
ICICS-PCMZoO3
15-18 D-&TZ~O~
Singapore

3B4.4

Smart Cache: An Energy-Efficient D-Cache for a Software MPEG-2
Video Decoder

Chia-Lin Yang, Hung-Wei Tseng, Chia-Chiang Ho
Department of Computer Science and Information Engineering,

National Taiwan University,
Taipei 106, Taiwan

ABSTRACT

Power consumption is an important design issue of c ~ e n r
embedded systems. Data caches consume a signifcant
portion of total processor power for data intensive
applications. In this p w we propose to utili-e
application-specifc information for cache resotrrce
allocntion to achieve energv saving, including cache
bypassing, the mini-cache and way-pmrition. We use a
sopVare MpEG-2 video decoder as our jimt t q e t e d
application. Cache bypassing acludes data tpes that
have little m e from the L1 cache. The mini-cache
stores data tpes with high access frequency and small
memory footprints to a small on-chip memory area The
wq-partition mechanism m a p pmgram data struchues to
different ways of caches and enables only the matching
ways on each access. The results show up to 40% of
cache energy reduction without sacri3cing pdormance.

1. Introduction

Power consumption is becoming a critical design
issue of embedded system due to the popularity of portable
devices such as cellular phones and personal digital
assistants. Caches consume a significant portion of the
total processor power. For example, 42% of processor
power is dissipated in the cache subsystem in StrongARM
110 [l]. Many embedded applications, in both the
multimedia and communication domains, are data
dominated. Data storage and transfer account for a
significant portion of overall power consumption.
Whether a reference goes to the main memory or not, it
must access the data cache.

Cache partitioning and way-prediction are two
commonly used techniques to reduce energy dissipation in
data caches. Cache partitioning schemes divide caches into
smaller components since a smaller cache has a lower load
capacitance. Way-prediction predicts the matching way
and probes only the matchig way instead of all ways to
reduce power consumption for set-associative caches.
These techniques often increase average access latency if
the referenced data is not located in the predicted region.

The need for prediction is due to the fact that cache

management is transparent to sofhvare. If we allow
software to conk01 cache resource allocatioa we can
access the region d e r e a memory reference is located
directly. this way, we can achieve energy saving
without increasing average cache access time. Allowing
software to control caches has been proposed to improve
cache performance for embedded systems [2][3]. In this
papa, we exploit the potential of using a
sotlware-managed cache for energy optimization.

We use a software MPEG-2 video decoder as our
targeted application. An MPEG-2 decoder has large data
set and requires high data processing rate, which are two
important characteristics of real-time signal processing
applications. We consider three software-controlled cache
management mechanisms, cache-bypassing, mini cache,
and way-partition, and demonstrate how to utiliie the
application-specilic information of an MPEG-2 decoder to
achieve energy saving.

Our results show that bypassing the MPEG-2 video
output can achieve cache energy reduction of 1.4%.
Storing the most frequently accessed data type to a 512B
mini-cache can reduce 21% of cache energy.
Way-partition can even achieve higher energy saving - up
to 40%. The cache bypassing and mini-cache schemes
offer slight performance advantage. Way-partition incurs
performance degradation but it is within 1%.

The rest of the paper is organized as follows. Section
2 provides background information on a MPEG2 software
decoder. Section 3 describes how we utilize
application-specific information of a soihvare MPEG-2
decoder to manage cache resources for energy optimization.
Section 4 describes our experimental methudology and
Section 5 presents the results. Section 6 concludes this
papa.

2. MPEG-2 Overview

MPEG-2 was released in 1994 to provide coding
algorithms for video and associated audio targeting at bit
rate between 2 and 10 Mhps. It has been widely used in
applications such as digital cable TV service, network
database video service and DVD playback. In this
section, we briefly describe the decoding process and main
data types in a software MPEG-2 decoder.

0-7803-8185-8/03/$17.00 0 2003 IEEE 1660

2.1 MPEG-2 Architecture

A MPEG-2 bitstream consists of three different
h e types: I - b e , P-kame and B b e . Each b e
is partitioned into macroblocks and each macroblock is
separately encoded. Macroblocks in I-frames are
inm-coded only (without temporal prediction);
macroblocks in P and B h e s are inter-coded which
exploits the temporal redundancy of reference kames.
For inter-coded macroblocks, motion estimation is
performed to 6nd the best motion vector and coding mode.
Image data of inh-coded macroblocks and motion
compensated error of inter-coded macroblocks go through
E T , quantization, and run-length entropy coding to

' become a compressed bitstream. The demding of a
compressed MPEG-2 bitstream, the application our work
focuses on, is the inverse of the above encoding process,
but without motion estimation.

2.2. Data Set Composition

We can break down mpeg-2 decoder data types into
the following classes:

I n p G The MPEG-2 bitstreams. Bitstreams coming
fiom network or storage are temporarily stored in a fixed
size buffer which is r e h h e d when the stored data has
been decoded.
&@ut- The decoded picture data The output data is
writeonly and transferred to the b e buffer through

TduLm- Static and read-only tables used in the decoder,
such as lookup tables for variable length decoding.
Referent+ Buffers for both current and reference frames.
Block-The buffer for pixel values of a single macroblock.
The inverse quaatization and inverse DCT are performed
in-place in this buffer.
stcrte--vaables needed for setting and operation of the
decoder. Note that we do not include those local
variables for temporary usage in various decoding
modules/functions.

system calls.

Table 1 lists the data set size and percentage of total
memory references for different data types. Note that the
access percentage from the major data types only adds up
to 82%. A significant portion of the remaining references
comes from accessing the stack region (12% of total
memory references).

3. Energy-Aware Cache Management

3.1 Energy Dissipation in Caches

Caches are composed of CMOS static RAU The
dominant energy dissipation in CMOS circuit comes from
dynamic switching dissipation, i.e., transitions that charge

ut KB .2% ference l500KB 7.5%0

Id OOKB l.% lock 1.5KB 4.2%

abular KB .2% e 1.5KB .l%

Table 1: Summary of decoder data types, sue and % of
memory references

or precharge the load capacitance.
power dissipation P can be described as:

Dynamic switching

where C is the capacitance, Y is the supply voltage, f is the
clock frequency and a represents the number of access
transitions. Power can be reduced by reducing the supply
voltageklock fiequency, load capacitance, or switching
Sepuency generally. Reducing voltage/clock frequency
ofien sacrifices performance. Therefore, for cache energy
optimizatio~ we should aim at reducing the cache
capacitance and switching ikquency.

3.2 Cache Energy Optimization Techniques

In this section, we describe how we utilize
application-specific information of a MPEG-2 decoder for
cache energy optimization.

Cache Bypassing

Bypassing memory references that have little reuse
can improve L1 cache performance because it results in
less cache pollution [4]. Accessing the lower level of the
memory hierarchy directly for memory references that
always miss in the L1 cache can reduce the power
umsumption of L1 cache (i.e. reducing L1 cache switching
fiequency) without increasing that of other memory
components. The video output data of the MPEG-2
decoder is an ideal data type for bypassing since the output
stream is written and never read by the CPU.

Insbuction aonotation techniques can be used to
implement the bypassing mechanism. Several
commodity processors have already provided different
flavors of load insmction to allow more sophisticated
cache management policy. For example, the ULTRA
SPARC processor provides a block-load instruction that
loads several floating-point registers M e bypassing the
first level cache [5].

The mini-cache

Several studies have proposed to add a cache that is very
small relative to the conventional L1 cache on chip for
power optimization since a smaller cache has lower load
capacitance [6][7][8]. The filter cache proposes to place
this mini-cache between CPU and L1 cache as shown in
Figure l(a) [6]. This approach can reduce the power

1661

Bit vector
Address I 01 I l O (0 j

I

Cache Cache

Figure l(a): Filter cache Figure l(b): Mini-cache

consumption by 58 % but degrade performance by 21%.
The minimax cache [8] proposes to use special lodstore
instruction to direct scalar data to the mini-cache as shown
in Figure l(b). In this paper, we look at a similar
architecture but map data types with small memory
footprint and high access fkquency to the mini-cache.
As indicated in Table 1, the block data type has highest
access frequency and only 1.m data set size. Therefore,
it is an ideal m e t for storing in the mini-cache.

Way-Partition

Modem microprocessors often employ
set-associative caches to achieve low m i s s rate. The tag
and data arrays of all the ways are probed in parallel, and
then the data is selected from the matching way. A large
part of energy is actually wasted since only the data of the
matching way is used. Powell et al. [9] proposes to
predict the matching way for energy saving. However,
this approach often increases average cache access time
due to mis-prediction and still needs to access all the ways
of the tag array. In this paper, we propose to statically
map particular data types to specilic ways of an U-way
set-associative cache according to their reference patterns
(i.e., working set size and access frequency). Therefore,
on each cache access, we can pinpoint the matching way.

To implement this idea we can adopt column-caching
proposed by Chiou et al.[2]. Column-caching allows
software to map program data structures to different ways
of caches. The mapping information is represented by a
bit vector, which guides the replacement when a cache
miss occurs. The bit vector is stored in the TLB
(translation-look-asidebuffer) since the TLB is accessed at
every memory reference for address translation. The
similar framework can be adopted for energy saving with
small modification as shown in Figure 2. On each access,
the bit vector is checked to determine the mapping ways
and only the mapping ways are accessed.

4 Experimental Methodology

We use Wattch toolset [15] developed at Princeton
University to conduct our experiments. Wattch generates
both the performance and energy data through
execution-driven simulation. We modified Wattch to
simulate the energy-saving techniques proposed in this
paper. Our baseline machine model is an ARM-like

way1 way3
w3v2 way4

Figure 2: Modified Column caching

0.1
0 stack

ck

Minl cache Sire

Figure 3: The mini-cache energy consumption

singleissue in-order processor which contains an SK,
Cway associative cache. We select the cache size based on
the SA-1110 design [14]. Since DRAMmemory power is
not modeled in the Wattch toolset, a four-way 512KE3 L2
cache is used as a hac* storage'. All the caches are
single-ported. We evaluate energy consumption assuming
0 . 3 5 ~ ~ process technology and activity sensitive
conditional clocking.

We obtain the MPEG-2 s o h e decoder from the
MPEG Soflware Simulation Group [16]. For input
sensitivity study, we test three video sequences with a
resolution of 704x480 pixels at 30 fiameds and a
compressed bitrate of 6 Mbitds. We found little variation
among different video sequences r e g d i g their memory
behavior (i.e., access lkquency of different data types and
cache miss ratios). Therefore, we obtained the results in
the next section using one test stream and restricted each
run to 15 frames to limit the simulation time. '
5 Results

Since energy-saving methods may reduce energy
dissipation at the expense of performance degradation, we
evaluate the performance, energy consumption and
energy-delay product of the proposed energy-saving
techniques. Energy-delay product is often used as the
mehic for an energy efficient design since it considers both

' The L2 cache miss ratio is close to zero for an MPEG-2
decoder.

We observed that decoding a 15 frames has the similar
memory behavior as decoding a complete sequence.

1662

111
0 9

0 1 O R Od
OD om 10’
0 7 : 0 6

- 0 6 ii; it
093

f::
0 3
0 2 092 0 2

0 1 0 91 01
0 9 - - -

(a) Normalized energy consumption (b) Normalized execution time

Fignrr 4 The effect of way-partition.
B block+state (1 way); tabulwstack (1 way);others (2 ways)

(c)Normalized energy-delay

A block (1 way);others (3 ways)

performance and energy at the same time. Note that the
proposed energy-saving techniques may increase L1 cache
miss rate, thereby increasing the L2 cache energy
consumption. Therefore, for a fair comparison, we consider
both the L1 and L2 caches for energy evaluation.

5.1 Cache Bypassing

As mentioned previously, the video output data of
the MPEG-2 decoder is an ideal data type for bypassing
since the output stream is written and never read by the
CPU. The experimental results show that excluding
video output data from the L1 cache can reduce the energy
consumption by 1.4%. It also offers slight performance
improvement. We do not see significant energy saving
because the output data accounts for only 2% of total
memory references. Sice bypassing the output data does
not cause performance degradation, for the results
presented below, we bypass the output data in all
configurations.

5.2 The mini-cache

Here we evaluate the energy efficiency of storing the
block data type of an h4PEG-2 decoder to the mini-cache.
Several studies propose to have a separate partition for the
stack data references [7][12]. The stack data references
in an MPEG-2 decoder accounts for 12% of total memory
references and has a relative small memory footprint
(OSK). Therefore, we compare the energy efficiency of
mapping the block data type to the mini-cache to that of
stack memory references. Figure 3 shows the normalized
energy consumption. The mini-cache is direct-mapped.
We test three mini- cache sizes: 512B, 1K and 2K. The
results show that a 512B mini-cache is sutFcient to keep
most of the working set of the block data type and stack
references (close to zero miss rate). Mapping the block
data type to the mini-cache achieves higher energy saving
compaed to the stack memory references (21% vs. 10%).
On the performance side, the addition of a mini-cache only
offers slight performance improvement because the
baseline model has already very low L1 cache miss rate

(1.02%).

5.3 Way-Partition

The cache resource allocation strategy used in the
way-partition mechanism is to give frequently accessed
data types priority and allocate resources close to their
working set sizes3. Note that the working set size of a
data type is typically smaller than its data set size. We
consider two partitioning schemes. The first scheme
reserves one way of the L1 cache for the block data type
and maps other data types to the remaining three ways.
The second scheme aggressively partitions data into three
groups: block+state (1 way), tahulwstack (1 way) and
others (2 ways). A finer partitioning saves more energy
of the L1 cache since each access consumes less power hut
it could cause more capacity and conflict misses.
Therefore, the tradeoff between performance and energy
saving needs to be carefully evaluated.

Figure 4(a) shows the normalized energy
consumption of these two partitioning schemes. We divide
the energy consumption into the L1 and L2 components.
The results show significant energy saving. The first
scheme reduces the energy consumption by 3 1 .S% and the
second by 40.4%. Both partitioning schemes have only
little effect on the L2 power consumption. That implies
insignificant performance impact. Figure 4(b) shows the
normalized execution time. Even though both schemes
these cause performance degradation but it is within 1%.
The normalized energy-delay product is shown in Figure
4(c). The second partitioning scheme reduces the
energy-delay product by 40%.

6. Related work

Several studies have proposed to partition cache for
power optimiition. The filter cache [6] extends this idea
further by using a l q e r buffer (smaller than the L1 cache)

We define working set size as the smallest cache size
required to obtain a specific miss ratio.

1663

to store recently accessed blocks. Region-based caching [7]
reduces cache energy dissipation by partitioning the L1 data
cache into three components: stack, global and heap. Data
accesses are directed to different component based on their
memory region types. The minimax cache [8] looks at the
effect of storing scalar data types in a mini-cache for a set
of multimedia applications. To reduce the energy
dissipation of set-associative caches specifically, Powell et
al [SI propose to predict the way that contains the accessed
data and probe only the predicted way to save energy.
Albonesi et aL [IO] statically turn off unneeded ways in a
set-associative cache (selectiveways) while Yang et al.
suggest a dynamic approach to disable unused sets
(selectivesets) [I l l . Several studies have proposed to use
software-managed cache for performance optimization.
Panda et al. [I31 map scalar data to the scratch-pad memory
for embedded applications. Chiou et al. [2] provide a
flexible method to partition cache regions dynamically.
Soderquist et al. [3] suggest to exploit application-specific
information for better cache resource management to
improve cache efficiency for an MPEG-2 decoder. This
paper is the first attempt to use softwaremanaged cache for
energy optimitiou.

7. Conclusions

In this paper, we propose to use a software-managed
cache for energy optimization for a s o h e MPEG-2
video decoder. We evaluate three energy-reduction
techniques. First, we exclude the video output data from
the L1 cache since it is witeonly and obtain 1.4% energy
saving. The second mechanism stores the block data type,
~ c h has high access frequency and a small memory
fmtprinf into the mini-cache. The results show that
using a 512B mini-cache can reduce energy comnmption
by 21%. The thud mechanism maps specific data types to
different ways of the data cache and on each access, only
the mapping ways are accessed This mechanism can
achieve up to 40% energy saving. None of the techniques
causes significant performance degradation (less than 1%).

This study has shown the potential of using a
soharemanagement cache for energy reduction. In
future work, we plan to investigate compiler techniques for
automatic cache resource allocation.

Acknowledgments

RISC microprocessor. IEEE Jaumal of Solid State
Circuits, 31(11):1703-1714, November 1996

[2] D. Chiou, P. Jain, L. Rudolph and S. Devadas.
Application-Speciiic Memory Management for Embedded
Systems Using Soliware-Controlled Cache. In
Proceedings of DAC, 2000. Los Angeles, California

[3] P. Soderquist and M. Leeser. Memory Traffic and Data
Cache Behavior of an MPEG2 S o h Decoder. In
Proceedings of I n t e ~ ' o n a l Conference on Computer
Design, 1997
T. L. Johnson, D. A. Cmors, M. C. Merten, and W. W.
Hwu Run-Time Cache Bypassing. IEEE Tronsactions
on Computers, Vol. 48, No. 12, December 1999, pp.
1338-1354

[5] B. Case. SPARC V9 Adds Wealth of New Features.
Microprocessor Report, 7 (9), February 1993

[6] J. Kin, M. Gupta, W. H. MangionsSimith The Filter
Cache: An Enerq Efficient Memory Structure. In
Proceedings of 3G' Annual Infemtional Synposium on
Microarchitecfure, December, 1997

[7] H.-H. Lee and G. S. Tysoll Region-Based Caching: An
Energy-Delay Efficient Memory Architecture for
Embedded Processors. In Proceedings of Infem'onal
Conference on Compilers. Architectures and synthesis for
Embedded Systems (CASES 2000), Nov. 2000.
0. S. Unsal, I. K M ~ C. M. Krishna and C. A. MoaiZ
The Minimax Cache: An Energy-Efficent Framework for
Media Processors. In Proceedings of @' Infem'onal
Conference on High performance Compuer, Febuary
2002
M. D. Powell, A. A g d , T. N. Vijayknmar, B. Falsati
and K. Roy. Reducing Set-Associative Cache Energy via
Way-Prediction and Selective Direct-Mapping. In
Proceedings of 34th Intel Symposium on
Microarchitecfure, 2001

[IO] David H. Ahnesi. Selective Cache Ways: @-Demand
J o m l of Cache Resource Allocation.

Instruction-Level Parallelism, 2oM)
[ll] S.-H Yang, M. D. Powell, B. FaIsafi, and T. N.

Vijaykumar. Exploiting Choices m Resizable Cache
Design to Optimize DeepSuhmicron Processor
Energy-Delay. In Proceedings of fhe #* Infernatiomd
Symparium on High-Performance Computer Archifecfure,
November 2001

[U] M. H m g , R Reanu and J. Torellas. L1 Cache
Decomposition for Energy Efficient Processors. In
Proceedings of Internatid Symposium on Low-Power
Electronics and Design (ISPLED'OI), Huntington Beach,
CA,August2001.

[I31 P. R Panda, N. D. Dua and A. Niwlau Efficient
Utilization of Scratch-Pad Memory in Embedded
Processor Applications. In Proceeding of European
Design & Test Conference, 1997

[I41 Intel StrongARM SA-Ill0 Microprocessor Brief
Datasheet, April 2000

[4]

[SI

[9]

[I51 D. Brooks, V. Tiwari, and U Martonosi. Waach
A Framework for Architd-Level Power Analysis and
optimizationS. In Proceedings of the 27th Infernational
Symparium on Computer Architecture (ISCA), Vancouver,
British Columbm June 2000.

[16] S. Echaa and C. Fog. ISO/IEC MPEGZ Soliware

This work is supported in part by the National
Science Council under Grant NSC 92-2213-E-002-014-
and NSC 91-2215-E-002-043- and research fundings from
Microsoft. We would like to thank the anonymous
reviewers for their valuable comments.

Video Codec. In Proceeding of the SPIE conference on
Digifal Video Compression: Algorithms and Technologies,
Vol. 2419, 7-10 February 1995, San Jose, California, pp.
100-109.

References

[I] J. Montanaro, el al. A 16o-MHz, 32-b, 0.5-W CMOS

1664

