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Circular Chromatic Numbers and Fractional Chromatic Numbers of
Distance Graphs

GERARD J. CHANG, LINGLING HUANGT AND XUDING ZHU*

This paper studies circular chromatic numbers and fractional chromatic numbers of distance graphs
G(Z, D) for various distance sefS. In particular, we determine these numbers for thBssets
of size two, for some specid) sets of size three, fob = {1,2,...,m,n} with 1 < m < n, for
D={g,9+1...., p}withg < p,andforD = {1,2,... ,m} — {k} with1 <k <m.
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1. INTRODUCTION

SupposeSis a subset of a metric spade with a metrics, andD a subset of positive real
numbers. Thalistance graph @S, D), with a distance set Dis the graph with vertex set
Sin which two verticesx andy are adjacent if§ (x, y) € D. Distance graphs, first studied
by Eggletonet al. [7], were motivated by the well-known plane-coloring problem: What is
the minimum number of colors needed to color all points of a euclidean plane so that points
at unit distances are colored with different colors. This problem is equivalent to determining
the chromatic number of the distance gra®tR?, {1}). It is well-known that the chromatic
number of this distance graph is between 4 and 7 (see [12, 15]). However, the exact number
of colors needed remains unknown.

For distance graphs on the real lifeor the integer seZ, the problem of finding the
chromatic numbers d&(R, D) or G(Z, D) for different D sets has been studied extensively
(see[3,10,13,14,17,18, 20, 22]). Two recent papers [3, 14] related distance graph§+o the
coloring problem. Chromatic numbers and fractional chromatic numbers of distance graphs
were used to derive bounds forspans of the correspondifigcolorings, and vice versa. In
this paper, we study circular chromatic numbers and fractional chromatic numbers of distance
graphsG(Z, D) for variousD sets.

The circular chromatic number of a graph is a natural generalization of the chromatic number
of a graph, introduced by Vince [16] under the name the ‘star chromatic number’ of a graph.
Supposep and g are positive integers such that > 2g. A (p, q)-coloring of a graph
G = (V, E) is a mapping: from V t0 {0, 1, ..., p — 1} such that|c(x) — c(y)|lp > q for
any edgexyin E, wherel|lal| , = min{a, p — a}. Thecircular chromatic numbep(G) of G
is the infimum of the ratio@/q for which there exist p, q)-colorings ofG.

Note that & p, 1)-coloring of a graplG is simply an ordinaryp-coloring of G. Therefore,
xc(G) < x(G) for any graphG. On the other hand, it has been shown [16] that for all graphs
G, we havey (G) — 1 < xc(G). Thereforex (G) = [xc(G)]. In particular, two graphs with
the same circular chromatic number also have the same chromatic number. However, two
graphs with the same chromatic number may have different circular chromatic numbers. Thus
xc(G) is a refinement of¢ (G), and it contains more information about the structure of the
graph. Itis usually much more difficult to determine the circular chromatic number of a graph
than to determine its chromatic number. The main results of this article determine the circular
chromatic numbers of various distance graphs. These results may be viewed as improvements
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on previous results concerning the chromatic numbers of these distance graphs presented in
[3,4,7,13,17,21].

The fractional chromatic number of a graph is another well-known variation of the chromatic
number. Afractional coloringofa graphG is a mapping fromZ(G), the set of allindependent
sets ofG, totheinterval0, 1]suchthat > c(l) > 1forallverticesxin G. Thefractional

xel eZ(G)
chromatic numbey  (G) of G is the infimum of the value Y~ c(l) of a fractional coloring
1€Z(G)
cof G.
For any graplG, it is well known that
max(w(G). |G|/a(G)} = x1(G) = xc(G) = [x(G)] = x(G). (%)

For simplicity, letw (S, D), a(S, D), x1 (S, D), xc(S, D) andx (S, D) denote, respectively,
the cligue number, the independence number, the fractional chromatic number, the circular
chromatic number, and the chromatic number of a distance ggashD).

Chromatic numbers of distance graphs with distance| 8ets 2 were determined by Chen
etal [4] and Voigt [17]. Chromatic numbers of distance graphs with= 3 were determined
by Zhu [21]. In Section 2, we use a ‘multiplier method’ to establish an upper bound for the
circular chromatic number of a distance gra@liZ, D) with an arbitrary distance sdd.
This upper bound is then used to determine the circular chromatic numbers and the fractional
chromatic numbers of those distance graphs with distanc®dets|D| = 2, for some special
D with |D| =3,forD ={1,2,... ,m,n}withl <m < n,andforD ={g,q+1,..., p}
with q < p. The chromatic number f@g(Z, D) with D = {q,q+1, ... , p} was determined
in[7,13].

Chromatic numbers of distance graphs with distance sets of thédgrn= {1, 2, ... , m}—
{k}, with 1 < k < m, were studied in [3,7,13,14]. Partial results concerning chromatic
numbers of such distance graphs were obtained in [7,13, 14], and a complete solution was
recently obtained by Chargt al. [3]. The authors of [3] also obtained circular chromatic
numbers of such distance graphs for some special valueandlk. In Section 3, we determine
the circular chromatic numbeyg(Z, Dm k) for all integer pairsm, k.

2. MULTIPLIER METHOD FOR x(Z, D) AND xc(Z, D)

In this section we use a ‘multiplier method’ to establish an upper boung 66, D) for an
arbitrary D set. We then use this upper bound to determine circular chromatic numbers for
someD sets.

The multiplier method was used in [2] to study the densitype$ets, and was also used in
[11] to study fractional chromatic numbers and circular chromatic numbers of circulant graphs.
In taking distance graphs to be ‘infinite’ circulant graphs, Theorem 2.2 is parallel to a result
in [11]. Half of the proof of Theorem 2.3 is parallel to an argument in [2].

LEMMA 2.1. Suppose D is a set of positive integers, and that p and r are positive integers.
Let

dp(p,r) = min{|lri modp|lp:i € D}.
Ifdo(p,r) > 1, thenxc(Z, D) < p/dp(p,1).

ProoF. It is straightforward to verify that the coloring defined&$) = (ri modp) for
i € Zisa(p,dp(p,r))-coloring of the distance grapgh(Z, D). O
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Let fp = inf{p/dp(p,r) : dp(p,r) > 1}. The function is well defined sinadp (p, r) is
always an integer between 0 ahpl/2]. Theorem 2.2 follows from Lemma 2.1.

THEOREM 2.2. For any set D of positive integerge(Z, D) < fp.

Itis known [4, 17] that ifD contains exactly two relatively prime integers, thetZ, D) = 2
when the two integers are odd apdZ, D) = 3 when the two integers have different parities.
We first usefp to determineyc(Z, D) andy ¢ (Z, D) for D with |[D| = 2.

THEOREM 2.3. If D = {a, b} andgcd(a, b) = 1, then
xt(Z,D) = xc(Z,D) = fp = (a+b)/[(a+b)/2].

PROOF. Suppose both andb are odd. Since 2 w(Z, D) anddp (2, 1) = 1, the theorem
follows from (%) and Theorem 2.2.

Suppose that andb have different parities, i.ea + b is odd. Assume thad + b = p.
Since gcdp, b — a) = 1, there exists a positive integersuch that (b — a) = 1 (modp).
Sincer (b + a) = 0 (modp), it follows that 2b = —2ra = 1 (modp). Hencera = —rb =
(p —1)/2 (modp), which implies thatp (p,r) = (p — 1)/2. Hence, according to Theorem
2.2,xc(Z,D) < fp < 2p/(p—1) = (a+ b)/[(a+ b)/2]. On the other hand, it is easy to
see thaiG(Z, D) contains the odd cycl€,. Thus, 2/(p — 1) < p/a(Cp) < x:(Cp) <
xfi(Z, D) < xc(Z, D). This completes the proof of the theorem. m]

Note that precisely the same arguments in the first two lines of the proof above also give that
xi(Z, D) = xc(Z, D) = fp = 2if D contains only odd integers.

We now consider circular chromatic numbers and fractional chromatic numbers of distance
graphsG(Z, D) with |D| = 3. Zhu [21] proved the following result for chromatic numbers,
which provides a range for circular chromatic numbers.

THEOREM 2.4 ([21]). If D = {a, b, c}, where a< b < c are positive integers with
gcda, b, c) = 1, then

if a, b, c are odd,
ifa=1andb=2andc= 0 (mod?3,
ifa+b=candazb(mod3,

x(Z,D) =

w A AN

otherwise.

THEOREM 2.5. If D ={a,a+ 1,c},witha+ 1 < c, where ¢+ a = (2a + 1)k + r, with
k> 1landO <r < 2a, then

(c+a)/@k), ifO<r <a,
xi(Z,D) < xc(Z,D) < fp < _
(c+a+1)/(ak+r —a), ifa+1l<r <2a

Proor. Note thatck = —ak (modc+a) andc(k+1) = —(a+1)(k+1) (modc+a-+1).
Therefore,dp(c + a,k) = akfor allr, anddp(c+a+ 1, k+ 1) = ak+r —a when
a+ 1<r < 2a. The theorem then follows. ]

THEOREM 2.6. IfD ={a,a+ 1,cjwitha+1<candc+a=2aor0(mod2a + 1),
theny(Z, D) = xc(Z,D) = fp =2+ 1/a.
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PROOF. SinceG(Z, D) contains the odd cycl€441, according tax), 2+ 1/a = (2a +
1)/a(Coar1) < x1(Coar1) < x1(Z, D). Onthe other hand, sincet-a = 2a or 0(mod 22+
1), it follows from Theorem 2.5 thafp < 2 + 1/a. O

Denote the subgraph &(Z, D) induced byV; = {0, 1, --- ,i} asG;.

THEOREM 2.7. If D = {2, 3,c}, with 3 < ¢, where ¢+ 2 = 5k +r, with k > 1 and
0<r <4 then

(c+2)/2k, ifr=1,2,
xf(Z,D) = xc(Z,D)= fp =43 (c+3)/(2k+ 1), ifr =3,
5/2, ifr =4,0.

PrRoOF. The case in whiclt = 4 or 0 follows from Theorem 2.6. For the other cases,
Theorem 2.5 implies thatp < (c+ 2)/2k whenr =1, 2, andfp < (c+ 3)/(2k + 1) when
r = 3. Therefore it suffices to show thatGc 1) < 2k whenr = 1, 2 anda (G¢y2) < 2k+1
whenr = 3.

Considerthe grapB¢, 2 forr = 1, 2, 3. Decompose thevertex46t 1, - - - , c+2} intok+1
subsets; = {5i,51+1,...,5i+4}forO<i <k—1,and] = {5k, ..., 5k+r = c+2}. Then,
J={c+1 c+2}whenr =1,J ={c,c+1, c+2}whenr = 2,andJ = {c—1,c,c+1,c+2}
whenr = 3. Suppose thdB¢,2 has an independent s8tof size X + 2. We may assume
that 0e Sand therc ¢ S. Since every five consecutive verticesGg,» form a 5-cycle, we
concludethatli NS =|JNS =2for0<i <k—1. Thenc+1e€ S, and hence, ¥ S.

Since|lpN' S| = 2, 2 and 3 are not ir5. We therefore conclude thatd S. In a general
step, using the fact tha; NS = 2 and 8i — 1) — 1 € S, itis straightforward to derive that
5 —1 € S Therefore, §— 1€ S. Since Xk — 1 =cwhenr =1, and &% — 1 is adjacent to
¢+ 1 whenr = 2 or 3, we have contradictions. Hene€G¢i2) < 2k + 1 forr = 1,2, 3.
Moreover, for the case in whigh= 1 or 2, any independent s8tof G, » of size X + 1 that
contains the vertex 0 does not contain the vecteéxl. Hencec+ 2 € S anda(Gg11) < 2k.
This completes the proof of the theorem. O

THEOREM 2.8. Suppose D= {a, b,a + b}, with0 < a < bandgcda,b) = 1. fa=Db
(mod 3, theny(Z, D) = xc(Z, D) = fp = 3.

PrROOF. Since gcda,b) = 1 anda = b (mod 3, we havea,b,c # 0 (mod3 and so
dp(3,1) = 1. The theorem then follows froitx) and the fact tha{0, a, a + b} is a clique.O

THEOREM 2.9. IfD ={1,2,---, m,n}, withl <m < n, then

m+ 1, if n £ 0 (modm + 1),

((Z,D) = xe(Z, D) = fp =
& e "7l m+14+1k ifn=km+ D).

PROOF. Supposen # 0 (modm + 1). Sincem+ 1 < w(G) anddp(m+ 1,1) = 1, the
theorem follows from(x) and Theorem 2.2.

Suppose = k(m+1). Since every independent set®jf contains at most one vertex from
anym-+ 1 consecutive vertices, and at most one vertex ffom}, «(G,) = k. Consequently,
Mm+1+1/k=(+1)/a(Gn) < x1(Gn) < x1(Z, D). Also, fp < (n+1)/dp(n+1,k) =
m+ 1+ 1/k. The theorem then follows. O

COROLLARY 2.10. If D = {1, 2,3k}, where k> 1, thenxf(Z,D) = xc(Z,D) =
3+1/k.
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TABLE 1.
Conditions ofa, b, c xi(Z, D), xc(Z,D), fp | x(Z, D)
a, b, care odd 2 2
a=1b=2c=3k 3+ £ (Corollary 2.10) 4
c=a+b,azb(mod3 ? 4
c=a+b,a=b(mod3 3 (Theorem 2.8)
b=a+1lc=aora+1(mod2a-+1) 2+%(Theorem2.6)
r=1,2 %kz (Theorem 2.7) 3
a=2b=3c+2=">5k+r r=3 %ﬁ’l(TheoremZ.?)
Otherwise ?

This is one of the two cases covered by Theorem 2.4 in which we héXeD) = 4. The
other is that in whichD = {a,b,c}, a+ b = canda # b (mod3. We note that, in this
case, the chromatic number@f{Z, D) is easily determined. However, the circular chromatic
numbers ofG(Z, D) are still unknown, except for some special valuea ahdb.

We summarize the results f@&r = {a, b, c} witha < b < cand gcda, b, c) = 1in Table 1.

THEOREM 2.11. If D ={g,q+1,..., p}, withq < p, theny¢(Z, D) = xc(Z, D) =
fo =1+ p/q.

PROOF. Sincedp(p+ g, 1) = q, we conclude thafp < (p+ g)/g. On the other hand, it
is quite obvious thak (Gp;q-1) = q. Hence,xt(Z, D) = xc(Z,D) = fp =1+ p/q. O

THEOREM 2.12. If D = [1,r], wherer is any real number greater than or equalidhen
xf(R, D) = xc(R,D) = 1+r.

ProoF. We firstconsider the case inwhich= p/qgisrational. LeD’ = {q, q+1, ..., p}.

It is then straightforward to verify that each connected compone@®t(&, D) is isomorphic
to G(Z, D). According to Theorem 2.1%; (R, D) = xc(R, D) =1 +r.

Whenr is irrational, then lefr; : i =1,2,...) and(r{ ;i =12,...) be sequences of
rational numbers such thgt<r < r; for eachi and lim_ «r{ = limj_.«ri =r. The above
argument then shows thatflr{ < xf(R, D) < xc(R, D) < 1+r; for eachi. Therefore,
xf(R,D) = xc(R,D) =1+r. O

It was shown by Eggletoet al. [10] (Theorem 2) that if a prime distance graph has a proper
k-coloring, then it has a periodic-coloring. The proof in fact shows that akycolorable
distance graph has a periodiecoloring. We remark that an argument parallel to the proof of
Theorem 2 of [10] shows that if a distance graptZ, D) has a(p, q)-coloring, then it has a
periodic(p, q)-coloring. Also we note that g, q)-coloring derived by the multiplier method
is always a periodi¢p, g)-coloring.

3. CIRCULAR CHROMATIC NUMBER xc(Z, Dmk)

As mentioned in the introduction, Chaatial. [3] determined the chromatic number and the
fractional chromatic number of the distance gr&z, Dm k), whereDmk = {1,2, ..., m}—
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TABLE 2.

Conditions ofm, k, r, s Xt (Z, Dmk) | xc(Z, Dmk) | x(Z, Dmk)
2k >m k k k

r-s kel

m+k+1
2

d<m|rzo gedm+k+1,k =1 m+|2(+l m+|2(+2

gcdm+k+1,k) #1

"
1<r<s ¢ m+l2<+3

{k} and 1< k < m. They also determined the circular chromatic numbe&aZ, Dy k) for
some pairs of integems andk.

Letm+k+ 1= 2"m andk = 25k, wherem’ andk’ are both odd. Table 2 shows their
results.

The circular chromatic numbepg(Z, Dy k) remain unknown for those pairs of integers
m, k corresponding to the question mark in Table 2. In this section, we shall fill in the
unknown part of Table 2 by showing thgf(Z, Dmk) = %“*2 when X < mandr < sand
gcdm+k + 1, k) -~ 1.

The following lemma was proven in [16] and is used frequently in our proofs.

LEMMA 3.1 ([16]). If G has a circular chromatic numb# (where p and g are relatively
prime), then p< |V (G)|, and any(p, g)-coloring c of G is an onto mapping from(@) to
{0,4,...,p—1}

As in the preceding section, we denote the subgrap®@, Dm k) induced byV, =
{0,1,...,i} asGj. We shall first derive a lower bound fae(Z, Dm k).

LEMMA 3.2. Suppos@k < m. Letmt+-k+1 = 2'm’ and k= 2k’, wherer and s are non-
negative integers and’nand K are odd integers. IL <r < s, thenyc(Gmi2k_1) > %k*l

PrROOF. Sincem-+k+ 1iseven ang(Gms+2k—1) > x(Gm+2k—1) — 1, it suffices to show
that x (Gms2x—1) > T+ Assume to the contrary that(Gms2x—1) < ™%+, and that
is a "L coloring of G k1.

For each integeir with 0 < i < k — 2, consider the subgraph & 2«x—1 induced by the
m + Kk + 1 vertices{i,i + 1,...,i + m+ k}. This graph has an independence number 2.
Therefore, each of th@%*l colors is used at most, and thus exactly, twice in this subgraph.
Consequently, verticeisandi + m + k + 1 have the same colors for all® i < k — 2.
Therefore, for each € S:= {0, 1, ..., m+ k}, the only possible vertices i8 having the
same color ag arej + kandj — k.

Consider thecirculant graph Gm + k + 1, k), with vertex setS and in which vertex is
adjacentto vertexiff j =i-+kori —k (modm+k+1). It follows from the discussion in the
preceding paragraph that two verticeandy in Shave the same color onlyxfy is an edge of
the circulant grapl€ (m+ k + 1, k). Since the intersection of each color class vttontains
exactly two vertices, the coloring induces a perfect matching @ + k + 1, k). However,
C(m+k+1, k) is the disjoint union ofl cycles of IengtH%, whered = gcdm-+k+1, k).
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SinceC(m + k + 1, k) has a perfect matching, each cycle has an even length. This implies
thatr > s, contrary to the assumption< s. Hence,x (Gmi2k—1) > %““ O

LEMMA 3.3. Suppos&k < m. If m+ k + 1is odd andgcdm + k + 1,k) # 1, then
xc(Gmik) > ™+ and henceyc(Gmyak—1) > THEL

PROOF. First, it is clear thatyc(Gmik) > anza'fikl) = ML Supposerc(Gmik) =
%k*l. Sincem+k+ 1 and 2 are relatively prime, evefsn+ k + 1, 2)-coloringc of G4 IS
onto and hence is one-to-one; i.e., there exists an ordgging, X2, . .., Xmik Of Vinik such
thatc(xj) =i for0 < i < m+ k. Therefore,X = (Xg, X1, ..., Xm+k, X0) iS @ cycle in the
complementG’ of Gk.

Letm = ak+ b, where 0< b < k. Since all vertices ofk — 1, k, ..., m+ 1} are of degree
two in G/, the following paths must be on the cycte

P:i,k+i,2k+1i,...,ak+i,(a+ Dk +i forO<i <b;

Pj:jk+j,2k+j,...,ak+ j forb+1<j<k-—1

For each vertey, let N(u) = {v € Vinyk : Uv € E(G)}. SinceN(k—1) = {2k—1, m+k}
andm + k = (a+ 1)k + b, we have thaP, Px_1 is a path of the cycl&. SinceN(k — 2) =
{2k — 2, m+ k — 1, m + k} and vertexm + k is on the pathP, Px_1, we have thaP,_1Px_2
is a path of the cycleX. Continuing this process, we have tHt = Py, 1.t Pt, where the
indexb + 1 + t is taken moduldk, is a path of the cycleX for 0 <t < k — 1. Since
gcdm+ k + 1, k) # 1, we have geth + 1, k) # 1. Therefore, these patli% form at least
2 disjoint cycles, contrary to our assumption tbais a cycle. Thus, the coloringdoes not
exist andyc(Gmyk) > ML,

SinceGmsk is a subgraph 0Gm 21, we conclude thagc(Gmak—1) > T, i

THEOREM 3.4. Suppos&k <m. Letm+k+1=2"m" and k= 2°k’, wherer and s are
non-negative integers and’rand K are odd integers. If r< s andgcdm + k + 1, k) # 1,
thenyc(Z, D) > MHE2,

PROOF. Supposexc(Gmizk-1) = ap, where p andq are relatively prime. Thenp <
Vinsok—1l = m + 2k andap > MK+ aecording to Lemmas 3.2 and 3.3. gf> 3, then
p > %(m +k+1) > %(m + k+ 1) > m+ 2k, a contradiction. Hencey < 2 and so
xc(Z, Dmk) > ap = %k-‘rz d

Now we give anm+k+ 2, 2)-coloring of G(Z, Dm k) to show that(c(Z, Dmk) < %"*2
We first give an(m + k + 2, 2)-coloring of G4« that is a variation of the coloring given
in Theorem 2.1 after a shift operation. It is then extended tonar- k + 2, 2)-coloring of
G(Z, Dm,-

LEMMA 3.5. If 2k < m, then G,k has an(m + k + 2, 2)-coloring ¢ such that &) =
cx—k)+1fork <x <m+k.

PROOF. Supposen + k + 1 = dm' andk = dk, where gcdm + k + 1, k) = d. Since
ged(m’, k') = 1, there exists an integersuch thank’ = 1 (modm’). Leta, = in (modm’)
for0 <i < m —1. Consider the mappirgfrom V. t0{0, 1, ... ,dm —1 = m+k} defined
byc(x) =a + jm’,wherex =id +(d—-1— j),withO<i <m —landO< j <d-1.

For any edgexy in Gmik, we shall prove thafc(x) — ¢(Y)|lm+k+2 > 2. Suppose to the
contrary that(x) = c(y), orc(x) = c(y)+1, orc(x) +1 = c(y). Letx =iid+(d—1—j1)
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andy = ipd+ (d—1— j»). For the case in whict(x) = c(y), we haves;, = &, andj; = jo,
which implyi; = ip andx =y, a contradiction txy being an edge. For the case in which
c(x) = c(y) + 1, either (1)a;, = &, + L andj1 = j, or (2)a, = 0 anda;, = m — 1 and

j1 = j2+1. Insubcase (1), we have= io + k' (modm’). Thusx—y = kory—x = m+1,

a contradiction. In subcase (2), we haye= 0 andio = m" — k'. Thus,y —x =m+ 2, a
contradiction. Similarly, it is impossible thatx) + 1 = c(y). This completes the proof of
the lemma. O

THEOREM 3.6. If 2k < m, thenyc(Z, Dmk) < —m+§+2-

PROOF. Let ¢ be the coloring oGk given in Lemma 3.5. Consider the mappicigof
G(Z, D) defined by

c(x), forO < x <m+Kk,
d(x) =14 ((x—=k)+1) mod (m+k+2), form+k+1<x,
(c(Xx+k)—1) mod (m+k + 2), for 0 > x.

We now show that’ is a proper(m + k + 2, 2)-coloring of G(Z, Dm k) by induction.
According to Lemma 3.5 is proper inGmik. SUppose’ is proper inGyx_1 forx > m+k+1.
Letxy be an edge itGy; i.e.,y = X — i for somei € Dy k. First,c/'(y) is not equal ta’ (x)
mod (m+k-+2) or (¢/(x) —1) mod (m+k+2), sincec’(y) = ¢/(x) —2 (modm+k+2) when
i = 2k, andy = x —i is adjacent tox —k in Gx_1 wheni # 2k, wherec'(x —k) = (¢/(x) —1)
mod (m + k + 2). Also, ¢/(y — k) is not equal toc’(x) mod (m + k + 2), sincex — Kk is
adjacent toy — kin Gx_; andc/(x — k) = (¢/(x) — 1) mod (m+ k + 2). Hencec/'(y) is not
equal to(c/(x) + 1) mod (m + k + 2). By induction,c’ is proper for non-negative vertices in
G(Z™, Dmk)- Similar arguments work for negative vertices. This completes the proof of the
theorem. O

Combining Theorems 3.4 and 3.6 and results in [3], we have

THEOREM 3.7. Suppos@k <m. Letm+ k +1=2"m" and k= 25k’, where r and s are
non-negative integers and’'rand K are odd integers. If r< s andgcdm + k + 1, k) # 1,

thenxc(Z, Dmk) = MKE2; otherwise, xc(Z, Dmk) = THEL.
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