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Abstract

A graph is distance-hereditary if the distance between any two vertices in a connected induced
subgraph is the same as in the original graph. In this paper, we study metric properties of
distance-hereditary graphs. In particular, we determine the structures of centers and medians of
distance-hereditary and related graphs. The relations between eccentricity, radius, and diameter
of such graphs are also investigated.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper investigates metric properties of centers and medians of distance-
hereditary graphs.

Suppose G=(V,E) is a graph with vertex set V' and edge set E. The distance
dg(x,y) or d(x,y) between two vertices x and y in the graph G is the minimum
number of edges of an x—y path in G. The eccentricity eg(v) of a vertex v in G is
maxycy d(v,x). The diameter diam(G) of G is the largest eccentricity of a vertex in
G, and the radius rad(G) is the smallest. The center of G is the set

C(G)={veVl: eg(v)<eg(x) for all xeV}.
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The distance sum Dg(v) of v is > __, dg(v,x). The median of G is the set

xev

M(G)={veV: Dg(v)<Dg(x) for all xeV'}.

Suppose w is a real-valued function on V. The w-distance sum Dg,,(v) of v is
> ey d6(v,x)w(x). The w-median of G is the set

M, (G)={veV: Dg,(v)<Dg(x) for all xeV}.
The local w-median of G is the set
LM (G)={veV: Dg,(v)<Dg,(x) for all x adjacent to v}.

We very often also call the subgraph induced by the center (respectively, median,
w-median, local w-median) simply the center (respectively, median, w-median, local
w-median) of the graph.

The problem of determining shapes of centers and medians for different classes of
graphs have been extensively studied in the literature, see Refs. [1,3-5,6,10,11,14,15,18-
42]. The earliest such kind of result due to Jordan [18] is that the center or the median
of a tree is either a single vertex or two adjacent vertices. Slater [30,31] examined the
structure of variations of centers for trees. Proskurowski [26] proved that the center of
a maximal outplanar graph is one of seven special graphs. As a generalization, he [27]
found all possible centers of 2-trees and showed that the center of a 2-tree is bicon-
nected. Laskar and Shier [19] proved that the center of a connected chordal graph is
connected. Chang [5] showed that the center of a connected chordal graph is distance
invariant and biconnected. He also gave a characterization of a biconnected chordal
graph of diameter 2 and radius 1 to be the center of some chordal graph. Yushmanov
[38,40] showed that the center of a connected chordal graph is m-convex and is either
a complete graph or its connectivity is no smaller than the connectivity of the block
in which it lies. Soltan and Chepoi [36] proved that the center of a connected chordal
graph has diameter at most 3.

Slater [31] studied the structure of various types of medians for trees. He [32] also
proved that for every graph H there exists a graph G whose median is H, and that the
median of a 2-tree is isomorphic to K, K, or K3. Yushmanov [41] and Nieminen [25]
showed that the median of a Ptolemaic graph is a complete graph. Lee and Chang [20]
proved that the w-median of a connected strongly chordal graph is a complete graph
when the function w is positive. Wittenberg [37] proved that for any chordal graph
the local w-median coincides with the w-median if a certain neighborhood condition
holds.

Many results on centers and medians are on graphs with tree-like structures. In this
paper, we focus on distance-hereditary graphs, which include trees and cographs. The
paper is organized as follows. In Section 2, we survey some properties of distance-
hereditary graphs. We also introduce the concept of concavity of a path, and derive
two lemmas that are useful in this paper. Section 3 shows that the center of a distance-
hereditary graph (respectively, bipartite distance-hereditary graph) is either a connected
graph with diameter at most 3 or a cograph (respectively, an independent set of G).
Section 4 shows that the w-median of a distance-hereditary graph with a positive
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function w is a cograph, and the w-median of a bipartite distance-hereditary graph G
with a positive function w is either a connected cograph or an independent set of G.
In Section 5, we show that the w-median of a distance-hereditary graph with a positive
function w “nearly” coincides with its local w-median.

2. Preliminaries of distance-hereditary graphs

This section gives a brief introduction to distance hereditary and related graphs. We
also introduce the concept of concavity of a path, and give two related lemmas that
are useful in the paper.

Suppose S is a vertex subset of a graph G=(V,E). Denote G[S] the subgraph of G
induced by S. The deletion of S from G, denoted by G — S, is the induced subgraph
G[V—S]. The neighborhood Ng(v) or N(v) of a vertex v is the set of all vertices
adjacent to v. An induced (or chordless) path is a path vy,vy,...,v, in which v; is not
adjacent to v; whenever |i — j| # 1. A vertex subset S of a graph G is called m-convex
if all the vertices of all the induced path joining vertices of S lie in S. Two vertices
x and y are connected if there is an x—y path in G; otherwise they are disconnected.
The distance between two vertex subsets 4 and B is dg(4,B)= min{dg(a,b): a€A
and beB}.

The hanging h, of a connected graph G =(V,E) at a vertex u€V is the collec-
tion of sets Lo(u),Li(u),...,L(u) (or Ly,Ly,...,L, if there is no ambiguity), where
t = maxyey dg(u,v) and Li(u)={veV: dg(u,v)=i} for 0<i<t. Li(u) is called the
level i of the hanging %,. For any 1<i<t and any vertex veL;, let N'(v)=N(@w)NL;_;.

A graph G is distance hereditary if each connected induced subgraph F' of G has
the property that dp(u,v) =dg(u,v) for every pair of vertices u and v in F. Distance-
hereditary graphs were introduced by Howorka [16]. The characterizations and recogni-
tions of distance-hereditary graphs have been studied in [2,8,13,16]. A graph is chordal
if every cycle of length greater than three has a chord. A cograph is a graph containing
no induced path of four vertices, see [7]. A graph is Ptolemaic if for any four vertices
x, v, z, w of it, the Ptolemy inequality d(x, y)d(z,w)<d(x,z)d(y,w) + d(x,w)d(y,z)
holds. It was shown in [17] that G is Ptolemaic if and only if G is distance hereditary
and chordal. Some containment relationships among these and other families of graphs
are as follows:

trees C block graphs C Ptolemaic graphs C distance-hereditary graphs,
trees C bipartite distance-hereditary graphs C distance-hereditary graphs,
cographs C distance-hereditary graphs,

Ptolemaic graphs C strongly chordal graphs C chordal graphs.

Theorem 1 (Bandelt and Mulder [2], D’Atri and Moscarini [8], Hammer and Maffray
[13], Howorka [16]). For any connected graph G =(V,E) the following statements
are equivalent:

(1) G is a distance-hereditary graph.
(2) Every cycle of length at least five in G has two crossing chords.



300 H.-G. Yeh, G.J. Chang| Discrete Mathematics 265 (2003) 297—-310

(3) Every induced path in G is a shortest path.
(4) For every hanging h,= (Lo,L1,...,L;) of G and every pair of vertices x, y€L;
(1<i<t) that are in the same component of G — L;_1, N'(x)=N'(y).

Theorem 2 (Bandelt and Mulder [2], D’Atri and Moscarini [8], Hammer and Maffray
[13], Howorka [16]). Suppose h,= (Lo,L1,...,L,) is the hanging of a connected dis-
tance-hereditary graph G at u. Then, every L; induces a cograph. Moreover, if G is
bipartite, then every L; is an independent set of G.

Suppose G=(V,E) is a graph. For two vertices x and y in V, let
Viy={veV: dg(x,v)<ds(y,v)}.

Define the function 4, from V to non-negative integers by: /,(v)=k whenever
dg(u,v) =k, or equivalently, v is in L; for the hanging &, =(L¢,Ly,...,L;) of G at u.
A path P:xg,x1,...,x; 18 u-concave downward if £,(xo)>0,(x1)> -+ >4,(x—1)>
(X)) =4(011)= - =40 ) <l(Xpr 1) < -+ <l(xp—1) <ly(xx) for some 0<r<
r' <k with 0<r’ — r<1. P is monotone if r=k or v’ =0.

The following two lemmas are useful in this paper. Note that they are trivial for the
case when the distance-hereditary graphs are trees.

Lemma 3. Suppose h,=(Lo,Ly,...,L;) is the hanging of a connected distance-
hereditary graph G at u. For any two vertices x and y in G, there exists a shortest

x—y path which is u-concave downward.

Proof. Suppose P:x=xg,xi,...,x; =y is a shortest x—y path, where dg(x, y)=k. We

may assume that P is chosen such that s(P)= Zf:o 44(x;) is as small as possible. Let
i be the largest index such that xg,xj,...,x; is u-concave downward. Note that i>1.

In fact i=4k and so the lemma holds. Suppose to the contrary that i <k. Then one of
the following cases holds:

(1) lu(xiz1) = 4(x;) > Lu(xi11).
(2) 4u(xic1)<lu(xi) = 4u(xiy1).
(3) lulxi—1) = lu(xi) = lu(xit1).
(4) lu(xiz1) <lu(xi)>2u(xit1).

For case (1) or (2), by Theorem 1 (4), x;,—; is adjacent to x;;;, a contradiction to that
P is a shortest path. For case (3) or (4), by Theorem 1 (4), x;_; and x;,; have a
common neighbor x; with 4,(x])=¢,(x;—1) — 1. Then, the path P’ resulting from P by
replacing x; with x] is also a shortest x—y path whose s(P’) <s(P), a contradiction to
the choice of P. This completes the proof of the lemma. [

Lemma 4. Suppose P :xg,x1,...,x; is an induced path of a distance-hereditary graph
G=V,E). If k=2 with G chordal or k=3, then V., is a proper subset of V;,_x,.

Proof. Suppose A, =(Lo,L1,...,L,) is the hanging of G at xo. Assume that there
exists some vertex v € Vv, — V5, x,. By Lemma 3, there exists an xp-concave downward
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shortest v—x; path P’ 1 0= 30, Y1s+vvs Vrreeer Virseror Vir =Xk, Where y, (respectively, y,)
is the first (respectively, last) vertex of P’ in a smallest level Ly with 0<r’' — r<1.

For the case when f>2, y. and x; are in the same component of G—Lys_;. Accord-
ing to Theorem 1 (4), y, is adjacent to x;_; and SO U= Yo, Y1,..., Vi Xy—1,X =25+, X1,
Xo is a shortest v—xo path, contradicting that ve V.

For the case when f =0, v= 1y, Y1, VrsX1,X2,...,X—1,X; 1S @ shortest v—x; path,
contradicting that vV, ..

Now, suppose f = 1. For the case when k>3, y,»,; and x; are in the same compo-
nent of G—L;. According to Theorem 1 (4), y,» is adjacent to x, and so v= yg, y1,...,
V15 X2,X3, ..., Xk—1, X 18 a shortest v—x, contradicting that vV, _,,. For the case when
k=2 and G is chordal, y,» and x; adjacent to x, imply that they are also adjacent to
Xo, 1.€., VwXoX1X2Y, is a cycle of G. By the definition of a chordal graph, y,/ is adja-
cent to x;. If »=7¢/, then dg(v,x1)<dg(v,x0), contradicting that v€ V. If r=r" — 1,
then xox;x2 - y,x0 is a cycle of G. By Theorem 1 (2), y, is adjacent to xj, and hence
dg(v,x1) <dg(v,x,) contradicting that vV, .

Therefore, Vi, 1is a subset of J; ,; and in fact a proper subset as
Xk—1€ Vs x, — Vior,- This completes the proof of the lemma. [

3. Centers

The purpose of this section is to investigate the shapes of centers of distance-heredit-
ary graphs. We in fact study centers in a more general setting as follows. Suppose S is
a non-empty subset of V' in a graph G =(V,E). The S-eccentricity eg s(v) of a vertex
v in G is maxyes d(v,x).

The S-center of G is Cs(G)={veV: egs(v)<eg.s(x) for all xeV}.

The anticenter of G is AC(G)={veV: eg(v)=eg(x) for all xeV}.

The S-anticenter of G is ACs(G)={veV: egs(v)=egs(x) for all xeV}.

Theorem 5. Suppose S is a non-empty vertex set of a distance-hereditary graph
G=(V,E). If H is a connected component of G[T], where T CV with egs(x)=egs
() for every two vertices x and y in T, then diam(H )<3. If moreover G is Ptolemaic,
then diam(H)<2.

Proof. Suppose x and y are two vertices in V(H) such that dy(x, y)=diam(H)=k.
Choose an induced x—y path P:x=x¢,x;,...,x;, =y in H. Note that P is also an
induced path of G and eG,S(xo) :eG,S()ﬁ )=--- = eG,S(xk). Let erS(Jﬂ )=dg(x1,z) for
some vertex z€S. Then, for 0<i<k, we have

dg(xi,z) <eg,s(xi)=eg s(x1) =dg(x1,2), ie, z€Vy, or dg(x;,z) =dg(x1,2).

We first prove that k<3. Suppose to the contrary that k>4. If z€V,,,, then
z€V,,x, and z € V., by Lemma 4. These imply that eg s(x4) = dg(x4,2) = dg(x3,2)+1 =
dg(x2,z)+2>dg(x1,2z) = eg s(x1), a contradiction. Hence dg(x9,z) =dg(x1,z). We then
hang G at z. Note that xy and x; are in the same level. If x, is in level dg(xy,z) =
dg(x1,z) — 1, then x¢ is adjacent to x, by Theorem 1 (4), a contraction. Hence
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dg(x1,2) <dg(x2,z). Since dg(xp,z) =dg(x1,z), we have z& V. By Lemma 4, z& V.,
and so dg(x2,z)<dg(x3,z). Therefore, dg(x9,z)=dg(x1,z)<dg(x2,2z)<dg(x3,2)
<dg(x1,z) and so dg(x0,z) =dg(x1,z) =dg(x2,2) = dg(x3,z). Now, consider the hang-
ing of graph G at z. Then x¢,x,x2,x3 are in the same level. By Theorem 1 (4), there
exists a vertex z* adjacent to xg, x1, X3, and x3. Note that z*xox;xox3z* is a cycle of
length 5 without crossing chords, a contradiction. Hence k£ <3, i.e., diam(H)<3.

Next, we prove that £ <2 when G is Ptolemaic. Suppose to the contrary that k£ >3. If
z€ Vypxy» then z€ ¥, ,, by Lemma 4. This implies that eg s(x2) =>dg(x2,2) >dg(x1,2) =
eg.s(x1), a contradiction. Hence z ¢ V;,,, and so dg(x0,z) =dg(x1,z) and z¢& V5, Then,
by Lemma 4, z¢ V,,,, and z¢& V,.y,. Therefore, dg(xo,z) = dg(x1,2) <dg(x2,2) <dg(x3,2)
<dg(x1,z) and so dg(xo,z) =dg(x1,2) =dg(x2,2) =dg(x3,2). Again, we can get a cycle
z*xox1x2x3z* of length 5 without crossing chords, a contradiction. Hence k<2, i.e.,
diam(H)<2. O

Corollary 6. Suppose S is a non-empty vertex set in a distance-hereditary graph G.
If H is a connected component of the subgraph induced by Cs(G) or ACs(G), then
diam(H ) <3. If moreover G is Ptolemaic, then diam(H)<2.

The distance-hereditary graphs G; and G; and the Ptolemaic graphs Gj
and G4 in Fig. 1 show that the bounds in Corollary 6 are sharp. Note that C(G;)=
{a1,b1,c1,d1,e1, f1}, AC(Gy) has a connected component Gy[{az, b2, ¢2,d2}], C(G3)=
{a3,b3,¢3,d3,e3}, and AC(G4) has a connected component G4[{a4, b4, ca,ds,e4}].

Because distance-hereditary graphs have a “tree like” structure of adjacency, one may
expect that their centers are “small” and “compact”. The following lemma supports such
expectations.

Lemma 7. If V] and V, are the vertex sets of two distinct components of the S-center
of a distance-hereditary graph G =(V,E), then dg(V,V>)=2.

Proof. Assume that dg(V},V2)>3. Then there exists an induced path P:xg,xy,...,Xx,
where k=3, xo€Vy, x, €Va, but x1,x,_1ZCs(G). Assume z is a vertex in S with
dg(xk—1,2) = eg,s(xx—1). Since x; € Cs(G) and x;, 1 € Cs(G), dg(xx,2) <eg,s(xr) <eg,s
(xk—1)=dg(xx—1,z) and so z€V,,, ,. By Lemma 4, we then have z€ V. Let h, =
(Lo,Ly,...,L;) be the hanging of G at z. Since xo € Cs(G) and x;_1 & Cs(G), we have
dg(x0,z) <eg,s(x0) <eq.s(xx—1) =dg(xx—1,z). Therefore, the relative positions of x¢, x|,
X;—1,X; are as shown in Fig. 2(a). Thus, there exists a vertex x; in the path P such
that x; and x; are in the same level, say L;, of A., and x;xj11X;4>...x; is a path in
G — Li_ (see Fig. 2(b)). Then, by Theorem 1 (4), x; is adjacent to x;_;, contrary to
that P is an induced path. Therefore, dg(V1, V>)<2. [

Theorem 8. If G is a distance-hereditary graph, then the S-center Cs(G) is either a
connected graph of diameter 3 or a cograph. If moreover G is a bipartite distance-
hereditary graph, then the S-center Cs(G) is either a connected graph of diameter
<3 or an independent set of G.
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Fig. 1. Examples for which the bounds in Corollary 6 are sharp.

Proof. First, if H=G[Cs(G)] is connected, then the theorem follows immediately
from Theorem 5. Hence, we may assume that A is disconnected. Choose any two
distinct components H; and H,. Then, by Lemma 7, there exists an induced path
xzy in G such that xe V(H,), yeV(H,) and z¢ Cs(G). Suppose w is a vertex in S
with dg(w,z) =eg s(z). Then dg(w,x)<eg s(x)<eg.s(z) =dg(w,z) and so dg(w,z) =
dg(w,x) + 1. Similarly, dg(w,z) =dg(w,y) + 1.

Let A, =(Lo,Ly,-..,L,) be the hanging of G at w. Note that x and y lie on the same
level L; of h,, and z€L;;1. Now for every vertex x’ € Hy, dg(w,x')<eg s(x")<eg s(z)
=dg(w,z) and so x' €L, for some r<i. In fact »=i. Suppose to the contrary that
x' €L, for some r<i— 1. Then H; has an x—x’ path P laying above level i + 1. Hence
P contains an edge uv such that y and u are in the same component of G — L;,_; and
veL;_y. Thus, by Theorem 1 (4), y is adjacent to v and hence y€ H,, a contradiction.
Therefore, every vertex of H; lies on level L;,. Hence H; is a cograph by Theorem 2.
Moreover, if G is also bipartite, then L; is an independent set of G by Theorem 2, and
so is H,. This completes the proof of the theorem. [

As described in [5], Hedetniemi proved that any graph H is isomorphic to the center
of some graph G of diameter 4 and radius 2. When H is a cograph, an analogous
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Fig. 2. For the proof of Lemma 7.

result for distance-hereditary graph G is the following theorem. Using the proof of this
theorem, we can construct a distance-hereditary graph whose center induces a graph
with arbitrary number of components. Also the center of a bipartite distance-hereditary
graph can be an independent set of arbitrarily large size.

Theorem 9. For any given cograph H there exists a connected distance-hereditary
graph G whose center is isomorphic to H.

Proof. We construct G by adding four new vertices u, v, w, x into H such that v and
w are adjacent to all vertices of H, u is adjacent only to v and x only to w. It is clear
that G is a distance-hereditary graph whose center is isomorphic to H. [J

4. Medians

This section discusses the structures of medians of distance-hereditary graphs. We
again study medians in a more general setting. Suppose S is a non-empty subset of V.
The S-distance sum D¢ s(v) is equal to er s dg(v,x). The S-w-distance sum Dg g, (v)
of vis ) g d(v,x)w(x). The S-median (also called the S-centroid [31]) of G is the
set

Ms(G) = {UE V. DG,S(U) <DG’S(X) for all xe V}
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The S-w-median of G is the set
Ms o (G)={veV: Dgsw()<Dgs.w(x) for all xeV}.
The antimedian of G is the set

AM(G)={veV: Dg(v)=Dg(x) for all xeV}.

Lemma 10 (Entringer et al. [10], Slater [31]). If @ and b are two adjacent vertices of
a graph G=(V,E) with a function w on V, then D¢ ,(a)— D¢ (b)) =w(Vpa) —W(Vap).

Proof. The lemma follows immediately from the fact that

Dgw(@) — Dg.w(b) = Y {da(x,a) — do(x,b)}w(x)

XEVap

~ Y {do(x,a) — dg(x,)pw(x). O

XEVpa

Lemma 11. Suppose P :xo,x1,...,X; is an induced path of a distance-hereditary graph
G=(V,E) with a function w>0 (respectively, w=0) on V. If either k=2 with G
chordal or k =3, then D¢ ,(x0)—Dg.w(x1)> (respectively, =) D¢ w(Xk—1)—Dg.w(xk).

Proof. The lemma follows immediately from Lemmas 4 and 10. O

Theorem 12. For any S CV of a Ptolemaic graph G = (V,E) with a function w=0,
the S-w-median Ms,,,(G) is m-convex.

Proof. Assume Mjs,,(G) is not m-convex. Then there exists an induced path P :xg,xi,
...,xx in G with k=2 such that xo,x; € Ms,.(G) but xi,x,—1 €Ms ,(G). Then, by
Lemmas 10 and 4, we have

0 > Dg, s,w(x0) — Dg,s,w(x1)
= W(V;ﬂXo mS) - W(onxl r15’)
= W(I/xkxk—l ﬂS) - W(V;Ck—lxk mS)
= Dg,s5,w(Xk—1) — Dg,s,w(xx) >0,

a contradiction. So, My ,,(G) is m-convex. []
Corollary 13 (Soltan [35]). The median of a Ptolemaic graph is connected.

Corollary 14 (Slater [31]). For any subset S of the vertices of a tree T, the S-median
of T is connected.

Theorem 15. Suppose G =(V,E) is a distance-hereditary graph with a function w>0.
If H is a connected component of G[T], where T CV having D¢ ,(x) = Dgw(y) for
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every two vertices x and y in T, then H is a cograph. If moreover G is Ptolemaic,
then H is a clique.

Proof. Suppose P:xg,xi,...,x; is an induced path in H. Note that P is also an
induced path of G. If G is distance hereditary (respectively, Ptolemaic) and k>3
(respectively, k>2), then by Lemma 11 and the fact that w>0, we have Dg,,(xp) —
Dg,w(x1)>Dg,w(xk—1) — Dg,w(xx), contrary to D¢, (x0) =Dg w(x1)=Dg,w(Xx—1)=
D¢ w(xr). So, k<2 (respectively, <1) and hence H is a cograph (respectively, a
clique). O

Corollary 16 (Nieminen [25], Yushmanov [38]). The median of a Ptolemaic graph is
a cligue.

Corollary 17 (Yushmanov [38]). Every connected component of the subgraph induced
by the antimedian of a Ptolemaic graph is a clique.

It is worth pointing out that the S-median of a Ptolemaic graph does not have a
theorem like Theorem 15. As shown in [31], there exist trees whose S-median contains
a path of n vertices for any n. The following theorem shows that the median of a
distance-hereditary graph nearly coincides with its local median.

Theorem 18. Suppose G is a distance-hereditary graph with a function w>0. If
xeM,(G) and y € LM, (G), then d(x,y)<2.

Proof. Suppose P:x=xg,x1,...,x; =y is an induced x—y path of G. Assume k£ >3. By
Lemma 11, we have 0=Dg,(x0) — Dgw(x1)>Dgw(xk—1) — Dgw(xx)=0, a
contradiction. So dg(x,y)<2. O

Theorem 19. If G is a Ptolemaic graph with a function w =0, then M,,(G)=LM,,(G).

Proof. Assume that LM,,(G) — M, (G)# 0. Pick ye LM, (G) — M,,(G) and xeM,,(G)
such that dg(x, y) =dc(LM,(G) — M,,(G), M,,(G)). Suppose P :x =xg,X|,...,Xx =y 18
an induced x—y path of G. Note that £>2 and x; ¢M,,(G). Hence, by Lemma 11,
0>Dg w(x0) — Dg.w(x1) = Dg w(xk—1) — Dg.w(xx) =0, a contradiction. Therefore, LM,,
(G) — M,(G)=0 and so M,,(G) — LM,(G). O

Theorem 20. If G=(V,E) is a distance-hereditary graph with a function w>0, then
its w-median is a cograph. If moreover G is bipartite distance hereditary, then its
w-median is either a connected cograph or an independent set of G.

Proof. The first part of the theorem follows from Theorem 15 immediately. To prove
the second part, suppose 7] and V, are the vertex sets of two distinct components of
the w-median of G. For any two vertices x€ V] and y€V,, by Theorem 18, we have
dg(x, y)=2. Now consider the hanging A, =(Lo,L,...,L,;) of G at x. Clearly V, C L,
and hence V), is an independent set of G by Theorem 2. [J
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5. Convexity and diameters

This section investigates metric properties for chordal graphs and distance-hereditary
graphs.

A vertex subset S is called an x—y separator of G if x and y are in different
components of G — S. An x—y separator S is said to be minimal if no proper subset
of § is an x—y separator of G.

Theorem 21 (Dirac [9]). Every minimal x—y separator of a chordal graph is a clique.

Theorem 22. If G=(V,E) is a chordal graph and S CV, then the S-center Cs(G) of
G is m-convex.

Proof. Assume to the contrary that Cs(G) is not m-convex. Then there exist x and y in
Cs(G) with an induced x—y path P of G such that |V(P)|>3 and PN Cs(G)={x, y}.
Suppose C is a minimal x—y separator of G. So, there exists a vertex €PN C and
hence r€C — Cs(G). Suppose s’ €S with dg(s',7) =eg s(r). If s’ €C then egs(r)=1
contradicting that r&Cs(G). Hence, without loss of generality, we may assume
that s' and x are in different components of G — C. By the fact that C is a
clique, there exists a vertex t€C such that eg s(x)=ds(s’,x)=dg(s',t) + do(t,x) =
dg(s',t)+1=dg(s',r) = e s(r) contrary to that eg s(x) <eg s(r). Therefore, Cs(G) is
m-convex. [

Corollary 23 (Yushmanov [38,40]). The center C(G) of a chordal graph is m-convex.

Suppose x and y are two vertices in a graph G with dg(x, y) =eg(»). It is easily seen
that if G is a tree then eg(x)=diam(G). In general, eg(x)# diam(G) for a distance-
hereditary graph G. Moreover, the difference between eg(x) and diam(G) may be
arbitrarily large for a general graph. However, in the following theorem we show that
eg(x) is nearly equal to diam(G) for a distance-hereditary graph G. The graphs given
in Fig. 3 show that the bounds in the following theorem are sharp.

Theorem 24. For any vertex y in a distance-hereditary graph G=V,E). If x is a
vertex with dg(y,x)=eg(y), then eg(x)=diam(G) — 2. If moreover G is Ptolemaic,
then eg(x)>=diam(G) — 1.

Y
x x
da(z,y) = ea(y) da(z,y) = eq(y)
eg(x) =2 and diam(G) = 4 eg(x) = 2 and diam(G) = 3

Fig. 3. Examples for which the bounds in Theorem 24 are sharp.
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Proof. Let i, =(Lo,Li,...,L,) be the hanging of G at a vertex u having eg(u) = diam
(G)=t. Choose a vertex z in L,. By Lemma 3, there exists a u-concave downward
shortest x—y path

PoiXx=X0, X1,y Xy ey Xty X =V,

where x, (respectively, x,-) is the first (respectively, last) vertex of P, in a smallest
level Ly, with 0<r’ —r<1; and a u-concave downward shortest z—y path

Piz=20,21, . sZ5y s Zgl e Zmy =V,

where z, (respectively, zy) is the first (respectively, last) vertex of P, in a smallest
level Ly, with 0<s" —s<1.

We may assume that ,(z)—2 >¢,(x), for otherwise diam(G)—1=¢,(z)—1</,(x) <
eg(x) and so the theorem holds.

Suppose x; =z; for some i<r and j<s. Since dg(zj,z)=4,(2) — 4u(z;)>lu(x) —
bu(xi)=dg(x;,x), we have dg(y,z)=dc(y,z;) + do(zj,2)>dc(y,x) + do(xi,x)=
dc(y,x)=eg(»), a contradiction. Therefore, the two paths xg,x1,...,x, and zg,zy,. ..,z
have no vertex in common.

Next, (4(x) = fo) + (' = 1) + (4(y) = fo) = d6(x, ¥) = ec(») 2 d(z ) = (4u(z) —
)+ (" —s)+ (4(y) — f2). Therefore, £,(z) —2=/4,(x) and ¥ —r<1 and 0<s' — s
imply fy < f.. Let x, (respectively, x,/) be the first (respectively, last) vertex of P, in
level Ly _;. Since x,4; and z, are connected in G — Ly _1, by Theorem 1 (4), x,/ is
adjacent to z,. Consider the x—z path

P1 X =X05 X1, X2 0w 5 Xyl 5 Zgy Zg— 150005 20 = Z.

Suppose P; is an induced path. Note that dg(x,x,) + dg(xy,y)=dg(x,y)=
e6(») > dg(u, y) = dg(u,xy) + da(xy, ). Then, do(x,xy) >da(u,xy) and so eg(x)>
do(x,z) =dg(x,xg) + dg(xy,2) Zde(u,xy) + dg(xy,2) 2dc(u,z) =diam(G). In this
case, the theorem holds.

We then may assume that P; is not an induced path, say P; has a chord joining
some vertex x; to some vertex z;. Note that in this case 0 <¢g<r<r'<g¢’'<k. Then,
either i =g with j=s, or i<g—1 with j<s. For the first case, x,z, € E. For the second
case, x,— and z, are connected in G —L;,_;, and so again x,z; € E by Theorem 1 (4).
In any case, dg(zs,x4)=1.

Since dg(y,zs) + dg(zexg) + do(xg,x) = do(y,x) = eq(y) = dg(y.z) =
de(¥,2s) + dg(z5,2z), we have 1 + dg(xy,x)=>dg(zs,2). By the fact that dg(x,,x)=
G(x) — luxg)<eg(x) — (f: — 1) and dg(zs,z)=diam(G) — f., we then have
eg(x)=diam(G) — 2. This proves the first part of the theorem.

To prove the second part of the theorem, suppose G is Ptolemaic, i.e., G is chordal
and distance hereditary. For the case when x, =x,, we have g=r=r'=¢' and f,=
f- — 1. For the case when x, #x,/, since the two vertices x, and x,, in L; _; are
adjacent to z;€Ly,, they are also adjacent to some w& Ly _, according to Theorem 1
(4). By the chordality of G, the cycle w,x,,zs,x,,w has a chord, which must be x,x,.
So, g=r<r'=q’ and f,=f. — 1. In any case, dg(x4,x,)<1. Consider the x—z path

P2 X =X05 X1y e e e 5 Xgs Zss Zg—15 005 20 = Z.
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Suppose P, is an induced path. Note that dg(x,x,) + dg(xg, x4 ) + do(xyr, y) = dg(x, y)
=eg(y)=de(u, y)=dg(u,xy) +dg(xy,y) and so dg(x,x5)=dg(u,x,)—1 since
dg(x4, x4 ) < 1. Therefore, eg(x) = dg(x,2z) = dg(x, x4 ) +dc(xy, 25 ) +dc(zs, 2) = dg(u, x4 )—
1 +dg(xy,2s) +do(z,2) 2 dg(u,z) — 1 =diam(G) — 1, since dg(xy,2,) =dg(x4,2,) = 1.
In this case, the second part of the theorem holds.

We then may assume that P, has a chord joining some vertex x; to some vertex
z; with i<g — 1 and j<s. Then x,_; and zy are connected in G — Ly _;. Again, by
Theorem 1 (4) and (2) and the chordality of G, dg(x4—1,z¢)<1. Thus, dg(y,x)<
dc(y,zy ) +dc(zs,xg—1) +da(xg—1,x) <dG(y,zy ) + 1 +dc(xg—1,x) = de(y,xg+1) + 1 +
de(xg—1,%) <dg(y,Xg+1) + do(Xg+1,%4—1) + dg(x4—1,x)=ds(y,x), a contradiction.
This completes the proof of the theorem. [J
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