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Circular Chromatic Numbers of Distance Graphs with Distance Sets
Missing Multiples™

LINGLING HUANG AND GERARD J. CHANG

Given positive integersy, k, swith m > sk, let Dy, i s representthe sét, 2, ..., mi\{k, 2k, ...,
sk}. The distance grapt(Z, Dm k s) has as vertex set all integeZsand edges connectirigand
j wheneverli — j| € Dk s. This paper investigates chromatic numbers and circular chromatic
numbers of the distance grap@&Z, Dy k,s). Deuber and Zhug] and Liu [13] have shown that
(%"fl] < x(G(Z, Dmk.s)) < [%“1‘*1] + 1 whenm > (s+ 1)k. In this paper, by establishing
bounds for the circular chromatic numbgg(G(Z, Dy k.s)) of G(Z, Dmk.s), we determine the
values ofy (G(Z, D k,s)) for all positive integersn, k, s and xc(G(Z, D k,s)) for some positive
integeram, k, s.
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1. INTRODUCTION

Given a seD of positive integers, thdistance graph GZ, D) has all integers as vertices,
and two vertices are adjacent if and only if their difference i®inthat is, the vertex set is
Z and the edge set igiv : |[u — v| € D}. We call D the distance setThis paper studies
chromatic and circular chromatic numbers of some distance graphs with certain distance sets.

The circular chromatic number of a graph is a natural generalization of the chromatic num-
ber of a graph, introduced by Vinc&q] as the name “star chromatic number.” Supp@se
and q are positive integers such that > 2q. Let G be a graph with at least one edge.

A (p, g)-coloring of G = (V, E) is a mappingc from V to {0,1,..., p — 1} such that
g < |c(x) —c(y)| < p—qforany edgexyin E. Thecircular chromatic numbey(G) of G
is the infimum of the ratiop/q for which there exists &p, q)-coloring of G.

Note that forp > 2, a(p, 1)-coloring of a graplG is simply an ordinaryp-coloring of G.
Thereforexc(G) < x (G) for any graphG. Let G be a graph which is not a null graph. On the
other hand, it has been showtf] that for all finite graphsG, we havey (G) — 1 < x¢(G).
Applying a result of de Bruijn and E&s$ [6], this can be proved also for infinite graphs.
Therefore,x (G) = [xc(G)] if G # Ny. In particular, two graphs with the same circular
chromatic number also have the same chromatic number. However, two graphs with the same
chromatic number may have different circular chromatic numbers. @) is a refinement
of x (G), and it contains more information about the structure of the graph. It is usually much
more difficult to determine the circular chromatic number of a graph than to determine its
chromatic number.

The fractional chromatic number of a graph is another well-known variation of the chro-
matic number. Afractional coloringof a graphG is a mappingc from Z(G), the set of all
independent sets @, to the intervall0, 1] such that )  c(l) > 1 for all verticesx of

xel eZ(G)
G. Thefractional chromatic numbey s (G) of G is the infimum of the value >~ c¢(l) ofa
1eZ(G)
fractional coloringe of G.
For any graptG, it is well known that
maxw(G), |G|/a(G)} < x1(G) = xc(G) = [xc(G)] = x(G), (%)
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where w(G) (respectively,a(G)) is the clique (respectively,independengenumberof G
which is the maximum size of a pairwise adjacent (respectively, non-adjacent) vertex sub-
set of V(G).

For simplicity, letw (S, D), a(S, D), xt (S, D), xc(S, D) and x (S, D) denote the clique
number, the independence number, the fractional chromatic number, the circular chromatic
number and the chromatic number of the distance gtagh D), respectively.

For different types of distance sdis the problem of determining(Z, D) has been studied
extensively, see Refd[5,7,9, 10, 12 16-19. For instance, the case thBtcontains at most
three integers were studied by Eggleton, &&dnd Skilton 9], Chen, Chang and Huan§][
Voigt [16], Deuber and ZhuT{], Zhu [18], and at last completely determined by ZH9].

Given positive integens, k, swith m > sk, let D, i s denote the distance gt 2, . .., m}\
{k, 2k, ..., sk}. Fors = 1, the chromatic number @ (Z, Dy k1) was first studied in9, 12,
13] and finally completely determined by Chang, Liu and ZBAj1 They also determined the
fractional chromatic number @&(Z, Dk 1). The circular chromatic number 6f(Z, Dm k1)
was then determined by Chang, Huang and ZjuRecently, Liu and Zhu14] determined
the fractional chromatic number &(Z, Dk s) for a generak, which gives a lower bound
of x(Z, Dmk.s)- Liu and Zhu [L4], Deuber and Zhuf] also studiedy (Z, Dmks) for s =
2, 3, primes + 1, and obtained some results for genexaMoreover, Deuber and Zh@]
showed that for any values of, k, s with m > (s + 1)k, (%‘?11 < x(Z,Dmks) <
[%kfl] + 1. In this paper, by establishing bounds f@(Z, Dm k), we determine the
values ofy (Z, Dmk_s) for all positive integersn, k, s, and x¢(Z, Dmk_s) for some positive
integersm, k, s.

Note that it becomes an easy caseif< (s + 1)k. Define a coloringf of G(Z, Dmk.s)
by: f(x) = xmodk for anyx € Z. As Dmk s contains no multiples ok, it can be easily
verified thatf is a proper coloring. Thug;(Z, Dmks) < k. As any consecutivk vertices in
G(Z, Dmk.s) form a cliquek < w(Z, Dmks). This implies that all values i) are equal
tok for G = G(Z, Dmk.s) if m < (s+ 1)k (see Ref. 14]). Therefore, throughout the article,
we assumen > (s + 1)k.

The following table shows all results concerning the distance g@&h, Dm k s). Note
that the value ofyt (Z, Dmk,s) iS determined in Ref.14] and some value of (Z, Dmk.s)
is determined in Refs8] 14]. Also, all values ofxc(Z, Dmk.s) are given in this paper, which
also implies the results ¢gf (Z, Dmks). Let

d = gcdk, m+ sk+ 1),

a=(m+ sk+ 1)modd(s+ 1),

b= (m+sk+ 1) mod(s + 1).

Therefore,

a=0meangl(s+ 1) | (m+sk+ 1),

a#0meangd(s+1) f(m+sk+1),

b=0meangs+1) | (m+sk+ 1),

b#0O0meangs+1) f(Mm+ sk+ 1).

Note that wherm > (s + Dk with b # 0 andd > 1, we only know that™SktL <
xe(Z. Dm.s) < ™ESKEZ but still do not know the exact value g£(Z, D k.s)-

2. MAIN RESULTS

In the study of the chromatic number of the distance gr&t, Dm k s) with distance sets
Dmks = {1, 2,...,mi\{k, 2k, ..., sk}, Liu and Zhu [L4] obtained the following result on
fractional chromatic numbers, which asserts a lower bound for the circular chromatic numbers
and chromatic numbers (l)).
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Conditions of parameters | xt(Z, Dmk.s) | xc(Z, Dmks) | x(Z, Dmks)
m < (s+1)k k [14] k [14] k14
B m+sk+1
a=0 m+sk+1 s+1 (14
d=1 s+1
= | mesktl m+sk+l
— [14 —
= = s+l
_ m-+sk+2 m+sk+1
a#0, b=0 s+1 s+1 1

THEOREM1 ([14]). For positive integers ik and s with m> (s + 1)k,

m+sk+1

Z,D =
xf( m,k,s) st 1

Liu and Zhu [L4] also gave an upper bound {Z, Dy k s) as follows.

LEMMA 2 ([14]). For positive integers 1k, s with m > (s 4+ 1)k and d = gcdk, m +
sk+ 1),
m+sk+1
X(Z, Dmk,s) < d ’7——‘

dis+ 1

By Lemmaz2, itis clear that ifd(s+1) | (m+sk+ 1), thenx (Z, Dmk.s) < %“fl Hence
we have

THEOREM 3 ([14]). For positive integers npk, s with m> (s + 1)k and d= gcdk, m +
sk+ 1), ifd(s+ 1) | (m+ sk+ 1), then

m-+sk+1

Z, D = Z, D =
xe( m,k,s) x( m,k,s) s+ 1

Note that Theorend only gives the values ofc(Z, Dmk,s) and x (Z, Dmk.s) under the
conditiond(s + 1) | (m 4+ sk + 1), although for% to be an integer we only need
(s+1) | (m+ sk+ 1).

Next, we show that i§ + 1 dividesm + sk+ 1 butd(s + 1) does not, therx (Z, Dmk.s) >
%“fl. Let GIi, j] denote the subgraph @& (Z, Dmks) induced byV[i, j1 = {i,i +
1,...,j}foranyintegers < j.

LEMMA 4. For positive integers 7k, s with m> (s + 1)k and d= gcdk, m + sk+ 1),
if s+1) | (m+sk+ 1) butd(s+1) f(m+ sk+ 1), then

m+sk+1 m+sk+1

G[O k+k—1
xc(G[0, m+ sk+ ) sr1

andX(Z, Dm’k’s) >

PROOF. Sincexc(G[0, m+ sk+k — 1]) > x(G[O,m+sk+k—1)) — 1 and%‘?l is

an integer, it suffices to show thatG[0, m + sk+k — 1]) > %“fl Suppose (G[0, m +
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sk+k — 1]) < ™KL that is, G[0, m + sk+ k — 1] has an™ES¥E -coloring f. For any
integer 0< i < k—1, the subgrapls[i, m+sk+i] hasm+sk+1 vertices and independence
numbers + 1. Sincef is an %“fl-coloring, each color class df consists of exactlg + 1
vertices of G[i, m + sk + i]. It follows that f(i) = f(m+ sk+ i + 1) for any integer
0 <i =< k — 2. Now, consider the color classes bffor the graphG[0, m + sk]. For each
color clasC = {x1, X2, ..., Xs+1}, Wherex; < X2 < ... < Xgy1, the differencexj ;1 — X of
two consecutive vertices i@ is called agap. Note that there is at most one gap greater than
and all other gaps are equalkoSuppose there is a gap greater tha# 1 and all othes — 1
gaps are equal to. Let the first vertexx; = i and the last vertexs;1 = j. Theni < k—2 and
j = m+(s—Dk+i+ 2, whichimply thatf (i) = f(j) = f(m+sk+i + 1), contradicting
1< (m+sk+i+1) —j < k-1 Therefore, all gaps are equalk@r exactly one gap is
equal tom + 1 with the others equal to. ThenC is of the form{i,i +k,i + 2k, ...,i + sk}
(where each number is calculated moduia- sk+ 1).

Letu = %k“. Divide the vertex set o6[0, m + sk] into d subsets of the forrfi, i +
K,i+2k,...,i +Uu—-21Kk} (modm+sk+ 1), each of sizel. Then each of thesttsubsets is
the union of some color classes of sg¢ 1, sos+ 1 dividesu, i.e.,d(s+ 1) | (m+sk+ 1),

a contradiction. Hencg (G[0, m + sk+ k — 1]) > %kl“ O

We then show thajc(Z, Dmks) < %“f"— for any positive integerm, k, s with m >
(s+ Dk. It follows thaty (Z, Dmk.s) < [™E%E27 by (x). Hence x (Z, Dmks) = [Tk

when(s+1) f(m+sk+1),andx(Z, Dmk;s) = %“fl +1when(s+1) | (m+sk+1)

butd(s+1) f(m+ sk+1). These, together with TheoreBngive all values of the chromatic
numbersy (Z, Dmk.s)-

To calculate the upper bound gf(Z, Dk s), We first give anm+ sk—+ 2, s+ 1)-coloring
c of the subgraptG[0, m + sk] and then extend it to atm + sk + 2, s + 1)-coloring of
G(Z, Dm.s)- Intuitively, the coloring is the mappingfrom V[0, m+sk]to {0, 1,..., m+
sk} given in the following algorithm, although we in fact define it directly in the proof of
Lemmab.

Algorithm.
begin
for j:=0to m+skdo c(j):=-1;
i =d-1,
c@i) = 0;
repeat
j = (i +k) mod(m+ sk+ 1);
if c(j)# —1then j:=j—1,
c(j) = c(i)+1;
=
until c(i) =m+ sk
end
LEMMA 5. For positive integers nk, s with m> (s+ 1)k, there exists atm+sk+2, s+
1)-coloring ¢ of GO, m + sk] such that €x) = c¢(x — k) + 1 for k < x < m+ sk.

PrROOF Supposé& = dk’ andm + sk+ 1 = dnY, whered = gcdk, m + sk+ 1). Since
gcdk/, m") = 1, there exists an integarsuch thak’'n = 1 (modm’). Leta; = (in) modm’
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for0 <i < m’ — 1. Consider the mappingfrom V[0, m+ sk to {0, 1, ..., m+ sk}, where
m + sk=dm’ — 1, defined by

c(x) =a, +(d—1— jm for x =ixd + jx,

where 0< ix <m' — 1 and 0< jx <d — 1. Note thay = [x/d] and jx = x modd. Itis
straightforward to check thatis a one-to-one and hence onto mapping.

First, note that fok < x < m+ sk ix = ix—k + k" and jx = jx—k. Thereforeg, =
(ixnymodm’ = (ix—xn + k'n)y modm’ = &, , + 1 asiyx # 0, and s@(x) = c(x — k) + 1.

Next, we show that + 1 < [c(X) — ¢c(Y)| < (m+ sk+ 2) — (s + 1) for any edgexy
in G[0,m + sK]. Letx = ixd + jx andy = iyd + jy, where 0< iy, iy < m — 1 and
0 < jx, Jy < d — 1. Without loss of generality, we may assume @) > c(y).

Suppose 0< c(x) — c(y) < s. Sincem > (s + 1)k, we havem’ > (s + 1Dk’ > sk > s.
It follows that either (1)jx = jy and O< &, —aj, < s, 0r (2) jy = jx +1landm —s <
a, —a, < m'. In case (1), we have @ (ix —iy)nmodm’ < s. Henceiy —iy =K', 2k, ..,
or sk (modnY). It follows thatx — y = k, 2k, ..., or sk (modm + sk + 1), contradicting
IX — Y| € Dmks. In case (2), we have & &, <s—1andm —s < a, < m. Itfollows
thatix = 0,k’, 2k, ..., or (s — DK, andiy = m' — k', m" — 2K/, ..., orm’ — sk. Hence
iy—ix=m—K,m—-2k,...,orm' —sk bym' —s < &, — &, < m’, which implies that
y—X=(m+sk+2) —k, (m+sk+2) — 2k, ..., or(m+ sk+ 2) — sk, a contradiction to
y — X € Dmks. Therefores + 1 < c(x) — c(y).

Supposen+ sk+2—s < ¢(x) — c(y) < m+ sk(note thaim + skis the largest color, also
s > 2). Sincem’ > sandm+sk+1 = dm', we have that(x) —c(y) > (d—1)m’ +2 and so
jy—ix=d-1,ie,jx=0andjy =d—1. Thenm’ — (s—1) < &, — g, < m’ — 1. Hence
O<a, <s-2 andm’'—(s—1) < &, <m' —1. Itfollows thatiy = 0, k', 2k’, ..., or (s—2)K/,
andiy =m' —k',m" —2k’, ..., orm’' — (s— 1k'. Henceiy —iy =m'—k',m' — 2K, ..., or
m —(s—DK bym'—(s—1) < a,—aj, < m'—1, whichimpliesx—y = (m+sk+1)—k—(d—
1), (m+sk+1)—2k—(d—-1),...,or(m+sk+1)—(s—1k—(d—1) thatis an integer larger
thanm+ 1, contradictingx — y| € Dmk s. Thereforec(x) —c(y) < (m+sk+2) —(s+1).

Thus,cis an(m + sk+ 2, s + 1)-coloring of G[0, m + skK]. O

THEOREM6. For positive integers nk, s with m> (s + 1)k,

m+ sk+ 2

Z,D <
Xcl( mk,s) < s+1

PROOF Let ¢ be the(m + sk+ 2, s 4+ 1)-coloring of G[0, m + sK] given in Lemma5.
Consider the mapping : Z — {0, 1, ..., m+ sk+ 1} defined by
c(x), for0 < x <m+ sk
d(x) =14 (x—=Kk)+ 1) modm+ sk+2), for x > m+sk+1,
(' (X + k) — 1) mod(m + sk+ 2), forx < O.
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We show that’ is a properim + sk+ 2, s + 1)-coloring of G(Z, Dk s) by induction.
According to Lemmab, ¢’ is proper in the subgrap8[0, m + sk]. Suppose’ is proper in
G[0, x — 1] for x > m+ sk+ 1. Letxy be any edge 06]0, x], i.e.,y = x — i for some
i € Dmk.s- Sincex — k is adjacent toy — k in G[0, x — 1], by the induction hypothesis,
s+1 < |dx—k) —c(y—Kk| < (m+sk+ 2 — (s+ 1. It follows thats + 1 <
Ic'(x) — c/(y)| < (m+ sk+2) — (s+ 1). Hencec' is proper inG(Z*, Dmk.s) by induction.
A similar argument works for negative vertices. Therefafés a properm + sk+ 2, s+ 1)-
coloring of G(Z, Dm.s)- O

According to(x), Lemma4, Theoremsl and6, we have the following values of the chro-
matic numbers of the grapl®(Z, Dmk s) whend(s + 1) f(m+ sk+ 1).

THEOREM 7. Suppose 17k, s are positive integers with m (s+ 1)k and d= gcdk, m+
sk+1).If (s+ 1) f(m+sk+ 1), then

m+sk+1
Z,D = — |
x( m,k,s) ’7 s+ 1 —‘
If (s+1) | (m+sk+1andds+1) f(m+ sk+ 1), then
m+sk+1
Z,D =
x(Z, m,k,s) st1

The following lemma is useful in determining the circular chromatic numbers of the dis-
tance graph&(Z, Dmks)-

LeEmMA 8 ([15]). If xc(G) = p/q for any graph G, where p and q are relatively prime,
then p< |V(G)| and any(p, q)-coloring of G is an onto mapping.

THEOREM9. For positive integers 1k, s with m> (s+ 1)k and d= gcdk, m+ sk+ 1),
if s+1)| (m+sk+ 1) andd(s+1) f(m+sk+ 1), then
m+ sk+ 2
s+1
PROOF Supposer:(G[0, m+ sk+ k — 1]) = p/qg, wherep andq are relatively prime.
By Lemmad4, ﬁp > miskil 4 1 gince(s+ 1) | (m+ sk+ 1); and, by LemmaB, p <

xc(Z, Dm,k,s) =

S+1 q
VIO, m+sk+k—1]| =m+ (s+Dk.If £ < mskt2, then% < k. Thereforeg > s+1,
which implies thatp > %(m +sk+1) > %(m +sk+ 1) > m+ (s + 1)k since
m > (s + 1)k, a contradiction. Hencegc(Z, Dmks) > a” > %kf“z By Theorem6, we
ha.VeXc(Z, Dm’k,s) = %ﬁ-‘rz O

The next theorem determines the circular chromatic number of the distance graph
G(Z, Dmk.s) Whenk is relatively prime tan + sk+ 1.

THEOREM 10. For positive integers nk, s with m> (s + 1)k, if k is relatively prime to

m 4+ sk+ 1, then
m+sk+1

Z,D =
Xc( m,k,s) s+ 1
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PrRoOF By Theoreml and (x), it suffices to show thagc(Z, Dmks) < %“fl that
is, G(Z, Dmk,s) has an(m + sk + 1, s 4+ 1)-coloring. Sincek is relatively prime tom +
sk + 1, there exists an integer such thaink = 1 (modm + sk + 1). Consider the map-
ping ¢ defined byc(i) = (in)modm + sk+ 1) for all i € Z. Choose any edgg of
G(Z,Dmks)- If0 < |ci) —c(j)| < sor(m+sk+ 1) —s < [c(i) —c(j)] < m+ sk
thenc(i) —c(j)=0,1,...,s,—1,—2,...,0r—s (modm+ sk+ 1). ltimplies thati — j =
0,k,...,sk —k, =2k, ..., or —sk (modm + sk+ 1), contradictingi — j| € Dmk.s. Thus,
cisan(m+ sk+ 1, s+ 1)-coloring of G(Z, D k,s).0

We conclude that all valueg(Z, Dmk s) are determined except for the case wkes 1) /
|(m+ sk+ 1) and gcdk, m+ sk+ 1) > 1.
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