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SUMMARY

Recurrent event data are commonly encountered in health-related longitudinal studies. In this paper time-
to-events models for recurrent event data are studied with non-informative and informative censorings.
In statistical literature, the risk set methods have been con5rmed to serve as an appropriate and e6cient
approach for analysing recurrent event data when censoring is non-informative. This approach produces
biased results, however, when censoring is informative for the time-to-events outcome data. We compare
the risk set methods with alternative non-parametric approaches which are robust subject to informative
censoring. In particular, non-parametric procedures for the estimation of the cumulative occurrence rate
function (CORF) and the occurrence rate function (ORF) are discussed in detail. Simulation and an
analysis of data from the AIDS Link to Intravenous Experiences Cohort Study is presented. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recurrent event data can be regarded as a speci5c type of correlated data with the feature
that event times of a subject are ordered and correlated. Such data are frequently encounted
in health-related studies where longitudinal follow-up designs are commonly employed. Using
the Intravenous Experiences Cohort Study as an example, drug users may be repeatedly hos-
pitalized due to drug-associated disease symptoms; the typical health service data consist of
information from multiple outpatient and inpatient treatment, ambulance uses, and emergency
room visits [1]. Other examples include multiple live births in a woman’s lifetime, repeated
breakdowns of an automobile, multiple opportunistic infections in studies of acquired immun-
ode5ciency syndrome (AIDS), and multiple injuries in ageing studies.
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In this paper, we study recurrent events of the same type. To analyse recurrent event
data, the focus could be placed on time-between-events or time-to-events analysis. When
time-between-events is the variable of interest, statistical approaches were proposed for non-
parametric estimation of the recurrent survival function [2], and for regression analysis [3].
The focus of this paper is on time-to-events data and we consider modelling the occurrence
rate of recurrent events in a speci5ed time interval [0; T0]. Here 0 refers to the time origin
which could be either a calendar time or a medically-de5ned time such as the disease onset
or treatment onset. The constant T0¿0 is determined with the knowledge that recurrent events
could potentially be observed at least up to T0. Practically, T0 is chosen to be a point of time
which is less than the maximum of the observed recurrent event times. Let N (t) represent the
number of recurrent events occurring prior to or at t, t ∈ [0; T0]. The occurrence rate function
(ORF) of a continuous recurrent event process at t, t ∈ [0; T0], is de5ned as

�(t)= lim
K→0+

Pr(N (t +K)− N (t)¿0)
K

Note that the ORF is quantitatively diMerent from the conventional intensity function of a point
process where the intensity is de5ned as the occurrence rate of recurrent events conditional on
the event history up to t. In contrast with the conditional interpretation of the intensity function,
the ORF is de5ned as the population average of occurrence rate of recurrent events at time
point t unconditionally on the event history. Conceptually, in many biomedical applications,
the ORF is preferred over the intensity function because it gives more direct interpretations for
identifying treatment eMects and for comparison of risk factors. In general, use of an intensity
model appears more appropriate for individual-based prediction and use of the ORF is more
relevant for population-based comparison. The cumulative occurrence rate function (CORF)
is de5ned as

N(t)=
∫ t

0
�(u) du; t ∈ [0; T0]

The CORF N(t) is also the expectation of the number of recurrent events occurring in [0; t].
In this paper, the research interest is focused on the occurrence rate of recurrent events. We

study and compare non-parametric procedures for the estimation of the CORF and ORF under
non-informative and informative censoring models. The non-parametric methods are applied
to the analysis of data from the AIDS Link to Intravenous Experiences Cohort Study.

2. NON-INFORMATIVE CENSORING MODEL: RISK-SET METHODS

For subject i, i=1; 2; : : : ; n, let Ni(t) denote the number of recurrent events occurring at or
prior to t, t¿0, and yi the censoring time at which the observation of the recurrent events is
terminated. Let ti16 · · ·6ti;mi be the ordered event times with mi de5ned as the index for the
last event occurring at or prior to yi.

2.1. CORF estimation

In univariate survival analysis, the concept of ‘risk sets’ plays a key role for the development
of many non-parametric and semi-parametric methodologies. For a single event process (that
is, univariate survival analysis), the risk population de5ned at t comprises the subjects who
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have not experienced the failure event, and a risk set at t consists of the subjects whose
observed failure time, censored or uncensored, is not less than t. It is well known that this
risk set forms a random sample from the corresponding risk population when censoring is
non-informative.

For the recurrent event process, the risk set at t is de5ned as R(t)= {i :yi¿t} which includes
subjects who are under observation at t. When the censoring time Yi is independent of the
recurrent event process Ni(·), the risk set forms a random sample from the risk population
at t. It is important to indicate that the risk population of a single event process is composed
of subjects who have not failed prior to t, thus the risk population varies with diMerent values
of t. In contrast, for a recurrent event process, the risk population at diMerent ts always
coincides with the target population de5ned at 0.

Let nR(t) be the number of subjects in the risk set R(t). Under the non-informative censoring
assumption, for t¿0 and positive-valued but small K, a crude estimate of the occurrence
probability in (t −K; t] can be constructed as

�(t)K ≈
∑n

i=1

∑mi
j=1 I(tij ∈ (t −K; t])

nR(t)
(1)

with I(·) representing the indicator function. The estimate is essentially an empirical measure
with time-dependent sample size nR(t). A non-parametric estimate of the CORF corresponding
to (1) can then be constructed as

N̂(t)=
n∑

i=1

mi∑
j=1

I(tij6t)
nR(tij)

(2)

This estimator together with its properties have been studied in the literature by Nelson [4],
Lawless and Nadeau [5], and Pepe and Cai [6]. Further estimators which incorporate with
covariate information into the estimation were developed by Cook and Lawless [7].

More generally, a functional transformation of the CORF, g(N), can be estimated by g(N̂).
For instance, de5ne g(N)=N−1(c) where c¿0 is a constant, and N−1(c) can be estimated by
N̂−1(c). In the ALIVE study, this estimator can be interpreted as the time length in which drug
users are expected to be hospitalized c times. Also, non-parametric estimators of the expected
number of events occurring in the intervals (0; b1]; (b1; b2]; : : : ; (bk−1; bk] can be constructed as
(N̂(b1)− N̂(0); N̂(b2)− N̂(b1); : : : ; N̂(bk)− N̂(bk−1)).

2.2. ORF estimation

In addition to the non-informative censoring assumption, further assume that, for the ith sub-
ject, Ni(t) is distributed as a non-stationary Poisson process with the subject-speci5c intensity
function �i(t). Here the average of �i(t), �(t)=E[�i(t)], is the ORF of recurrent events for
the target population. The estimation of the ORF requires use of smoothing techniques. We
5rst consider the kernel estimator of the subject-speci5c intensity function �i(t) for t in the
interval [0; yi] by

�̂i(t)=
mi∑
j=1

Kyi

(
t − tij

h

)

where Kyi (·) is a boundary kernel density of Gasser and MSuller [8] with adjustment for the
censoring time yi, and h is a positive-valued bandwidth. By averaging the subject-speci5c
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estimators of subjects who are still at risk at t, the kernel estimator, say, �̂h(t), for �(t) is
then given by

�̂h(t)=
n∑

i=1

(
I(yi¿t)
nR(t)

)
�̂i(t); t ∈ [0; T0] (3)

Because the censoring is independent of the recurrent event process, the risk set at each t
forms a random sample from the population and the smoothing technique uses the risk set as
the base for kernel estimation.

Other non-parametric techniques established in the literature include those in Pepe and Cai
[6] and Lawless et al. [9]. In addition, when the censoring times coincide with a pre-5xed
constant (that is, yi =T0), some non-parametric smoothing methods were also proposed [10].

3. INFORMATIVE CENSORING MODEL

To analyse recurrent event data, the non-informative censoring assumption is usually required
for the validity of statistical methods. In many applications, however, censoring could be
caused by informative drop-out or death, and it is unrealistic to assume the independence
censoring condition. As noted in the previous section, the risk set techniques serve as useful
tools for non-parametric estimation in non-informative censoring models. When censoring is
informative about the event process, the risk set methodology breaks down because subjects
in the risk set do not form a representative sample from the target population. In this sec-
tion we consider a multiplicative intensity model in which the dependence of censoring and
recurrent event process is explained by a latent variable. The model consists of the following
assumptions:

(a) Ni(t) is a non-stationary Poisson process with the subject-speci5c intensity function
�i(t)= zi�0(t), where the baseline intensity �0(t) is a continuous function and Zi is a
non-negative latent variable with the distribution H .

(b) Conditioning on zi, Ni(·) is independent of Yi.

The latent variable Zi in (a) can also be viewed as the frailty or random eMect which
characterizes subject heterogeneity in the population. The recurrent event process in (a) is a
multiplicative intensity model in which the baseline intensity function remains the same for
each individual, but the magnitude of the intensity varies according to the latent variable value.
Assumption (b) assumes the censoring time is independent of the recurrent event process given
the value of the latent variable. Under (b), the distribution of the censoring time, Yi, is allowed
to depend on zi and this substantially relaxes the usual non-informative censoring constraint.
As a main feature of our method procedures, which will be presented below, the distributions
of the censoring and latent variables are both treated as nuisance functions, and we avoid
modelling and estimating the nuisance functions by proper procedures.

Under the multiplicative intensity model (a), note that due to the independent increment
property of Poisson processes, the intensity function is the same as the ORF given zi. The
ORF is �(t)=�z�0(t) and the CORF is N(t)=

∫ t
0 �(u) du=�zN0(t), with �z =E[Zi].
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3.1. CORF estimation

De5ne the ‘shape function’ as

f(t)=
�0(t)
N0(T0)

=
zi�0(t)
ziN0(T0)

=
�i(t)∫ T0

0
�i(u) du

; t ∈ [0; T0]

Under (a) the shape function remains invariant for subjects in the population. It is clear that
f is a probability density function. Denote by F the cumulative distribution function of f.
For the CORF estimation, we will 5rst estimate the shape function and then estimate the total
magnitude of occurrence rate, N(T0), by a projection technique. An estimator of N(t) can be
achieved by taking the product of the two estimators.

Conditional on (zi; yi; mi), (ti1; ti2; : : : ; ti;mi) are the order statistics of independent and iden-
tically distributed random variables with density f(t)=F(yi), 06t6yi. Thus, conditional on
(yi; mi), the likelihood function of (ti1; ti2; : : : ; ti;mi) is

Lc =
n∏

i=1

∫ {
mi!

mi∏
j=1

f(tij)
F(yi)

}
dH (zi) ∝

n∏
i=1

mi∏
j=1

f(tij)
F(yi)

With regularity conditions, the likelihood function Lc is maximized by the truncation product-
limit estimator [11; 12]

F̂(t)=
∏

s(l)¿t

(
1− d(l)

N(l)

)
(4)

where {s(l)} represent the ordered and distinct values of {tij}, d(l) is the number of events
occurring at s(l), and N(l) is the total number of events with event time and censoring time
satisfying tij6s(l)6yi.

With F estimated by F̂ , we consider in the next step the estimation of N(T0). Conditioning
on (yi; zi), the number of the observed events, mi, has the Poisson distribution with the
expected value ziN0(yi). The number of events in [0; T0], for the ith subject, can therefore be
projected by mi=F(Yi). Estimate N(T0) by N̂(T0)= n−1∑

i mi=F̂(Yi) and we derive an estimator
of N(t) as N̂(t)= F̂(t)N̂(T0). Large sample properties of this estimator were con5rmed and
studied in detail by Wang et al. [13].

3.2. ORF estimation

Under the informative censoring model ((a) and (b)), the estimator �̂h(t) in (3) is generally
biased even when the number of subjects is large. To handle the informative censoring, we
5rst estimate the density f∗

i (t)=f(t)=F(yi), based on the ith subject’s data, by

f̃∗
i (t)=

1
mi

mi∑
j=1

Kyi

(
t − tij

h

)

Note that the recurrent event process Ni(t) is truncated at yi and each subject can
provide information only from the time interval [0; yi]. Also, �(t)=f∗

i (t)N(yi) for t ∈ [0; yi].

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:445–456



450 M.-C. WANG AND C.-T. CHIANG

Substituting f∗
i (t) and N(yi) by f̃∗

i (t) and N̂(yi), a subject-speci5c estimator can be obtained
as �̃i(t)=f̃∗

i (t)N̂(yi) if the ith subject is at risk at t. Thus, with the above bias adjustment,
an estimator can be constructed as the average of those subject-speci5c estimators provided
by the subjects who are at risk at t

�̃h(t)=
n∑

i=1

(
I(yi¿t)
nR(t)

)
�̃i(t); t ∈ [0; T0] (5)

Mathematical proofs and technical details for the appropriateness of the kernel estimators (3)
and (5) were established by Chiang and Wang (submitted manuscript).

4. SIMULATION

To examine the performance of the estimation methods under the validities of non-informative
and informative censoring models, a Monte Carlo simulation is implemented. In the simula-
tion, the data are repeatedly generated 500 times from 400 independent non-stationary Pois-
son processes {Ni(t)} with the corresponding subject-speci5c intensity function �i(t)= zi�0(t),
where

�0(t)=2 +
(t − 3)3

27
; t ∈ [0; 5]

and the latent variable zi is generated by four diMerent uniform distributions: (i) U(1:25; 1:25);
(ii) U(0:75; 1:75); (iii) U(0:5; 2); and (iv) U(0:25; 2:25). The baseline ORF �0(t) is chosen
to simulate the situation that the occurrence probability of recurrent events increases over
time. The latent variable distribution is chosen to be uniformly distributed with four ranges
to represent diMerent levels of informative censoring. Note that the informative censoring
is degenerated to non-informative censoring when the uniform distribution of zi is centred
(degenerated) at a point. In case (i), the distribution of zi is degenerated at 1:25 and the
model becomes a non-informative censoring model. We experimented with four distributions
on zi to examine the bias generated by diMerent degrees of informative censoring and to
con5rm the appropriateness of the proposed estimation procedures. When the latent variable
follows the degenerated uniform distribution of case (i), the informative and non-informative
censoring models coincide with each other. Conditioning on zi, the censoring time yi is set
to be distributed as a truncated distribution of the exponential distribution exp(zi), where the
truncated distribution ranges from 1 to 5 and has the density

fY |zi(y)=
zi exp(−ziy)

exp(−zi)− exp(−5zi)
; y ∈ [1; 5]

The risk-set methods in Section 2 and the proposed methods in Section 3 are used to
compute the estimates of the CORF and ORF. Here, the Gaussian kernel and an adequate
subjective bandwidth are used in the kernel estimators. Alternative selections of adequate
kernel function and bandwidth are also possible. Based on 500 generated data sets for each
simulation model. Figure 1 presents the true curves as well as the averages of the estimated
CORF and ORF for the informative and non-informative censoring models, with the latent
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Figure 1. The real CORF and ORF (solid curve), the non-informative censoring estimated curve (dotted
curve), and the informative censoring estimated curve (broken curve).

variable distribution chosen from (i)–(iv). As shown in these 5gures, the risk-set methods
produce a more signi5cant bias as the variance of the latent variable becomes large, whereas,
the proposed methods always provide appropriate estimates. Note that the risk-set methods
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tend to be more e6cient than the proposed methods when the censoring mechanism is non-
informative. This is, however, a typical trade-oM between e6ciency and robustness of statistical
methodologies which comes as no surprise.

5. APPLICATION TO THE ALIVE STUDY

In this section we use the data of the AIDS Link to Intravenous Experiences (ALIVE) cohort
study for the illustration of the estimation methods under non-informative and informative
censoring models. The study was initiated in 1988, and started systematically to collect the
health service information of the intravenous drug users in July 1993. To ensure better quality
of data, our data analysis uses the hospitalization data collected after 1 August 1993. Here, we
only consider the repeated hospitalization records of 450 HIV-negative and 297 HIV-positive
intravenous drug users, who entered the study prior to 1 August 1993 and were observed
between 1 August 1993 and 31 December 1997. In the analysis the HIV status was de5ned
as the status con5rmed at the study entry, 0 (1 August 1993). A small number of HIV-negative
drug users who became HIV-positive during the study period are excluded from analysis.

Let the observed dates of inpatient admission be represented by ti16 · · ·6ti;mi . The censor-
ing time, yi, is the time length from 1 August 1993 to the last follow-up visit of subject i. For
HIV-negative drug users, the median of the number of recurrent events is 1 and the number
ranges from 0 to 19. The median of the censoring time is 4.12 years and the censoring time
ranges from 0.275 to 4.394 years. For HIV-positive drug users, the median of the number of
recurrent events is 2 and the number ranges from 0 to 14. The median of the censoring time
is 3.939 years and the censoring time ranges from 0.047 to 4.394 years. The main objectives
of our analysis are to provide appropriate CORF and ORF estimators of the hospitalization
rates for drug users. Meanwhile, the bootstrap con5dence intervals are constructed to evaluate
the accuracy of the estimated curves.

Based on the estimation methods described in Sections 2 and 3, we compute the CORF and
ORF curves for HIV-negative and HIV-positive drug user groups. Similar to the simulation
analysis, the Gaussian kernel and an adequate subjective bandwidth are used in the kernel
estimators. The approximate 95 per cent bootstrap con5dence intervals are constructed using
the empirical distributions of the bootstrap analogues. As shown in Figures 2 and 3, the esti-
mated curves for HIV-negative drug users are similar under non-informative and informative
censoring models; however, for the HIV-positive group, the risk-set methods produced hos-
pitalization rates lower than those produced by the proposed methods. We suspect that this
analytical diMerence might be caused by informative drop-outs from sicker HIV-positive users.
Moreover, from these 5gures, we see that HIV-positive drug users have signi5cantly higher
hospitalization rates than HIV-negative users under both approaches. Figure 2 reveals that the
occurrence rates of the HIV-positive drug user group are greater than 1 after the starting short
period, and the hospitalization rates of HIV-negative ones are lower than 1. An alternative
way is to derive crude estimates of the expected number of events occurring every six month,
and use these estimates to compare the diMerences between the two drug user groups. Based
on the CORF and ORF estimation results, it appears appropriate to use the risk-set methods
of the non-informative censoring model for HIV-negative drug users, and the proposed meth-
ods of the informative censoring model for HIV-positive drug users, respectively, to produce
these crude estimates. In Tables I and II, one can see that the estimated numbers of events for
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Figure 2. The estimated ORF for HIV-positive and HIV-negative drug user groups with 95 per cent
bootstrap con5dence intervals. Dotted curves: non-informative censoring estimation method; solid curves:

informative censoring estimation method.

HIV-negative drug users are uniformly smaller than those of HIV-positive drug users. These
are consistent with the conclusion of the ORF analysis.

6. DISCUSSION

In this paper non-parametric procedures for the estimation of the CORF and ORF in informa-
tive and non-informative censoring models are discussed. An application to the ALIVE study
is presented to compare the two diMerent types of methodologies.
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Figure 3. The estimated CORF for HIV-positive and HIV-negative drug user groups with 95 per cent
bootstrap con5dence intervals. Dotted curves: non-informative censoring estimation method; solid curves:

informative censoring estimation method.

In the analysis of recurrent event data, parametric models and maximum likelihood tech-
niques are the commonly adopted approaches in various 5elds including medicine, econo-
metrics and demography, among others. In the statistical literature, as indicated in Section 2,
non-parametric inferences of the CORF and ORF were studied mostly under independent
censoring conditions. The methods described in this paper handle the problem of informa-
tive censoring via a latent variable and thus enjoy the common advantages of latent variable
models. In the proposed estimation procedures, the distributions of the censoring and latent
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Table I. The estimated expected number of events occurring every six months for HIV-negative
drug users with the pointwise 95 per cent bootstrap con5dence intervals.

Years

0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.0–3.5 3.5–4.0

Number of events 0.2359 0.2721 0.2331 0.3404 0.3136 0.4150 0.3675 0.3291
Lower bound 0.1778 0.2125 0.1867 0.2733 0.2470 0.3434 0.3059 0.2684
Upper bound 0.3069 0.3354 0.2916 0.4106 0.3859 0.4894 0.4408 0.3964

Table II. The estimated expected number of events occurring every six months for HIV-positive
drug users with the pointwise 95 per cent bootstrap con5dence intervals.

Years

0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.0–3.5 3.5–4.0

Number of events 0.3930 0.4625 0.4602 0.6173 0.6322 0.6467 0.7776 0.6733
Lower bound 0.3026 0.3568 0.3642 0.4612 0.4750 0.4561 0.5808 0.4561
Upper bound 0.4932 0.6004 0.5870 0.7736 0.8411 0.8190 0.9948 0.9267

variables are both treated as nuisance functions and we avoid modelling and estimation of
the two distributions by proper procedures. It is shown by simulation and data analyses that,
in the presence of informative censoring, the proposed methods are very eMective for
eliminating bias.
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