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Circular Chromatic Numbers of Distance Graphs with Distance Sets
Missing Multiples†

L INGLING HUANG AND GERARD J. CHANG

Given positive integersm, k, s with m> sk, let Dm,k,s represent the set{1, 2, . . . ,m}\{k, 2k, . . . ,
sk}. The distance graphG(Z, Dm,k,s) has as vertex set all integersZ and edges connectingi and
j whenever|i − j | ∈ Dm,k,s. This paper investigates chromatic numbers and circular chromatic
numbers of the distance graphsG(Z, Dm,k,s). Deuber and Zhu [8] and Liu [13] have shown that
d

m+sk+1
s+1 e ≤ χ(G(Z, Dm,k,s)) ≤ d

m+sk+1
s+1 e + 1 whenm≥ (s+ 1)k. In this paper, by establishing

bounds for the circular chromatic numberχc(G(Z, Dm,k,s)) of G(Z, Dm,k,s), we determine the
values ofχ(G(Z, Dm,k,s)) for all positive integersm, k, s andχc(G(Z, Dm,k,s)) for some positive
integersm, k, s.

c© 2000 Academic Press

1. INTRODUCTION

Given a setD of positive integers, thedistance graph G(Z, D) has all integers as vertices,
and two vertices are adjacent if and only if their difference is inD; that is, the vertex set is
Z and the edge set is{uv : |u − v| ∈ D}. We call D the distance set. This paper studies
chromatic and circular chromatic numbers of some distance graphs with certain distance sets.

The circular chromatic number of a graph is a natural generalization of the chromatic num-
ber of a graph, introduced by Vince [15] as the name “star chromatic number.” Supposep
and q are positive integers such thatp ≥ 2q. Let G be a graph with at least one edge.
A (p,q)-coloring of G = (V, E) is a mappingc from V to {0, 1, . . . , p − 1} such that
q ≤ |c(x)− c(y)| ≤ p− q for any edgexy in E. Thecircular chromatic numberχc(G) of G
is the infimum of the ratiosp/q for which there exists a(p,q)-coloring ofG.

Note that forp ≥ 2, a(p, 1)-coloring of a graphG is simply an ordinaryp-coloring ofG.
Therefore,χc(G) ≤ χ(G) for any graphG. Let G be a graph which is not a null graph. On the
other hand, it has been shown [15] that for all finite graphsG, we haveχ(G) − 1 < χc(G).
Applying a result of de Bruijn and Erdős [6], this can be proved also for infinite graphs.
Therefore,χ(G) = dχc(G)e if G 6= Nn. In particular, two graphs with the same circular
chromatic number also have the same chromatic number. However, two graphs with the same
chromatic number may have different circular chromatic numbers. Thusχc(G) is a refinement
of χ(G), and it contains more information about the structure of the graph. It is usually much
more difficult to determine the circular chromatic number of a graph than to determine its
chromatic number.

The fractional chromatic number of a graph is another well-known variation of the chro-
matic number. Afractional coloringof a graphG is a mappingc from I(G), the set of all
independent sets ofG, to the interval[0,1] such that

∑
x∈I∈I(G)

c(I ) ≥ 1 for all verticesx of

G. Thefractional chromatic numberχ f (G) of G is the infimum of the value
∑

I∈I(G)
c(I ) of a

fractional coloringc of G.
For any graphG, it is well known that

max{ω(G), |G|/α(G)} ≤ χ f (G) ≤ χc(G) ≤ dχc(G)e = χ(G), (∗)
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whereω(G) (respectively,α(G)) is the clique (respectively,independence) numberof G
which is the maximum size of a pairwise adjacent (respectively, non-adjacent) vertex sub-
set ofV(G).

For simplicity, letω(S, D), α(S, D), χ f (S, D), χc(S, D) andχ(S, D) denote the clique
number, the independence number, the fractional chromatic number, the circular chromatic
number and the chromatic number of the distance graphG(S, D), respectively.

For different types of distance setsD, the problem of determiningχ(Z, D) has been studied
extensively, see Refs [4, 5, 7, 9, 10, 12, 16–19]. For instance, the case thatD contains at most
three integers were studied by Eggleton, Erdős and Skilton [9], Chen, Chang and Huang [5],
Voigt [16], Deuber and Zhu [7], Zhu [18], and at last completely determined by Zhu [19].

Given positive integersm, k, s with m> sk, let Dm,k,s denote the distance set{1, 2, . . . ,m}\
{k, 2k, . . . , sk}. Fors = 1, the chromatic number ofG(Z, Dm,k,1) was first studied in [9, 12,
13] and finally completely determined by Chang, Liu and Zhu [4]. They also determined the
fractional chromatic number ofG(Z, Dm,k,1). The circular chromatic number ofG(Z, Dm,k,1)

was then determined by Chang, Huang and Zhu [2]. Recently, Liu and Zhu [14] determined
the fractional chromatic number ofG(Z, Dm,k,s) for a generals, which gives a lower bound
of χ(Z, Dm,k,s). Liu and Zhu [14], Deuber and Zhu [8] also studiedχ(Z, Dm,k,s) for s =
2, 3, primes + 1, and obtained some results for generals. Moreover, Deuber and Zhu [8]
showed that for any values ofm, k, s with m ≥ (s + 1)k, dm+sk+1

s+1 e ≤ χ(Z, Dm,k,s) ≤

d
m+sk+1

s+1 e + 1. In this paper, by establishing bounds forχc(Z, Dm,k,s), we determine the
values ofχ(Z, Dm,k,s) for all positive integersm, k, s, andχc(Z, Dm,k,s) for some positive
integersm, k, s.

Note that it becomes an easy case ifm < (s+ 1)k. Define a coloringf of G(Z, Dm,k,s)

by: f (x) = x modk for any x ∈ Z. As Dm,k,s contains no multiples ofk, it can be easily
verified that f is a proper coloring. Thus,χ(Z, Dm,k,s) ≤ k. As any consecutivek vertices in
G(Z, Dm,k,s) form a clique,k ≤ ω(Z, Dm,k,s). This implies that all values in(∗) are equal
to k for G = G(Z, Dm,k,s) if m< (s+ 1)k (see Ref. [14]). Therefore, throughout the article,
we assumem ≥ (s+ 1)k.

The following table shows all results concerning the distance graphG(Z, Dm,k,s). Note
that the value ofχ f (Z, Dm,k,s) is determined in Ref. [14] and some value ofχ(Z, Dm,k,s)

is determined in Refs [8, 14]. Also, all values ofχc(Z, Dm,k,s) are given in this paper, which
also implies the results ofχ(Z, Dm,k,s). Let

d = gcd(k,m+ sk+ 1),
a = (m+ sk+ 1)modd(s+ 1),
b = (m+ sk+ 1)mod(s+ 1).

Therefore,
a = 0 meansd(s+ 1) | (m+ sk+ 1),
a 6= 0 meansd(s+ 1) 6 | (m+ sk+ 1),
b = 0 means(s+ 1) | (m+ sk+ 1),
b 6= 0 means(s+ 1) 6 | (m+ sk+ 1).

Note that whenm ≥ (s + 1)k with b 6= 0 andd > 1, we only know thatm+sk+1
s+1 ≤

χc(Z, Dm,k,s) ≤
m+sk+2

s+1 , but still do not know the exact value ofχc(Z, Dm,k,s).

2. MAIN RESULTS

In the study of the chromatic number of the distance graphsG(Z, Dm,k,s)with distance sets
Dm,k,s = {1, 2, . . . ,m}\{k, 2k, . . . , sk}, Liu and Zhu [14] obtained the following result on
fractional chromatic numbers, which asserts a lower bound for the circular chromatic numbers
and chromatic numbers (by(∗)).
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Conditions of parameters χ f (Z, Dm,k,s) χc(Z, Dm,k,s) χ(Z, Dm,k,s)

m< (s+1)k k [14] k [14] k [14]

a = 0
m+sk+1

s+1 [14]
m+sk+1

s+1
d = 1

m≥ (s+1)k b 6= 0
m+sk+1

s+1 [14] d
m+sk+1

s+1 e
d > 1 ≤

m+sk+2
s+1

a 6= 0, b = 0
m+sk+2

s+1
m+sk+1

s+1 +1

THEOREM 1 ([14]). For positive integers m, k and s with m≥ (s+ 1)k,

χ f (Z, Dm,k,s) =
m+ sk+ 1

s+ 1
.

Liu and Zhu [14] also gave an upper bound ofχ(Z, Dm,k,s) as follows.

LEMMA 2 ([14]). For positive integers m, k, s with m≥ (s+ 1)k and d= gcd(k,m+
sk+ 1),

χ(Z, Dm,k,s) ≤ d

⌈
m+ sk+ 1

d(s+ 1)

⌉
.

By Lemma2, it is clear that ifd(s+1) | (m+sk+1), thenχ(Z, Dm,k,s) ≤
m+sk+1

s+1 . Hence
we have

THEOREM 3 ([14]). For positive integers m, k, s with m≥ (s+ 1)k and d= gcd(k,m+
sk+ 1), if d(s+ 1) | (m+ sk+ 1), then

χc(Z, Dm,k,s) = χ(Z, Dm,k,s) =
m+ sk+ 1

s+ 1
.

Note that Theorem3 only gives the values ofχc(Z, Dm,k,s) andχ(Z, Dm,k,s) under the
condition d(s + 1) | (m + sk+ 1), although for m+sk+1

s+1 to be an integer we only need
(s+ 1) | (m+ sk+ 1).

Next, we show that ifs+ 1 dividesm+ sk+ 1 butd(s+ 1) does not, thenχ(Z, Dm,k,s) >
m+sk+1

s+1 . Let G[i, j ] denote the subgraph ofG(Z, Dm,k,s) induced byV[i, j ] = {i, i +
1, . . . , j } for any integersi ≤ j .

LEMMA 4. For positive integers m, k, s with m≥ (s+ 1)k and d= gcd(k,m+ sk+ 1),
if (s+ 1) | (m+ sk+ 1) but d(s+ 1) 6 | (m+ sk+ 1), then

χc(G[0,m+ sk+ k− 1]) >
m+ sk+ 1

s+ 1
andχ(Z, Dm,k,s) >

m+ sk+ 1

s+ 1
.

PROOF. Sinceχc(G[0,m+ sk+ k − 1]) > χ(G[0,m+ sk+ k − 1])− 1 andm+sk+1
s+1 is

an integer, it suffices to show thatχ(G[0,m+ sk+ k− 1]) > m+sk+1
s+1 . Supposeχ(G[0,m+



244 L. Huang and G. J. Chang

sk+ k − 1]) ≤ m+sk+1
s+1 ; that is,G[0,m+ sk+ k − 1] has anm+sk+1

s+1 -coloring f . For any
integer 0≤ i ≤ k−1, the subgraphG[i,m+sk+ i ] hasm+sk+1 vertices and independence
numbers+ 1. Since f is an m+sk+1

s+1 -coloring, each color class off consists of exactlys+ 1
vertices ofG[i,m + sk+ i ]. It follows that f (i ) = f (m + sk+ i + 1) for any integer
0 ≤ i ≤ k − 2. Now, consider the color classes off for the graphG[0,m+ sk]. For each
color classC = {x1, x2, . . . , xs+1}, wherex1 < x2 < . . . < xs+1, the differencexi+1− xi of
two consecutive vertices inC is called agap. Note that there is at most one gap greater thanm
and all other gaps are equal tok. Suppose there is a gap greater thanm+ 1 and all others− 1
gaps are equal tok. Let the first vertexx1 = i and the last vertexxs+1 = j . Theni ≤ k−2 and
j ≥ m+ (s−1)k+ i +2, which imply that f (i ) = f ( j ) = f (m+ sk+ i +1), contradicting
1 ≤ (m+ sk+ i + 1) − j ≤ k − 1. Therefore, all gaps are equal tok or exactly one gap is
equal tom+ 1 with the others equal tok. ThenC is of the form{i, i + k, i + 2k, . . . , i + sk}
(where each number is calculated modulom+ sk+ 1).

Let u = m+sk+1
d . Divide the vertex set ofG[0,m+ sk] into d subsets of the form{i, i +

k, i +2k, . . . , i + (u−1)k} (modm+ sk+1), each of sizeu. Then each of thesed subsets is
the union of some color classes of sizes+ 1, sos+ 1 dividesu, i.e.,d(s+ 1) | (m+ sk+ 1),
a contradiction. Henceχ(G[0,m+ sk+ k− 1]) > m+sk+1

s+1 . 2

We then show thatχc(Z, Dm,k,s) ≤
m+sk+2

s+1 for any positive integersm, k, s with m ≥
(s+ 1)k. It follows thatχ(Z, Dm,k,s) ≤ d

m+sk+2
s+1 e by (∗). Hence,χ(Z, Dm,k,s) = d

m+sk+1
s+1 e

when(s+ 1) 6 | (m+ sk+ 1), andχ(Z, Dm,k,s) =
m+sk+1

s+1 + 1 when(s+ 1) | (m+ sk+ 1)
butd(s+1) 6 | (m+ sk+1). These, together with Theorem3, give all values of the chromatic
numbersχ(Z, Dm,k,s).

To calculate the upper bound ofχc(Z, Dm,k,s), we first give an(m+sk+2, s+1)-coloring
c of the subgraphG[0,m + sk] and then extend it to an(m + sk+ 2, s + 1)-coloring of
G(Z, Dm,k,s). Intuitively, the coloring is the mappingc from V[0,m+ sk] to {0,1, . . . ,m+
sk} given in the following algorithm, although we in fact define it directly in the proof of
Lemma5.

Algorithm.

begin

for j := 0 to m+ sk do c( j ) :=−1;

i := d − 1;

c(i ) := 0;

repeat

j := (i + k) mod(m+ sk+ 1);

if c( j ) 6= −1 then j := j − 1;

c( j ) := c(i ) + 1;

i := j ;

until c(i ) = m+ sk

end

LEMMA 5. For positive integers m, k, s with m≥ (s+1)k, there exists an(m+sk+2, s+

1)-coloring c of G[0,m+ sk] such that c(x) = c(x − k)+ 1 for k ≤ x ≤ m+ sk.

PROOF. Supposek = dk′ andm+ sk+ 1 = dm′, whered = gcd(k,m+ sk+ 1). Since

gcd(k′,m′) = 1, there exists an integern such thatk′n ≡ 1 (modm′). Let ai = (in)modm′
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for 0≤ i ≤ m′ − 1. Consider the mappingc from V[0,m+ sk] to {0,1, . . . ,m+ sk}, where

m+ sk= dm′ − 1, defined by

c(x) = aix + (d − 1− jx)m
′ for x = ixd + jx,

where 0≤ ix ≤ m′ − 1 and 0≤ jx ≤ d − 1. Note thatix = bx/dc and jx = x modd. It is

straightforward to check thatc is a one-to-one and hence onto mapping.

First, note that fork ≤ x ≤ m + sk, ix = i x−k + k′ and jx = jx−k. Therefore,aix =

(ixn)modm′ = (ix−kn+ k′n)modm′ = aix−k + 1 asix 6= 0, and soc(x) = c(x − k)+ 1.

Next, we show thats + 1 ≤ |c(x) − c(y)| ≤ (m + sk+ 2) − (s + 1) for any edgexy

in G[0,m + sk]. Let x = ixd + jx and y = i yd + jy, where 0≤ ix, i y ≤ m′ − 1 and

0≤ jx, jy ≤ d − 1. Without loss of generality, we may assume thatc(x) > c(y).

Suppose 0< c(x) − c(y) ≤ s. Sincem ≥ (s+ 1)k, we havem′ ≥ (s+ 1)k′ > sk′ > s.

It follows that either (1)jx = jy and 0< aix − ai y ≤ s, or (2) jy = jx + 1 andm′ − s ≤

ai y − aix < m′. In case (1), we have 0< (i x − i y)n modm′ ≤ s. Henceix − i y ≡ k′, 2k′, . . .,

or sk′ (modm′). It follows that x − y ≡ k, 2k, . . ., or sk (modm+ sk+ 1), contradicting

|x − y| ∈ Dm,k,s. In case (2), we have 0≤ aix ≤ s− 1 andm′ − s ≤ ai y < m′. It follows

that ix = 0, k′,2k′, . . ., or (s− 1)k′, and i y = m′ − k′,m′ − 2k′, . . ., or m′ − sk′. Hence

i y − ix = m′ − k′,m′ − 2k′, . . ., or m′ − sk′ by m′ − s ≤ ai y − aix < m′, which implies that

y− x = (m+ sk+ 2)− k, (m+ sk+ 2)− 2k, . . ., or (m+ sk+ 2)− sk, a contradiction to

y− x ∈ Dm,k,s. Therefores+ 1≤ c(x)− c(y).

Supposem+ sk+2− s ≤ c(x)− c(y) ≤ m+ sk (note thatm+ sk is the largest color, also

s ≥ 2). Sincem′ > s andm+sk+1= dm′, we have thatc(x)−c(y) ≥ (d−1)m′+2 and so

jy− jx = d−1, i.e., jx = 0 and jy = d−1. Thenm′− (s−1) ≤ aix −ai y ≤ m′−1. Hence

0≤ ai y ≤ s−2 andm′−(s−1) ≤ aix ≤ m′−1. It follows thati y = 0, k′, 2k′, . . ., or (s−2)k′,

andix = m′ − k′,m′ − 2k′, . . ., or m′ − (s− 1)k′. Henceix − i y = m′ − k′,m′ − 2k′, . . ., or

m′−(s−1)k′ by m′−(s−1) ≤ aix−ai y ≤ m′−1, which impliesx−y = (m+sk+1)−k−(d−

1), (m+sk+1)−2k−(d−1), . . ., or (m+sk+1)−(s−1)k−(d−1) that is an integer larger

thanm+1, contradicting|x− y| ∈ Dm,k,s. Therefore,c(x)− c(y) ≤ (m+ sk+2)− (s+1).

Thus,c is an(m+ sk+ 2, s+ 1)-coloring ofG[0,m+ sk]. 2

THEOREM 6. For positive integers m, k, s with m≥ (s+ 1)k,

χc(Z, Dm,k,s) ≤
m+ sk+ 2

s+ 1
.

PROOF. Let c be the(m + sk+ 2, s + 1)-coloring of G[0,m + sk] given in Lemma5.

Consider the mappingc′ : Z→ {0, 1, . . . ,m+ sk+ 1} defined by

c′(x) =


c(x), for 0≤ x ≤ m+ sk,

(c′(x − k)+ 1)mod(m+ sk+ 2), for x ≥ m+ sk+ 1,

(c′(x + k)− 1)mod(m+ sk+ 2), for x < 0.
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We show thatc′ is a proper(m+ sk+ 2, s+ 1)-coloring of G(Z, Dm,k,s) by induction.

According to Lemma5, c′ is proper in the subgraphG[0,m+ sk]. Supposec′ is proper in

G[0, x − 1] for x ≥ m+ sk+ 1. Let xy be any edge ofG[0, x], i.e., y = x − i for some

i ∈ Dm,k,s. Sincex − k is adjacent toy − k in G[0, x − 1], by the induction hypothesis,

s + 1 ≤ |c′(x − k) − c′(y − k)| ≤ (m + sk+ 2) − (s + 1). It follows that s + 1 ≤

|c′(x)− c′(y)| ≤ (m+ sk+ 2)− (s+ 1). Hencec′ is proper inG(Z+, Dm,k,s) by induction.

A similar argument works for negative vertices. Therefore,c′ is a proper(m+ sk+ 2, s+ 1)-

coloring ofG(Z, Dm,k,s). 2

According to(∗), Lemma4, Theorems1 and6, we have the following values of the chro-

matic numbers of the graphsG(Z, Dm,k,s) whend(s+ 1) 6 | (m+ sk+ 1).

THEOREM 7. Suppose m, k, s are positive integers with m≥ (s+1)k and d= gcd(k,m+

sk+ 1). If (s+ 1) 6 | (m+ sk+ 1), then

χ(Z, Dm,k,s) =

⌈
m+ sk+ 1

s+ 1

⌉
.

If (s+ 1) | (m+ sk+ 1) and d(s+ 1) 6 | (m+ sk+ 1), then

χ(Z, Dm,k,s) =
m+ sk+ 1

s+ 1
+ 1.

The following lemma is useful in determining the circular chromatic numbers of the dis-

tance graphsG(Z, Dm,k,s).

LEMMA 8 ([15]). If χc(G) = p/q for any graph G, where p and q are relatively prime,

then p≤ |V(G)| and any(p,q)-coloring of G is an onto mapping.

THEOREM 9. For positive integers m, k, s with m≥ (s+1)k and d= gcd(k,m+ sk+1),

if (s+ 1) | (m+ sk+ 1) and d(s+ 1) 6 | (m+ sk+ 1), then

χc(Z, Dm,k,s) =
m+ sk+ 2

s+ 1
.

PROOF. Supposeχc(G[0,m+ sk+ k − 1]) = p/q, wherep andq are relatively prime.

By Lemma4, p
q ≥

m+sk+1
s+1 +

1
q since(s + 1) | (m + sk+ 1); and, by Lemma8, p ≤

|V[0,m+ sk+ k− 1]| = m+ (s+ 1)k. If p
q <

m+sk+2
s+1 , then 1

q <
1

s+1. Thereforeq > s+ 1,

which implies thatp >
q

s+1(m + sk+ 1) ≥ s+2
s+1(m + sk+ 1) > m + (s + 1)k since

m ≥ (s+ 1)k, a contradiction. Hence,χc(Z, Dm,k,s) ≥
p
q ≥

m+sk+2
s+1 . By Theorem6, we

haveχc(Z, Dm,k,s) =
m+sk+2

s+1 . 2

The next theorem determines the circular chromatic number of the distance graph

G(Z, Dm,k,s) whenk is relatively prime tom+ sk+ 1.

THEOREM 10. For positive integers m, k, s with m≥ (s+ 1)k, if k is relatively prime to

m+ sk+ 1, then

χc(Z, Dm,k,s) =
m+ sk+ 1

s+ 1
.
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PROOF. By Theorem1 and (∗), it suffices to show thatχc(Z, Dm,k,s) ≤
m+sk+1

s+1 , that

is, G(Z, Dm,k,s) has an(m + sk+ 1, s + 1)-coloring. Sincek is relatively prime tom +

sk+ 1, there exists an integern such thatnk ≡ 1 (modm + sk+ 1). Consider the map-

ping c defined byc(i ) = (in)mod(m + sk+ 1) for all i ∈ Z. Choose any edgei j of

G(Z, Dm,k,s). If 0 ≤ |c(i ) − c( j )| ≤ s or (m+ sk+ 1) − s ≤ |c(i ) − c( j )| ≤ m+ sk,

thenc(i )− c( j ) ≡ 0, 1, . . . , s,−1,−2, . . ., or−s (modm+ sk+ 1). It implies thati − j ≡

0, k, . . . , sk,−k,−2k, . . ., or−sk (modm+ sk+ 1), contradicting|i − j | ∈ Dm,k,s. Thus,

c is an(m+ sk+ 1, s+ 1)-coloring ofG(Z, Dm,k,s).2

We conclude that all valuesχc(Z, Dm,k,s) are determined except for the case when(s+ 1) 6

|(m+ sk+ 1) and gcd(k,m+ sk+ 1) > 1.
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