
Rectilinear Block Placement Using B*-Trees

GUANG-MING WU
Nan-Hua University
YUN-CHIH CHANG
Realtek Semiconductor Corp.
and
YAO-WEN CHANG
National Taiwan University

Due to the layout complexity in modern VLSI designs, integrated circuit blocks may not be rect-
angular. However, literature on general rectilinear block placement is still quite limited. In this
article, we present approaches for handling the placement for arbitrarily shaped rectilinear blocks
using B*-trees [Chang et al. 2000]. We derive the feasibility conditions of B*-trees to guide the
placement of rectilinear blocks. Experimental results show that our algorithm achieves optimal or
near-optimal block placement for benchmarks with various shaped blocks.

Categories and Subject Descriptors: B7.2 [Integrated Circuits]: Design Aids—placement and
routing; J.6 [Computer Applications]: Computer-Aided Engineering

General Terms: Algorithms, Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Computer-aided design of VLSI, floorplanning, layout,
placement

1. INTRODUCTION

Due to the growth in design complexity, circuit size is getting larger. To cope with
the increasing design complexity, hierarchical design and IP modules are widely
used. This trend makes block floorplanning/placement much more critical to the
quality of a design.

Floorplanning is often studied based on two floorplan structures, the slicing
structure [Otten 1982; Wong and Liu 1986] and the nonslicing structure [Chang

The work of G.-M. Wu was partially supported by the National Science Council of Taiwan ROC
under Grant No. NSC-91-2215-E-343-001. The work of Y.-W. Chang was partially supported by the
National Science Council of Taiwan ROC under Grant No. NSC-91-2215-E-002-038.
Authors’ addresses: G.-M. Wu, Department of Information Management, Nan-Hua University,
Chiayi, Taiwan; email: gmwu@mail.nhu.edu.tw; Y.-C. Chang, Realtek Semiconductor Corp., No. 2,
Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu, Taiwan; Y.-W. Chang, Graduate In-
stitute of Electronics Engineering and Department of Electrical Engineering, National Taiwan
University, Rm. 548, Electrical Engineering Building #1, Taipei 106, Taiwan; email: ywchang@
cc.ee.ntu.edu.tw.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2003 ACM 1084-4309/03/0400-0188 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003, Pages 188–202.

Rectilinear Block Placement Using B*-Trees • 189

et al. 2000; Guo et al. 1999; Murata et al. 1997; Nakatake et al. 1996; Wang
and Wong 1990]. A slicing structure can be represented by a binary tree whose
leaves denote modules, and internal nodes specify horizontal or vertical cut
lines. Wong and Liu [1986] proposed an algorithm for slicing floorplan design.
They presented a normalized Polish expression to represent a slicing structure,
enabling the speedup of the search procedure. However, this representation can-
not handle nonslicing floorplans. Recently, researchers have proposed several
representations for nonslicing floorplans, such as the sequence pair [Murata
et al. 1997], bounded slicing grid (BSG) [Nakatake et al. 1996], O-tree [Guo
et al. 1999], and B*-tree [Chang et al. 2000].

In modern VLSI design, the blocks may not be rectangular. Most existing
floorplanning/placement algorithms, however, only deal with rectangles and
cannot apply to arbitrarily shaped rectilinear block placement directly. New
approaches that can handle arbitrarily shaped blocks are essential to optimize
resource (e.g., area) utilization.

Preas and van Cleemput [1979] proposed a graph model for the topological re-
lationships among rectangular and arbitrarily shaped rectilinear blocks. Wong
and Liu [1987] extended the Polish expression to represent slicing floorplans
with rectangular and L-shaped blocks. Lee [1993] extended the zone refinement
technique to rectilinear blocks. A bounded 2-D contour searching algorithm was
proposed to find the best position for a block.

Kang and Dai [1997] proposed a BSG-based method to solve the packing
of rectangular, L-shaped, T-shaped, and soft blocks. The algorithm combined
simulated annealing and a genetic algorithm for general nonslicing floorplans.

Xu et al. [1998] presented an approach extending the sequence-pair approach
for rectangular block placement to arbitrarily sized and shaped rectilinear
blocks. The properties of L-shaped blocks were examined first, and then arbi-
trarily shaped rectilinear blocks were decomposed into a set of L-shaped blocks.

Kang and Dai [1998] proposed a method based on the sequence-pair structure
for rectilinear block placement. Three necessary and sufficient conditions for a
sequence pair to be feasible were derived. A stochastic search was applied on
the optimization of convex block floorplanning.

Chang et al. [2000] recently proposed the B*-tree representation for nonslic-
ing floorplans, which is based on block compaction and ordered binary trees.
Inheriting from the nice properties of ordered binary trees, B*-trees are very
easy to implement and require only constant time for tree search and insertion,
and linear time for deletion. Unlike the O-tree representations, in particular,
no extra encoding of the tree itself is needed for a B*-tree, and cost evalua-
tion can be performed directly on a B*-tree. Besides, the ordered property of a
B*-tree makes the incremental cost evaluation of its corresponding placement
possible. Furthermore, given a B*-tree, it takes only linear time to construct
the placement, and vice versa. All these nice properties make the B*-trees an
efficient and flexible representation for nonslicing floorplans.

In this article, we apply the B*-tree to handle the placement of arbitrarily
shaped rectilinear blocks. First, we explore the properties of L-shaped blocks
and then extend the properties to general rectilinear blocks. The feasibility con-
ditions are then used to guide the placement of rectilinear blocks. We construct a

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

190 • G. M. Wu et al.

4
7

5

3 7

6
5

8

5

a

b

c d

e
f

g

h

ibase

Top profile sequence = (4, [5, 7], [7, 4], [6, 1], [8, 4])

Fig. 1. The top profile sequence consists of the length of the base, followed by a sequence of two-
tuples that is composed of the lengths of the succeeding horizontal segments and their relative
heights to the base.

set of benchmarks with rectangular and L-shaped (and T-shaped) blocks and ap-
ply simulated annealing as a vehicle to test the effectiveness of our approaches.
Experiment results show that our approaches lead to placements with optimal
or near-optimal area utilization.

The remainder of this article is organized as follows. Section 2 formulates
the rectilinear block placement problem. Section 3 introduces the B*-tree repre-
sentation. Section 4 describes the method for the L-shaped blocks in a B*-tree.
Section 5 describes our algorithm. Section 6 extends the algorithm to arbitrar-
ily rectilinear blocks. Experimental results are reported in Section 7. Finally,
we give conclusions in Section 8.

2. FORMULATION

Let B = {b1, b2, . . . , bn} denote a set of rectilinear blocks. A block is not flex-
ible in its shape but free to rotate and flip. A packing of a set of blocks is a
nonoverlapping placement of the blocks.

A rectilinear block can be represented by four profile sequences, namely, the
top profile sequence, the bottom profile sequence, the left profile sequence, and
the right profile sequence, specifying the profiles viewed from the top side, the
bottom side, the left side, and the right side of the block, respectively. The top
(bottom) profile sequence of a rectilinear block uses the leftmost horizontal
segment on the top (bottom) boundary of the block as a base and records the
length of the succeeding horizontal segments on the top (bottom) boundary and
the relative height. Specifically, the top profile sequence consists of the length
of the base, followed by a sequence of two-tuples composed of the lengths of the
succeeding horizontal segments and their relative heights to the base (could be
negative). For example, Figure 1 shows a rectilinear block with the top profile
sequence (4, [5, 7], [7, 4], [6, −1], [8, 4]). The base of the sequence is segment
a which has a length of 4 units. The second horizontal segment is c which has
a length of 5 units and is 7 units higher than the base a. Similarly, the third
horizontal segment is e which has a length of 7 units and is 4 units higher

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

Rectilinear Block Placement Using B*-Trees • 191

(a)

0

1b b

b

b

b

b b
b

(0, 0) x

y

2

3

4

5

6

b7

8

0

1

2 3

6

7

8

(b)

n

4n

n5n

n n

n

n

n

Fig. 2. An admissible placement and its corresponding B*-tree.

than the base a, and so on. The other three profile sequences are similarly
defined.

Definition 1. A rectilinear block placement is feasible if and only if no two
blocks overlap each other, and all profile sequences remain unchanged after
placement (i.e., all blocks keep their original shapes).

The goal of the rectilinear placement problem is to optimize a given cost metric
(such as area, wirelength, etc.) induced by the assignment of bis. (By area here,
we mean the final enclosing rectangle of B.)

3. OVERVIEW OF THE B*-TREE REPRESENTATION

Given an admissible placement P , we can represent it by a unique (horizontal)
B*-tree T [Chang et al. 2000]. (See Figure 2(b) for the B*-tree representing the
placement shown in Figure 2(a).) A B*-tree is an ordered binary tree whose
root corresponds to the module in the bottom-left corner. Similar to the depth-
first search (DFS) procedure, we construct the B*-tree T for an admissible
placement P in a recursive fashion. Starting from the root, we first recursively
construct the left subtree and then the right subtree. Let Ri denote the set
of modules located on the right-hand side and adjacent to bi. The left child of
the node ni corresponds to the lowest module in Ri that is unvisited. The right
child of ni represents the first module located above and visible from bi, with
its x-coordinate equal to that of bi (and its y-coordinate less than or equal to
that of the top boundary of the module on the left-hand side and adjacent to bi,
if any, to consider the special placement).

As shown in Figure 2, we make n0 the root of T since b0 is in the bottom-left
corner. Constructing the left subtree of n0 recursively, we make n4 the left child
of n0. Since the left child of n4 does not exist, we then construct the right subtree
of n4 (which is rooted by n5). The construction is recursively performed in the
DFS order. After completing the left subtree of n0, the same procedure applies
to the right subtree of n0. Figure 2(b) illustrates the resulting B*-tree for the
placement shown in Figure 2(a). The construction takes only linear time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

192 • G. M. Wu et al.

0b

newly added block

b1 b 2

b3

b4 b 5

b6

old contour
new contour

Fig. 3. A contour and its update: when adding a new block to the placement, we search the contour
from left to right and update it with the top boundary of the new block.

The B*-tree keeps the geometric relationship between two modules as fol-
lows. If node nj is the left child of node ni, module bj must be located on the
right-hand side and adjacent to module bi in the admissible placement; that
is, x j = xi + wi. Besides, if node nj is the right child of ni, module bj must
be located above and visible from module bi, with the x-coordinate of bj equal
to that of bi; that is, x j = xi. Also, since the root of T represents the bottom-
left module, the x- and y-coordinates of the module associated with the root
(xroot , yroot) = (0, 0).

A contour structure (see Figure 3), which was originally proposed in Guo et al.
[1999], can be used to reduce the run-time of finding the y-coordinate of a newly
inserted block. The contour structure is a doubly linked list of blocks, which
describes the contour line in the current compaction direction. Without the
contour structure, the run-time for placing a new block is linear to the number
of blocks. By maintaining the contour structure, however, the y-coordinate of
a block can be computed in O(1) time. Figure 3 illustrates how to update the
contour when we add a new block to the placement.

4. L-SHAPED BLOCKS

In this section, we apply the B*-tree approach to find a feasible placement with
L-shaped blocks. Let bL denote an L-shaped block. bL can be partitioned into
two rectangular subblocks by slicing bL along its middle vertical boundary. As
shown in Figure 4(a), b1 and b2 are the subblocks of bL, and we say b1, b2 ∈ bL.

After partitioning and placement, the rectilinear block bL might not conform
to its top profile sequence, as illustrated in Figure 5. Figure 5(a) shows a B*-
tree and its corresponding placement. We can pull subblock b2 up to align with
the subblock b1, so that the block bL can maintain its top profile sequence with-
out changing the overall topology of the blocks. Conversely, there might not be
enough space to do so; see Figure 5(b) for such an example. It is obvious that
a feasible placement can be generated from the B*-tree shown in Figure 5(a)
with a local adjustment, but it is impossible for the case shown in Figure 5(b).
Therefore, if we represent an L-shaped block by two subblocks, we must guar-
antee that the two subblocks abut. To ensure that the left subblock b1 and the

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

Rectilinear Block Placement Using B*-Trees • 193

(a) (b) (c) (d)

(e) (f) (g) (h)

b1

b2

b2
b2 b2

b2

b1

b1

b1

b1

b1

b1

b1

b2

b2b2

Fig. 4. Eight situations of an L-shaped block. Each is partitioned into two parts by slicing it along
the middle vertical boundary.

(a)

b1

b1

b2
b2

bj

(b)

b1b1

b2
b2

bj

bj

bj

Fig. 5. Placing the L-shaped block shown in Figure 4(a) by two subblocks: (a) a feasible placement;
(b) an infeasible placement.

right subblock b2 of an L-shaped block bL abut, we impose the following location
constraint (LC for short) for b1 and b2.

LC: Keep b2 as b1’s left child in the B*-tree.

The LC relation ensures that the x-coordinate of the left boundary of b2 is equal
to that of the right boundary of b1. For example, the two sets of subblocks b1, b2
and b3, b4 shown in Figure 6(a) do not abut whereas those shown in Figure 6(b)

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

194 • G. M. Wu et al.

Fig. 6. Suppose that b1, b2 and b3, b4 are two sets of subblocks corresponding to two L-shaped
blocks (a) a placement in which b1, b2 and b3, b4 do not abut. Their corresponding nodes in the B*-
tree may not be related; (b) another placement in which b1, b2 and b3, b4 abut. Their corresponding
nodes in the B*-tree keep the LC relation between b1 and b2 (as well as b3 and b4).

do. In Figure 6(b), the subblocks b3 and b4 are placed at the right locations and
the subblocks b1 and b2 are not since the y-coordinates of b1 and b2 are not
equal. We say b1 and b2 are misaligned.

In the following, we adopt the contour data structure to solve the misalign-
ment problem. When transforming a B*-tree to its corresponding placement,
we update the contour to maintain its top profile sequence as follows. Assume
that b1 and b2 are the respective left and right subblocks of an L-shaped block
bL, and they are misaligned. When processing b2, b1 must have been placed. We
can classify the misalignment into categories and adjust them as follows.

(1) Basin: The contour is lower than the top profile sequence at the position
of the current subblock b2. (See Figure 7(a).) In this case, we pull b2 up
to conform to the top profile sequence of the L-shaped block bL. It should
be noted that this operation will not pull other blocks up due to the DFS
packing order induced by the B*-tree.

(2) Plateau: The contour is higher than the top profile sequence at the position
of the current subblock b2. (See Figure 7(b).) In this case, we pull b1 up to
conform to the top profile sequence of bL. (Note that b2 cannot be moved
down because the compaction operation makes b2 be placed right above
another block.)

It is clear that each of the adjustments can be performed in constant time with
the contour data structure.

In the following, we discuss the rotation and flip operations of an L-shaped
block. For each L-shaped block bi, there are eight orientations by rotation and

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

Rectilinear Block Placement Using B*-Trees • 195

b1 b2

b2

b1

original curve

contour

original curve

contour

(a) (b)

Fig. 7. Placing two subblocks b1 and b2 of an L-shaped block: (a) if the contour is lower than the
top profile sequence at b2, then we pull b2 up to meet the top profile sequence; (b) if the contour is
higher than the top profile sequence at b2, then we pull b1 up to meet the top profile sequence.

flip, as shown in Figure 4. To preserve the LC relation and keep it in the B*-tree,
we repartition bi into two subblocks after it is rotated or flipped and keep the
LC relation between them. Figure 4 shows the subblocks after repartitioning.
As shown in the figure, an L-shaped block is always partitioned by slicing it
along the middle vertical boundary. After repartitioning, we should update the
top profile sequence for the block.

5. FLOORPLAN ALGORITHM

Our rectilinear floorplan design algorithm is based on the simulated annealing
method [Kirkpatrick et al. 1983; Sechen and Sangiovanni 1985] and the B*-tree
described in Section 3. We perturb a B*-tree (a feasible solution) to another B*-
tree by using the following four operations.

Op1: Rotate a block.
Op2: Flip a block.
Op3: Move a block to another place.
Op4: Swap two blocks.

The Op1 and Op2 operations have been described in Section 4. The Op3 opera-
tion deletes and inserts a block into a B*-tree. If the deleted node is associated
with a rectangular block, we simply delete the node from the B*-tree. Other-
wise, there will be two nodes associated with an L-shaped block, and we must
delete the two nodes from the B*-tree and insert them in other places. Note
that the LC relations must hold. Both of the Op3 and Op4 operations need to
apply the Insert(ni) and Delete(ni) operations, where Insert(ni) (Delete(ni)) is
the operation for inserting (deleting) a node ni to (from) a B*-tree. The B*-tree
must remain a binary tree after deletion or insertion. We detail the deletion
and insertion operations in the following.

5.1 Deletion

The deletion can be categorized into these cases:

—Case 1: A leaf node;
—Case 2: A node with one child;
—Case 3: A node with two children.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

196 • G. M. Wu et al.

68

5n

n n

7n

(a)

(b)

(c)

0

1

2 3

6

7

8

n

4n

n5n

n n

n

n

n

0

1

2 3

68

n

4n

n5n

n n

n

n

0

1

2 3

6

7

8

n

4n

n5n

n n

n

n

n

0

1

2 3

n

n n

n

0

1

2 3

6

7

8

n

4n

n5n

n n

n

n

n 4n

2n5n

8n 6n

7n

3n

1n

Fig. 8. Deletion: (a) deleting a leaf node; (b) deleting a node with only one child; (c) deleting a node
with two children.

In Case 1, we can just delete the target leaf node directly, and the tree will
still be a B*-tree. As shown in Figure 8(a), to delete the node n7 from the B*-tree
of Figure 2, we set the left child field of its parent n6 to be NULL and free the
node n7.

In Case 2, we remove the target node and then place the single child
at the position of the removed node. For example, after deleting the node n4 from
the B*-tree of Figure 2, we move n5 to the original position of n4 and obtain the
tree shown in Figure 8(b). This tree update can be performed in O(1) time.
Note that the relative positions of the blocks might be changed after the op-
eration, and thus we might need to reconstruct a corresponding placement for
further processing.

In Case 3, when deleting a target node nt with two children, we replace
nt by either its right child or left child nc. Then we move a child of nc to the
original position of nc. The process proceeds until the corresponding leaf node
is handled. For instance, suppose that we delete the node n0 from the B*-tree of
Figure 2. We can use the right child n1 to replace it, and then use n3 to replace
n1. (The resulting tree is shown in Figure 8(c).) It is obvious that such a deletion
operation requires O(h) time, where h is the height of the B*-tree. Again the

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

Rectilinear Block Placement Using B*-Trees • 197

n0

n8

n7

n9

n10 n11

n12 n4

n3

n2 n5

n6

n13

external position
internal position

n1

inseparable position

Fig. 9. The inseparable, internal, and external positions of a B*-tree. (Assume that n1 and n2
are associated with the same L-shaped block.) A node can be inserted at either an internal or an
external position.

relative positions of the blocks might be changed after the operation, and thus
we might need to reconstruct a corresponding placement for further processing.

Note that if the deleted node ni is a subblock of an L-shaped bL, we should
also delete the other subblock of bL.

5.2 Insertion

When adding a block to a placement, we may place the block around a certain
block, but not between two subblocks that belong to an L-shaped block. For
a B*-tree, we define three types of positions as follows. (See Figure 9 for an
illustration.)

—Inseparable position: A position between two nodes associated with the two
subblocks of an L-shaped block.

—Internal position: A position between two nodes in a B*-tree, but not an
inseparable one.

—External position: A position pointed to by a NULL pointer.

Only internal and external positions can be used for inserting a new node.
For a rectangular block, we can insert it into an internal or an external

position directly. For any L-shaped block bL consisting of two subblocks b1 and
b2, with b1 on the left-hand side of b2, the two subblocks must be inserted into
a B*-tree simultaneously, and b2 must be the left child of b1 (according to the
LC relation).

In the following, we discuss three cases of inserting an L-shaped block into
an internal position. As shown in Figure 10, if we insert two nodes b1 and b2 of
an L-shaped block into an internal position between nodes bi and bj , with bj
being a child of bi, bj can be placed at the position that is the left child of b2,
the right child of b2, or the right child of b1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

198 • G. M. Wu et al.

1

2b

b
insert

bi

bj

(a)

1

2b

b

bi

bj

1

2b

b

bi

bj

1b

bi

2b

bj

(b)

(c) (d)

Fig. 10. Three cases of inserting an L-shaped block to an internal position.

b1

b2
b3 b4

b5 b6 b7

(a)

b1
b2

b3 b4 b5

b6

(b)

Fig. 11. (a) Partition a convex block along every vertical boundary from left to right; (b) repartition
the block of (a) after it rotates.

6. EXTENSION TO GENERAL RECTILINEAR BLOCKS

In this section, we extend the techniques described in previous sections to han-
dle general rectilinear blocks. In general, a rectilinear block can be partitioned
into a set of rectangular subblocks. Let bi denote an arbitrarily shaped rectilin-
ear block. bi can be partitioned into a set of rectangular subblocks by slicing bi
from left to right along every vertical boundary of bi, as shown in Figure 11(a).

After perturbing the Op1 and Op2 operations, we repartition a recti-
linear block when it is rotated or flipped. Figure 11(b) shows the block of

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

Rectilinear Block Placement Using B*-Trees • 199

filled area b1

b2

Fig. 12. Filling approximation for a rectilinear block.

Figure 11(a) after rotating 90◦ clockwise; there are six subblocks in it after the
repartition.

There are two types of rectilinear blocks: convex and concave. A rectilinear
block is convex if any two points within the block can be connected by a shortest
Manhattan path that also lies within the block; the block is concave, otherwise.
Figures 11 and 12 show two convex and a concave block, respectively. A convex
block bC can be partitioned into a set of subblocks b1, b2, . . . , bn ordered from left
to right. Considering the LC relation, we keep the subblock bi+1 as bi ’s left child
in the B*-tree to ensure that they are placed side by side along the x-direction,
where 1 ≤ i ≤ n−1. To ensure that b1, b2, . . . , bn are not misaligned, we modify
the processing for Basin and Plateau as follows.

—Basin: The contour is lower than the top profile sequence at the position of a
subblock. We pull the subblock up to conform to the top profile sequence.

—Plateau: The top boundary of a subblock bi (1 ≤ i ≤ n) in the contour is
higher than the top profile sequence at the position of bi. Assume that bi has
the largest top boundary. We pull all subblocks, except bi, up to conform to
the top profile sequence.

Moreover, all subblocks must be deleted (or inserted) together for the OP3 and
OP4 operations.

For a concave block, there might be empty space between two subblocks. As
shown in Figure 12, the subblock b1 is placed above the subblock b2, which
cannot be characterized by an LC relation in the B*-tree. Nevertheless, we can
fill the concave holes of a concave block and make it a convex block. We call
this operation a filling approximation for the rectilinear block. For any concave
block, we treat it as a convex block after applying appropriate filling.

7. EXPERIMENTAL RESULTS

We implemented our algorithm in the C++ programming language on a
450 MHz SUN Ultra Sparc-I workstation with 1 Gb memory. Since the bench-
marks in previous work are artificial cases and unavailable to us, we generate
some general benchmarks for experiments in this article. Our test cases were
generated by cutting a rectangle into a set of blocks. Therefore, the optimum
area is given by the original block.

As shown in Table I, Columns 2 through 4 list the numbers of rectangular,
L-shaped, and T-shaped blocks. RL10, RL20, and RL30 consist of only

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

200 • G. M. Wu et al.

Table I. Experimental Results

#Rectangular #L-Shaped #T-Shaped Optimum Resulting Dead Run-time
Circuits Blocks Blocks Blocks Area Area Space (%) (sec)
RL10 5 5 0 100 100 0.00 8

(10× 10) (10× 10)
RL20 10 10 0 400 408 2.00 307

(20× 20) (15× 27)
RL30 15 15 0 900 936 4.00 1636

(30× 30) (29× 32)
RLT10 4 3 3 100 102 2.00 41

(10× 10) (6× 17)
RLT20 7 7 6 400 414 3.50 1096

(20× 20) (18× 23)
RLT30 10 10 10 900 945 5.00 3007

(30× 30) (27× 35)

(a)

1 2 3

4 5 6

7
8 9

10

(b)

1

10

9 8

54

6

3

7

2

Fig. 13. Placement for RL10: 5 rectangular and 5 L-shaped blocks: (a) the optimum placement
(10× 10); (b) the resulting placement (10× 10).

rectangular and L-shaped blocks. There are 5 rectangular and 5 L-shaped
blocks in RL10, 10 rectangular and 10 L-shaped blocks in RL20, and 15 rectan-
gular and 15 L-shaped blocks in RL30, respectively. RLT10, RLT20, and RLT30
consist of not only rectangular and L-shaped blocks, but also T-shaped ones.
RLT10 is composed of 4 rectangular, 3 L-shaped, and 3 T-shaped blocks; RLT20
is composed of 7 rectangular, 7 L-shaped, and 6 T-shaped blocks; and RLT30 is
composed of 10 rectangular, 10 L-shaped, and 10 T-shaped blocks. The original
area of each test case is shown in Column 5. Columns 6 and 7 list the result-
ing area and the dead space (%). The results show that our algorithm obtains
the optimum area for RL10 and near optimum areas for RL20, RL30, RLT10,
RLT20, and RLT30 with areas only 2.00, 4.00, 2.00, 3.50, and 5.00% away from
the optima, respectively. The run-times for achieving the results ranged from
about 8 seconds to 50 minutes (see Column 8). Figures 13 and 14 show the
optimum and the resulting placement for RL10 and RLT30, respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

Rectilinear Block Placement Using B*-Trees • 201

(a)

1 2 3 4 5

6
7

8 9 10 11
12 13

14
15 16 17

1819 20
21

22

23 24 25 26
27

28
29

30

1

2

3

4

5

6

7
8

910

11

13

12

19

20

14

2115

16

17

18

26

30

29
25

28

24

23

27

22

(b)

Fig. 14. Placement for RLT30: 10 rectangular, 10 L-shaped, and 10 T-shaped blocks: (a) the opti-
mum placement (30× 30); (b) the resulting placement (27× 35).

8. CONCLUSIONS

In this article, we have extended the B*-tree approach introduced in Chang
et al. [2000] to handle the placement of arbitrarily shaped rectilinear blocks.
We partitioned a rectilinear block into a set of rectangular subblocks, each indi-
vidually represented by a node in the B*-tree. The LC relations and the basin
and plateau operations were used to ensure that each block kept its original
shape. The experiment results have shown that our approach is very effective
in area utilization.

REFERENCES

CHANG, Y.-C., CHANG, Y.-W., WU, G.-M., AND WU, S.-W. 2000. B*-Trees: A new representation for
non-slicing floorplans. In Proceedings of the ACM/IEEE Design Automation Conference, (Los
Angeles, June), 458–463.

GUO, P.-N., CHENG, C.-K., AND YOSHIMURA, T. 1999. An O-tree representation of non-slicing floor-
plan and its applications. In Proceedings of the ACM/IEEE Design Automation Conference
(California, June), 268–273.

PAPADIMITRIOU, C. AND STEIGLITZ, K. 1982. Combinatorial Optimization: Algorithms and Complex-
ity. Prentice-Hall Inc., Englewood Cliffs, NJ.

KANG, M. Z. AND DAI, W. 1997. General floorplanning with L-shaped, T-shaped and soft blocks
based on bounded slicing grid structure. In Proceedings of the ACM/IEEE Asia and South Pacific
Design Automation Conference (Chiba, Japan, January 28–31), 265–270.

KANG, M. Z. AND DAI, W. 1998. Arbitrary rectilinear block packing based on sequence pair. In
Proceedings of the ACM/IEEE International Conference on Computer-Aided Design (San Jose,
CA, November 8–12), 259–266.

KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. 1983. Optimization by simulated annealing.
Science 220, 4598, 671–680.

LEE, T. C. 1993. A bounded 2D contour searching algorithm for floorplan design with arbitrar-
ily shaped rectilinear and soft modules. In Proceedings of the ACM/IEEE Design Automation
Conference (California, June), 525–530.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

202 • G. M. Wu et al.

MURATA, H. AND KUH, E. S. 1998. Sequence pair based placement method for hard/soft/pre-placed
modules. In Proceedings of the ACM International Symposium on Physical Design (California,
April), 167–172.

MURATA, H., FUJIYOSHI, K., NAKATAKE, S., AND KAJITANI, Y. 1995. Rectangle-packing based module
placement. In Proceedings of the ACM/IEEE International Conference on Computer-Aided Design
(California, November), 472–479.

MURATA, H., FUJIYOSHI, K., AND KANEKO, M. 1997. VLSI/PCB placement with obstacles based se-
quence pair. In Proceedings of the ACM International Symposium on Physical Design (California,
April), 26–31.

NAKATAKE, S., FUJIYOSHI, K., MURATA, H., AND KAJITANI, Y. 1996. Module placement on BSG-
structure and IC layout applications. In Proceedings of ACM/IEEE International Conference
on Computer-Aided Design (California, November), 484–491.

NAKATAKE, S., FURUYA, M., AND KAJITANI, Y. 1998. Module placement on BSG-structure with pre-
placed modules and rectilinear modules. In Proceedings of the ACM/IEEE Asia and South Pacific
Design Automation Conference (Yokohama, February 10–13), 571–576.

OTTEN, R. H. J. M. 1982. Automatic floorplan design. In Proceedings of the ACM/IEEE Design
Automation Conference (California, June), 261–267.

PREAS, B. T. AND VANCLEEMPUT, W. M. 1979. Placement algorithms for arbitrarily shaped Blocks.
In Proceedings of the ACM/IEEE Design Automation Conference (California, June), 474–480.

SECHEN, C., AND SANGIOVANNI-VINCENTELLI, A. 1985. The TimberWolf placement and routing pack-
age. IEEE J. Solid-State Circ. 20, 2 (April), 510–522.

WANG, T. C. AND WONG, D. F. 1990. An optimal algorithm for floorplan and area optimization.
In Proceedings of the ACM/IEEE Design Automation Conference (Orlando, FL, June 24–28),
474–480.

WONG, D. F. AND LIU, C. L. 1986. A new algorithm for floorplan design. In Proceedings of the
ACM/IEEE Design Automation Conference (California, June), 101–107.

WONG, D. F. AND LIU, C. L. 1987. Floorplan design for rectangular and L-shaped modules. In
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (California,
November), 520–523.

XU, J., GUO, P.-N., AND CHENG, C.-K. 1998. Rectilinear block placement using sequence-pair.
In Proceedings of the ACM International Symposium on Physical Design (California, April),
173–178.

Received March 2001; accepted May 2002

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003.

