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Circular Chromatic Numbers and Fractional Chromatic Numbers of
Distance Graphs

GERARD J. CHANG†, LINGLING HUANG† AND XUDING ZHU‡

This paper studies circular chromatic numbers and fractional chromatic numbers of distance graphs
G(Z, D) for various distance setsD. In particular, we determine these numbers for thoseD sets
of size two, for some specialD sets of size three, forD = {1,2, . . . ,m,n} with 1 ≤ m < n, for
D = {q,q + 1, . . . , p} with q ≤ p, and forD = {1,2, . . . ,m} − {k} with 1≤ k ≤ m.

c© 1998 Academic Press

1. INTRODUCTION

SupposeS is a subset of a metric spaceM with a metricδ, andD a subset of positive real
numbers. Thedistance graph G(S, D), with a distance set D, is the graph with vertex set
S in which two verticesx andy are adjacent iffδ(x, y) ∈ D. Distance graphs, first studied
by Eggletonet al. [7], were motivated by the well-known plane-coloring problem: What is
the minimum number of colors needed to color all points of a euclidean plane so that points
at unit distances are colored with different colors. This problem is equivalent to determining
the chromatic number of the distance graphG(R2, {1}). It is well-known that the chromatic
number of this distance graph is between 4 and 7 (see [12, 15]). However, the exact number
of colors needed remains unknown.

For distance graphs on the real lineR or the integer setZ, the problem of finding the
chromatic numbers ofG(R, D) or G(Z, D) for different D sets has been studied extensively
(see [3, 10, 13, 14, 17, 18, 20, 22]). Two recent papers [3, 14] related distance graphs to theT-
coloring problem. Chromatic numbers and fractional chromatic numbers of distance graphs
were used to derive bounds forT-spans of the correspondingT-colorings, and vice versa. In
this paper, we study circular chromatic numbers and fractional chromatic numbers of distance
graphsG(Z, D) for variousD sets.

The circular chromatic number of a graph is a natural generalization of the chromatic number
of a graph, introduced by Vince [16] under the name the ‘star chromatic number’ of a graph.
Supposep and q are positive integers such thatp ≥ 2q. A (p,q)-coloring of a graph
G = (V, E) is a mappingc from V to {0,1, . . . , p− 1} such that‖c(x) − c(y)‖p ≥ q for
any edgexy in E, where‖a‖p = min{a, p− a}. Thecircular chromatic numberχc(G) of G
is the infimum of the ratiosp/q for which there exist(p,q)-colorings ofG.

Note that a(p,1)-coloring of a graphG is simply an ordinaryp-coloring ofG. Therefore,
χc(G) ≤ χ(G) for any graphG. On the other hand, it has been shown [16] that for all graphs
G, we haveχ(G)− 1< χc(G). Therefore,χ(G) = dχc(G)e. In particular, two graphs with
the same circular chromatic number also have the same chromatic number. However, two
graphs with the same chromatic number may have different circular chromatic numbers. Thus
χc(G) is a refinement ofχ(G), and it contains more information about the structure of the
graph. It is usually much more difficult to determine the circular chromatic number of a graph
than to determine its chromatic number. The main results of this article determine the circular
chromatic numbers of various distance graphs. These results may be viewed as improvements
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on previous results concerning the chromatic numbers of these distance graphs presented in
[3, 4, 7, 13, 17, 21].

The fractional chromatic number of a graph is another well-known variation of the chromatic
number. Afractional coloringof a graphG is a mappingc fromI(G), the set of all independent
sets ofG, to the interval[0,1] such that

∑
x∈I∈I(G)

c(I ) ≥ 1 for all verticesx in G. Thefractional

chromatic numberχ f (G) of G is the infimum of the value
∑

I∈I(G)
c(I ) of a fractional coloring

c of G.
For any graphG, it is well known that

max{ω(G), |G|/α(G)} ≤ χ f (G) ≤ χc(G) ≤ dχc(G)e = χ(G). (∗)
For simplicity, letω(S, D), α(S, D), χ f (S, D), χc(S, D) andχ(S, D) denote, respectively,

the clique number, the independence number, the fractional chromatic number, the circular
chromatic number, and the chromatic number of a distance graphG(S, D).

Chromatic numbers of distance graphs with distance sets|D| ≤ 2 were determined by Chen
et al. [4] and Voigt [17]. Chromatic numbers of distance graphs with|D| = 3 were determined
by Zhu [21]. In Section 2, we use a ‘multiplier method’ to establish an upper bound for the
circular chromatic number of a distance graphG(Z, D) with an arbitrary distance setD.
This upper bound is then used to determine the circular chromatic numbers and the fractional
chromatic numbers of those distance graphs with distance setsD for |D| = 2, for some special
D with |D| = 3, for D = {1,2, . . . ,m,n} with 1 ≤ m < n, and forD = {q,q + 1, . . . , p}
with q ≤ p. The chromatic number forG(Z, D)with D = {q,q+1, . . . , p}was determined
in [7, 13].

Chromatic numbers of distance graphs with distance sets of the formDm,k = {1,2, . . . ,m}−
{k}, with 1 ≤ k ≤ m, were studied in [3, 7, 13, 14]. Partial results concerning chromatic
numbers of such distance graphs were obtained in [7, 13, 14], and a complete solution was
recently obtained by Changet al. [3]. The authors of [3] also obtained circular chromatic
numbers of such distance graphs for some special values ofmandk. In Section 3, we determine
the circular chromatic numbersχc(Z, Dm,k) for all integer pairsm, k.

2. MULTIPLIER METHOD FOR χ f (Z, D) AND χc(Z, D)

In this section we use a ‘multiplier method’ to establish an upper bound onχc(Z, D) for an
arbitrary D set. We then use this upper bound to determine circular chromatic numbers for
someD sets.

The multiplier method was used in [2] to study the density ofD-sets, and was also used in
[11] to study fractional chromatic numbers and circular chromatic numbers of circulant graphs.
In taking distance graphs to be ‘infinite’ circulant graphs, Theorem 2.2 is parallel to a result
in [11]. Half of the proof of Theorem 2.3 is parallel to an argument in [2].

LEMMA 2.1. Suppose D is a set of positive integers, and that p and r are positive integers.
Let

dD(p, r ) = min{‖r i mod p‖p : i ∈ D}.
If dD(p, r ) ≥ 1, thenχc(Z, D) ≤ p/dD(p, r ).

PROOF. It is straightforward to verify that the coloring defined asc(i ) = (r i modp) for
i ∈ Z is a(p,dD(p, r ))-coloring of the distance graphG(Z, D). 2
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Let fD = inf{p/dD(p, r ) : dD(p, r ) ≥ 1}. The function is well defined sincedD(p, r ) is
always an integer between 0 andbp/2c. Theorem 2.2 follows from Lemma 2.1.

THEOREM 2.2. For any set D of positive integers,χc(Z, D) ≤ fD.

It is known [4, 17] that ifD contains exactly two relatively prime integers, thenχ(Z, D) = 2
when the two integers are odd andχ(Z, D) = 3 when the two integers have different parities.
We first usefD to determineχc(Z, D) andχ f (Z, D) for D with |D| = 2.

THEOREM 2.3. If D = {a,b} andgcd(a,b) = 1, then

χ f (Z, D) = χc(Z, D) = fD = (a+ b)/b(a+ b)/2c.
PROOF. Suppose botha andb are odd. Since 2≤ ω(Z, D) anddD(2,1) = 1, the theorem

follows from (∗) and Theorem 2.2.
Suppose thata andb have different parities, i.e.,a + b is odd. Assume thata + b = p.

Since gcd(p,b− a) = 1, there exists a positive integerr such thatr (b− a) ≡ 1 (modp).
Sincer (b+ a) ≡ 0 (modp), it follows that 2rb ≡ −2ra ≡ 1 (modp). Hence,ra ≡ −rb ≡
(p− 1)/2 (modp), which implies thatdD(p, r ) = (p− 1)/2. Hence, according to Theorem
2.2,χc(Z, D) ≤ fD ≤ 2p/(p− 1) = (a+ b)/b(a+ b)/2c. On the other hand, it is easy to
see thatG(Z, D) contains the odd cycleCp. Thus, 2p/(p − 1) ≤ p/α(Cp) ≤ χ f (Cp) ≤
χ f (Z, D) ≤ χc(Z, D). This completes the proof of the theorem. 2

Note that precisely the same arguments in the first two lines of the proof above also give that
χ f (Z, D) = χc(Z, D) = fD = 2 if D contains only odd integers.

We now consider circular chromatic numbers and fractional chromatic numbers of distance
graphsG(Z, D) with |D| = 3. Zhu [21] proved the following result for chromatic numbers,
which provides a range for circular chromatic numbers.

THEOREM 2.4 ([21]). If D = {a,b, c}, where a< b < c are positive integers with
gcd(a,b, c) = 1, then

χ(Z, D) =



2, if a,b, c are odd,

4, if a = 1 and b= 2 and c≡ 0 (mod 3),

4, if a + b = c and a 6≡ b (mod 3),

3, otherwise.

THEOREM 2.5. If D = {a,a+ 1, c}, with a+ 1< c, where c+ a = (2a+ 1)k+ r , with
k ≥ 1 and0≤ r ≤ 2a, then

χ f (Z, D) ≤ χc(Z, D) ≤ fD ≤
{
(c+ a)/(ak), if 0≤ r ≤ a,

(c+ a+ 1)/(ak+ r − a), if a + 1≤ r ≤ 2a.

PROOF. Note thatck≡ −ak (modc+a) andc(k+1) ≡ −(a+1)(k+1) (modc+a+1).
Therefore,dD(c + a, k) = ak for all r , anddD(c + a + 1, k + 1) = ak + r − a when
a+ 1≤ r ≤ 2a. The theorem then follows. 2

THEOREM 2.6. If D = {a,a+ 1, c} with a+ 1 < c and c+ a ≡ 2a or 0 (mod 2a+ 1),
thenχ f (Z, D) = χc(Z, D) = fD = 2+ 1/a.
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PROOF. SinceG(Z, D) contains the odd cycleC2a+1, according to(∗), 2+ 1/a = (2a+
1)/α(C2a+1) ≤ χ f (C2a+1) ≤ χ f (Z, D). On the other hand, sincec+a ≡ 2a or 0(mod 2a+
1), it follows from Theorem 2.5 thatfD ≤ 2+ 1/a. 2

Denote the subgraph ofG(Z, D) induced byVi = {0,1, · · · , i } asGi .

THEOREM 2.7. If D = {2,3, c}, with 3 < c, where c+ 2 = 5k + r , with k ≥ 1 and
0≤ r ≤ 4, then

χ f (Z, D) = χc(Z, D) = fD =


(c+ 2)/2k, if r = 1,2,

(c+ 3)/(2k+ 1), if r = 3,

5/2, if r = 4,0.

PROOF. The case in whichr = 4 or 0 follows from Theorem 2.6. For the other cases,
Theorem 2.5 implies thatfD ≤ (c+ 2)/2k whenr = 1,2, and fD ≤ (c+ 3)/(2k+ 1) when
r = 3. Therefore it suffices to show thatα(Gc+1) ≤ 2k whenr = 1,2 andα(Gc+2) ≤ 2k+1
whenr = 3.

Consider the graphGc+2 for r = 1,2,3. Decompose the vertex set{0,1, · · · , c+2} intok+1
subsetsIi = {5i,5i+1, . . . ,5i+4} for 0≤ i ≤ k−1, andJ = {5k, . . . ,5k+r = c+2}. Then,
J = {c+1, c+2}whenr = 1, J = {c, c+1, c+2}whenr = 2, andJ = {c−1, c, c+1, c+2}
whenr = 3. Suppose thatGc+2 has an independent setS of size 2k + 2. We may assume
that 0∈ S and thenc /∈ S. Since every five consecutive vertices inGc+2 form a 5-cycle, we
conclude that|Ii ∩ S| = |J ∩ S| = 2 for 0≤ i ≤ k− 1. Thenc+ 1 ∈ S, and hence, 1/∈ S.

Since|I0 ∩ S| = 2, 2 and 3 are not inS. We therefore conclude that 4∈ S. In a general
step, using the fact that|Ii ∩ S| = 2 and 5(i − 1)− 1 ∈ S, it is straightforward to derive that
5i − 1 ∈ S. Therefore, 5k− 1 ∈ S. Since 5k− 1= c whenr = 1, and 5k− 1 is adjacent to
c+ 1 whenr = 2 or 3, we have contradictions. Hence,α(Gc+2) ≤ 2k + 1 for r = 1,2,3.
Moreover, for the case in whichr = 1 or 2, any independent setS′ of Gc+2 of size 2k+ 1 that
contains the vertex 0 does not contain the vertexc+ 1. Hence,c+ 2 ∈ S′ andα(Gc+1) ≤ 2k.
This completes the proof of the theorem. 2

THEOREM 2.8. Suppose D= {a,b,a+ b}, with 0 < a < b andgcd(a,b) = 1. If a ≡ b
(mod 3), thenχ f (Z, D) = χc(Z, D) = fD = 3.

PROOF. Since gcd(a,b) = 1 anda ≡ b (mod 3), we havea,b, c 6≡ 0 (mod 3) and so
dD(3,1) = 1. The theorem then follows from(∗) and the fact that{0,a,a+ b} is a clique.2

THEOREM 2.9. If D = {1,2, · · · ,m,n}, with 1≤ m< n, then

χ f (Z, D) = χc(Z, D) = fD =
{

m+ 1, if n 6≡ 0 (modm+ 1),

m+ 1+ 1/k, if n = k(m+ 1).

PROOF. Supposen 6≡ 0 (modm+ 1). Sincem+ 1 ≤ ω(G) anddD(m+ 1,1) = 1, the
theorem follows from(∗) and Theorem 2.2.

Supposen = k(m+1). Since every independent set ofGn contains at most one vertex from
anym+1 consecutive vertices, and at most one vertex from{0,n}, α(Gn) = k. Consequently,
m+1+1/k = (n+1)/α(Gn) ≤ χ f (Gn) ≤ χ f (Z, D). Also, fD ≤ (n+1)/dD(n+1, k) =
m+ 1+ 1/k. The theorem then follows. 2

COROLLARY 2.10. If D = {1,2,3k}, where k≥ 1, thenχ f (Z, D) = χc(Z, D) =
3+ 1/k.
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TABLE 1.

Conditions ofa,b, c χ f (Z, D), χc(Z, D), fD χ(Z, D)

a,b, c are odd 2 2

a = 1,b = 2, c = 3k 3+ 1
k (Corollary 2.10) 4

c = a+ b,a 6≡ b (mod 3) ? 4

c = a+ b,a ≡ b (mod 3) 3 (Theorem 2.8)

b = a+ 1, c ≡ a or a+ 1 (mod 2a+ 1) 2+ 1
a (Theorem 2.6)

r = 1,2 c+2
2k (Theorem 2.7) 3

a = 2,b = 3, c+ 2= 5k+ r
r = 3 c+3

2k+1 (Theorem 2.7)

Otherwise ?

This is one of the two cases covered by Theorem 2.4 in which we haveχ(Z, D) = 4. The
other is that in whichD = {a,b, c}, a + b = c anda 6≡ b (mod 3). We note that, in this
case, the chromatic number ofG(Z, D) is easily determined. However, the circular chromatic
numbers ofG(Z, D) are still unknown, except for some special values ofa andb.

We summarize the results forD = {a,b, c}with a < b < c and gcd(a,b, c) = 1 in Table 1.

THEOREM 2.11. If D = {q,q + 1, . . . , p}, with q ≤ p, thenχ f (Z, D) = χc(Z, D) =
fD = 1+ p/q.

PROOF. SincedD(p+ q,1) = q, we conclude thatfD ≤ (p+ q)/q. On the other hand, it
is quite obvious thatα(Gp+q−1) = q. Hence,χ f (Z, D) = χc(Z, D) = fD = 1+ p/q. 2

THEOREM 2.12. If D = [1, r ], where r is any real number greater than or equal to1, then
χ f (R, D) = χc(R, D) = 1+ r .

PROOF. We first consider the case in whichr = p/q is rational. LetD′ = {q,q+1, . . . , p}.
It is then straightforward to verify that each connected component ofG(R, D) is isomorphic
to G(Z, D′). According to Theorem 2.11,χ f (R, D) = χc(R, D) = 1+ r .

Whenr is irrational, then let(ri : i = 1,2, . . . ) and(r ′i : i = 1,2, . . . ) be sequences of
rational numbers such thatr ′i ≤ r ≤ ri for eachi and limi→∞r ′i = lim i→∞ri = r . The above
argument then shows that 1+ r ′i ≤ χ f (R, D) ≤ χc(R, D) ≤ 1+ ri for eachi . Therefore,
χ f (R, D) = χc(R, D) = 1+ r . 2

It was shown by Eggletonet al. [10] (Theorem 2) that if a prime distance graph has a proper
k-coloring, then it has a periodick-coloring. The proof in fact shows that anyk-colorable
distance graph has a periodick-coloring. We remark that an argument parallel to the proof of
Theorem 2 of [10] shows that if a distance graphG(Z, D) has a(p,q)-coloring, then it has a
periodic(p,q)-coloring. Also we note that a(p,q)-coloring derived by the multiplier method
is always a periodic(p,q)-coloring.

3. CIRCULAR CHROMATIC NUMBER χc(Z, Dm,k)

As mentioned in the introduction, Changet al. [3] determined the chromatic number and the
fractional chromatic number of the distance graphG(Z, Dm,k), whereDm,k = {1,2, . . . ,m}−
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TABLE 2.

Conditions ofm, k, r, s χ f (Z, Dm,k) χc(Z, Dm,k) χ(Z, Dm,k)

2k > m k k k

r > s m+k+1
2

gcd(m+ k+ 1, k) = 1

m+k+1
2

2k ≤ m r = 0
gcd(m+ k+ 1, k) 6= 1

m+k+1
2

m+k+2
2

1≤ r ≤ s ? m+k+3
2

{k} and 1≤ k ≤ m. They also determined the circular chromatic number ofG(Z, Dm,k) for
some pairs of integersm andk.

Let m+ k + 1 = 2r m′ andk = 2sk′, wherem′ andk′ are both odd. Table 2 shows their
results.

The circular chromatic numbersχc(Z, Dm,k) remain unknown for those pairs of integers
m, k corresponding to the question mark in Table 2. In this section, we shall fill in the
unknown part of Table 2 by showing thatχc(Z, Dm,k) = m+k+2

2 when 2k ≤ m andr ≤ s and
gcd(m+ k+ 1, k) 6= 1.

The following lemma was proven in [16] and is used frequently in our proofs.

LEMMA 3.1 ([16]). If G has a circular chromatic numberpq (where p and q are relatively
prime), then p≤ |V(G)|, and any(p,q)-coloring c of G is an onto mapping from V(G) to
{0,1, . . . , p− 1}.

As in the preceding section, we denote the subgraph ofG(Z, Dm,k) induced byVi =
{0,1, . . . , i } asGi . We shall first derive a lower bound forχc(Z, Dm,k).

LEMMA 3.2. Suppose2k ≤ m. Let m+k+1= 2r m′ and k= 2sk′, where r and s are non-
negative integers and m′ and k′ are odd integers. If1≤ r ≤ s, thenχc(Gm+2k−1) >

m+k+1
2 .

PROOF. Sincem+ k+ 1 is even andχc(Gm+2k−1) > χ(Gm+2k−1)− 1, it suffices to show
thatχ(Gm+2k−1) >

m+k+1
2 . Assume to the contrary thatχ(Gm+2k−1) ≤ m+k+1

2 , and thatc
is a m+k+1

2 -coloring ofGm+2k−1.
For each integeri with 0 ≤ i ≤ k − 2, consider the subgraph ofGm+2k−1 induced by the

m+ k + 1 vertices{i, i + 1, . . . , i + m+ k}. This graph has an independence number 2.
Therefore, each of them+k+1

2 colors is used at most, and thus exactly, twice in this subgraph.
Consequently, verticesi and i + m + k + 1 have the same colors for all 0≤ i ≤ k − 2.
Therefore, for eachj ∈ S := {0,1, . . . ,m+ k}, the only possible vertices inS having the
same color asj are j + k and j − k.

Consider thecirculant graph C(m+ k + 1, k), with vertex setS and in which vertexi is
adjacent to vertexj iff j ≡ i +k or i −k (modm+k+1). It follows from the discussion in the
preceding paragraph that two verticesx andy in Shave the same color only ifxy is an edge of
the circulant graphC(m+ k+1, k). Since the intersection of each color class withScontains
exactly two vertices, the coloring induces a perfect matching ofC(m+ k + 1, k). However,
C(m+k+1, k) is the disjoint union ofd cycles of lengthm+k+1

d , whered = gcd(m+k+1, k).
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SinceC(m+ k + 1, k) has a perfect matching, each cycle has an even length. This implies
thatr > s, contrary to the assumptionr ≤ s. Hence,χ(Gm+2k−1) >

m+k+1
2 . 2

LEMMA 3.3. Suppose2k ≤ m. If m+ k + 1 is odd andgcd(m+ k + 1, k) 6= 1, then
χc(Gm+k) >

m+k+1
2 , and hence,χc(Gm+2k−1) >

m+k+1
2 .

PROOF. First, it is clear thatχc(Gm+k) ≥ m+k+1
α(Gm+k)

= m+k+1
2 . Supposeχc(Gm+k) =

m+k+1
2 . Sincem+k+1 and 2 are relatively prime, every(m+k+1,2)-coloringc of Gm+k is

onto and hence is one-to-one; i.e., there exists an orderingx0, x1, x2, . . . , xm+k of Vm+k such
thatc(xi ) = i for 0 ≤ i ≤ m+ k. Therefore,X = (x0, x1, . . . , xm+k, x0) is a cycle in the
complementG′ of Gm+k.

Let m= ak+ b, where 0≤ b < k. Since all vertices of{k− 1, k, . . . ,m+ 1} are of degree
two in G′, the following paths must be on the cycleX:

Pi : i, k+ i,2k+ i, . . . ,ak+ i, (a+ 1)k+ i for 0≤ i ≤ b;
Pj : j, k+ j,2k+ j, . . . ,ak+ j for b+ 1≤ j ≤ k− 1.

For each vertexu, let N(u) = {v ∈ Vm+k : uv ∈ E(G′)}. SinceN(k−1) = {2k−1,m+k}
andm+ k = (a+ 1)k+ b, we have thatPbPk−1 is a path of the cycleX. SinceN(k− 2) =
{2k− 2,m+ k− 1,m+ k} and vertexm+ k is on the pathPbPk−1, we have thatPb−1Pk−2
is a path of the cycleX. Continuing this process, we have thatP′t = Pb+1+t Pt , where the
index b + 1 + t is taken modulok, is a path of the cycleX for 0 ≤ t ≤ k − 1. Since
gcd(m+ k + 1, k) 6= 1, we have gcd(b+ 1, k) 6= 1. Therefore, these pathsP′t form at least
2 disjoint cycles, contrary to our assumption thatX is a cycle. Thus, the coloringc does not
exist andχc(Gm+k) >

m+k+1
2 .

SinceGm+k is a subgraph ofGm+2k−1, we conclude thatχc(Gm+2k−1) >
m+k+1

2 . 2

THEOREM 3.4. Suppose2k ≤ m. Let m+ k+ 1= 2r m′ and k= 2sk′, where r and s are
non-negative integers and m′ and k′ are odd integers. If r≤ s andgcd(m+ k + 1, k) 6= 1,
thenχc(Z, Dm,k) ≥ m+k+2

2 .

PROOF. Supposeχc(Gm+2k−1) = p
q , where p and q are relatively prime. Then,p ≤

|Vm+2k−1| = m+ 2k and p
q > m+k+1

2 according to Lemmas 3.2 and 3.3. Ifq ≥ 3, then

p >
q
2(m + k + 1) ≥ 3

2(m + k + 1) > m + 2k, a contradiction. Hence,q ≤ 2 and so
χc(Z, Dm,k) ≥ p

q ≥ m+k+2
2 . 2

Now we give an(m+k+2,2)-coloring ofG(Z, Dm,k) to show thatχc(Z, Dm,k) ≤ m+k+2
2 .

We first give an(m + k + 2,2)-coloring of Gm+k that is a variation of the coloring given
in Theorem 2.1 after a shift operation. It is then extended to an(m+ k + 2,2)-coloring of
G(Z, Dm,k).

LEMMA 3.5. If 2k ≤ m, then Gm+k has an(m+ k + 2,2)-coloring c such that c(x) =
c(x − k)+ 1 for k ≤ x ≤ m+ k.

PROOF. Supposem+ k + 1 = dm′ andk = dk′, where gcd(m+ k + 1, k) = d. Since
gcd(m′, k′) = 1, there exists an integern such thatnk′ ≡ 1 (modm′). Let ai = in (modm′)
for 0≤ i ≤ m′−1. Consider the mappingc from Vm+k to {0,1, . . . ,dm′−1= m+k} defined
by c(x) = ai + jm′, wherex = id + (d − 1− j ), with 0≤ i ≤ m′ − 1 and 0≤ j ≤ d − 1.

For any edgexy in Gm+k, we shall prove that‖c(x) − c(y)‖m+k+2 ≥ 2. Suppose to the
contrary thatc(x) = c(y), orc(x) = c(y)+1, orc(x)+1= c(y). Let x = i1d+ (d−1− j1)
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andy = i2d+ (d−1− j2). For the case in whichc(x) = c(y), we haveai1 = ai2 and j1 = j2,
which imply i1 = i2 andx = y, a contradiction toxy being an edge. For the case in which
c(x) = c(y) + 1, either (1)ai1 = ai2 + 1 and j1 = j2, or (2)ai1 = 0 andai2 = m′ − 1 and
j1 = j2+1. In subcase (1), we havei1 ≡ i2+k′ (modm′). Thus,x− y = k or y−x = m+1,
a contradiction. In subcase (2), we havei1 = 0 andi2 = m′ − k′. Thus,y − x = m+ 2, a
contradiction. Similarly, it is impossible thatc(x) + 1 = c(y). This completes the proof of
the lemma. 2

THEOREM 3.6. If 2k ≤ m, thenχc(Z, Dm,k) ≤ m+k+2
2 .

PROOF. Let c be the coloring ofGm+k given in Lemma 3.5. Consider the mappingc′ of
G(Z, Dm,k) defined by

c′(x) =


c(x), for 0≤ x ≤ m+ k,

(c′(x − k)+ 1) mod (m+ k+ 2), for m+ k+ 1≤ x,

(c′(x + k)− 1) mod (m+ k+ 2), for 0> x.

We now show thatc′ is a proper(m + k + 2,2)-coloring of G(Z, Dm,k) by induction.
According to Lemma 3.5,c′ is proper inGm+k. Supposec′ is proper inGx−1 for x ≥ m+k+1.
Let xy be an edge inGx; i.e., y = x − i for somei ∈ Dm,k. First,c′(y) is not equal toc′(x)
mod (m+k+2) or (c′(x)−1)mod (m+k+2), sincec′(y) ≡ c′(x)−2 (modm+k+2)when
i = 2k, andy = x− i is adjacent tox−k in Gx−1 wheni 6= 2k, wherec′(x−k) = (c′(x)−1)
mod (m+ k + 2). Also, c′(y − k) is not equal toc′(x) mod (m+ k + 2), sincex − k is
adjacent toy− k in Gx−1 andc′(x − k) = (c′(x)− 1)mod (m+ k+ 2). Hence,c′(y) is not
equal to(c′(x)+ 1)mod (m+ k+ 2). By induction,c′ is proper for non-negative vertices in
G(Z+, Dm,k). Similar arguments work for negative vertices. This completes the proof of the
theorem. 2

Combining Theorems 3.4 and 3.6 and results in [3], we have

THEOREM 3.7. Suppose2k ≤ m. Let m+ k+ 1= 2r m′ and k= 2sk′, where r and s are
non-negative integers and m′ and k′ are odd integers. If r≤ s andgcd(m+ k + 1, k) 6= 1,
thenχc(Z, Dm,k) = m+k+2

2 ; otherwise,χc(Z, Dm,k) = m+k+1
2 .
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