;w(x) =DG;w(y) for
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every two vertices x and y in T, then H is a cograph. If moreover G is Ptolemaic,
then H is a clique.

Proof. Suppose P : x0; x1; : : : ; xk is an induced path in H . Note that P is also an
induced path of G. If G is distance hereditary (respectively, Ptolemaic) and k¿3
(respectively, k¿2), then by Lemma 11 and the fact that w¿0, we have DG;w(x0) −
DG;w(x1)¿DG;w(xk−1) − DG;w(xk), contrary to DG;w(x0) =DG;w(x1) =DG;w(xk−1) =
DG;w(xk). So, k62 (respectively, 61) and hence H is a cograph (respectively, a
clique).

Corollary 16 (Nieminen [25], Yushmanov [38]). The median of a Ptolemaic graph is
a clique.

Corollary 17 (Yushmanov [38]). Every connected component of the subgraph induced
by the antimedian of a Ptolemaic graph is a clique.

It is worth pointing out that the S-median of a Ptolemaic graph does not have a
theorem like Theorem 15. As shown in [31], there exist trees whose S-median contains
a path of n vertices for any n. The following theorem shows that the median of a
distance-hereditary graph nearly coincides with its local median.

Theorem 18. Suppose G is a distance-hereditary graph with a function w¿0. If
x∈Mw(G) and y∈LMw(G), then d(x; y)62.

Proof. Suppose P : x = x0; x1; : : : ; xk =y is an induced x–y path of G. Assume k¿3. By
Lemma 11, we have 0¿DG;w(x0) − DG;w(x1)¿DG;w(xk−1) − DG;w(xk)¿0, a
contradiction. So dG(x; y)62.

Theorem 19. If G is a Ptolemaic graph with a function w¿0, then Mw(G) =LMw(G).

Proof. Assume that LMw(G)−Mw(G) �= ∅. Pick y∈LMw(G)−Mw(G) and x∈Mw(G)
such that dG(x; y) =dG(LMw(G)−Mw(G); Mw(G)). Suppose P : x = x0; x1; : : : ; xk =y is
an induced x–y path of G. Note that k¿2 and x1 �∈Mw(G). Hence, by Lemma 11,
0¿DG;w(x0) − DG;w(x1)¿DG;w(xk−1) − DG;w(xk)¿0, a contradiction. Therefore, LMw

(G) −Mw(G) = ∅ and so Mw(G) − LMw(G).

Theorem 20. If G = (V; E) is a distance-hereditary graph with a function w¿0, then
its w-median is a cograph. If moreover G is bipartite distance hereditary, then its
w-median is either a connected cograph or an independent set of G.

Proof. The Mrst part of the theorem follows from Theorem 15 immediately. To prove
the second part, suppose V1 and V2 are the vertex sets of two distinct components of
the w-median of G. For any two vertices x∈V1 and y∈V2, by Theorem 18, we have
dG(x; y) = 2. Now consider the hanging hx = (L0; L1; : : : ; Lt) of G at x. Clearly V2 ⊆L2

and hence V2 is an independent set of G by Theorem 2.
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5. Convexity and diameters

This section investigates metric properties for chordal graphs and distance-hereditary
graphs.

A vertex subset S is called an x–y separator of G if x and y are in di@erent
components of G − S. An x–y separator S is said to be minimal if no proper subset
of S is an x–y separator of G.

Theorem 21 (Dirac [9]). Every minimal x–y separator of a chordal graph is a clique.

Theorem 22. If G = (V; E) is a chordal graph and S ⊆V , then the S-center CS(G) of
G is m-convex.

Proof. Assume to the contrary that CS(G) is not m-convex. Then there exist x and y in
CS(G) with an induced x–y path P of G such that |V (P)|¿3 and P ∩CS(G) = {x; y}.
Suppose C is a minimal x–y separator of G. So, there exists a vertex r∈P ∩C and
hence r∈C − CS(G). Suppose s′∈S with dG(s′; r) = eG; S(r). If s′∈C then eG; S(r) = 1
contradicting that r �∈CS(G). Hence, without loss of generality, we may assume
that s′ and x are in di@erent components of G − C. By the fact that C is a
clique, there exists a vertex t∈C such that eG; S(x)¿dG(s′; x) =dG(s′; t) + dG(t; x)¿
dG(s′; t) + 1¿dG(s′; r) = eG; S(r) contrary to that eG; S(x)¡eG;S(r). Therefore, CS(G) is
m-convex.

Corollary 23 (Yushmanov [38,40]). The center C(G) of a chordal graph is m-convex.

Suppose x and y are two vertices in a graph G with dG(x; y) = eG(y). It is easily seen
that if G is a tree then eG(x) = diam(G). In general, eG(x) �= diam(G) for a distance-
hereditary graph G. Moreover, the di@erence between eG(x) and diam(G) may be
arbitrarily large for a general graph. However, in the following theorem we show that
eG(x) is nearly equal to diam(G) for a distance-hereditary graph G. The graphs given
in Fig. 3 show that the bounds in the following theorem are sharp.

Theorem 24. For any vertex y in a distance-hereditary graph G = (V; E). If x is a
vertex with dG(y; x) = eG(y), then eG(x)¿diam(G) − 2. If moreover G is Ptolemaic,
then eG(x)¿diam(G) − 1.

Fig. 3. Examples for which the bounds in Theorem 24 are sharp.
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Proof. Let hu = (L0; L1; : : : ; Lt) be the hanging of G at a vertex u having eG(u) = diam
(G) = t. Choose a vertex z in Lt . By Lemma 3, there exists a u-concave downward
shortest x–y path

Px : x = x0; x1; : : : ; xr ; : : : ; xr′ ; : : : ; xk =y;

where xr (respectively, xr′) is the Mrst (respectively, last) vertex of Px in a smallest
level Lfx with 06r′ − r61; and a u-concave downward shortest z–y path

Pz : z = z0; z1; : : : ; zs; : : : ; zs′ ; : : : ; zm =y;

where zs (respectively, zs′) is the Mrst (respectively, last) vertex of Pz in a smallest
level Lfz with 06s′ − s61.

We may assume that ‘u(z)−2¿‘u(x), for otherwise diam(G)−1 = ‘u(z)−16‘u(x)6
eG(x) and so the theorem holds.

Suppose xi = zj for some i6r and j6s. Since dG(zj; z) = ‘u(z) − ‘u(zj)¿‘u(x) −
‘u(xi) =dG(xi; x), we have dG(y; z) =dG(y; zj) + dG(zj; z)¿dG(y; xi) + dG(xi; x) =
dG(y; x) = eG(y), a contradiction. Therefore, the two paths x0; x1; : : : ; xr and z0; z1; : : : ; zs
have no vertex in common.

Next, (‘u(x) − fx) + (r′ − r) + (‘u(y) − fx) =dG(x; y) = eG(y)¿dG(z; y) = (‘u(z) −
fz) + (s′ − s) + (‘u(y) − fz). Therefore, ‘u(z) − 2¿‘u(x) and r′ − r61 and 06s′ − s
imply fx¡fz. Let xq (respectively, xq′) be the Mrst (respectively, last) vertex of Px in
level Lfz−1. Since xq′+1 and zs are connected in G − Lfz−1, by Theorem 1 (4), xq′ is
adjacent to zs. Consider the x–z path

P1 : x = x0; x1; x2; : : : ; xq′ ; zs; zs−1; : : : ; z0 = z:

Suppose P1 is an induced path. Note that dG(x; xq′) + dG(xq′ ; y) =dG(x; y) =
eG(y)¿dG(u; y) =dG(u; xq′) + dG(xq′ ; y). Then, dG(x; xq′)¿dG(u; xq′) and so eG(x)¿
dG(x; z) =dG(x; xq′) + dG(xq′ ; z)¿dG(u; xq′) + dG(xq′ ; z)¿dG(u; z) = diam(G). In this
case, the theorem holds.

We then may assume that P1 is not an induced path, say P1 has a chord joining
some vertex xi to some vertex zj. Note that in this case 0¡q6r6r′6q′¡k. Then,
either i = q with j = s, or i6q−1 with j6s. For the Mrst case, xqzs∈E. For the second
case, xq−1 and zs are connected in G−Lfz−1, and so again xqzs∈E by Theorem 1 (4).
In any case, dG(zs; xq) = 1.

Since dG(y; zs) + dG(zs; xq) + dG(xq; x) ¿ dG(y; x) = eG(y) ¿ dG(y; z) =
dG(y; zs) + dG(zs; z), we have 1 + dG(xq; x)¿dG(zs; z). By the fact that dG(xq; x) =
‘u(x) − ‘u(xq)6eG(x) − (fz − 1) and dG(zs; z) = diam(G) − fz, we then have
eG(x)¿diam(G) − 2. This proves the Mrst part of the theorem.

To prove the second part of the theorem, suppose G is Ptolemaic, i.e., G is chordal
and distance hereditary. For the case when xq = xq′ , we have q= r = r′ = q′ and fx =
fz − 1. For the case when xq �= xq′ , since the two vertices xq and xq′ in Lfz−1 are
adjacent to zs∈Lfz , they are also adjacent to some w∈Lfz−2 according to Theorem 1
(4). By the chordality of G, the cycle w; xq; zs; xq′ ; w has a chord, which must be xqxq′ .
So, q= r¡r′ = q′ and fx =fz − 1. In any case, dG(xq; xq′)61. Consider the x–z path

P2 : x = x0; x1; : : : ; xq; zs; zs−1; : : : ; z0 = z:
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Suppose P2 is an induced path. Note that dG(x; xq) + dG(xq; xq′) + dG(xq′ ; y) =dG(x; y)
= eG(y)¿dG(u; y) =dG(u; xq′) +dG(xq′ ; y) and so dG(x; xq)¿dG(u; xq′)− 1 since
dG(xq; xq′)61. Therefore, eG(x)¿dG(x; z) =dG(x; xq)+dG(xq; zs)+dG(zs; z)¿dG(u; xq′)−
1+dG(xq′ ; zs)+dG(zs; z)¿dG(u; z)− 1 = diam(G)− 1, since dG(xq′ ; zs) =dG(xq; zs) = 1.
In this case, the second part of the theorem holds.

We then may assume that P2 has a chord joining some vertex xi to some vertex
zj with i6q − 1 and j6s. Then xq−1 and zs′ are connected in G − Lfz−1. Again, by
Theorem 1 (4) and (2) and the chordality of G, dG(xq−1; zs′)61. Thus, dG(y; x)6
dG(y; zs′)+dG(zs′ ; xq−1)+dG(xq−1; x)6dG(y; zs′)+ 1+dG(xq−1; x) =dG(y; xq′+1)+1+
dG(xq−1; x)¡dG(y; xq′+1) + dG(xq′+1; xq−1) + dG(xq−1; x) =dG(y; x), a contradiction.
This completes the proof of the theorem.
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