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VVV 1 is formed by the correspondingQ+ 1 rows of [ddd0; . . . ; dddQ], and
DDD(!0) is a diagonal matrix with those selectedQ + 1 entries from
DDD(!0) on its main diagonal. Sincerank(DDD(uuu)DDD(!0)) = Q + 1 and
rank(VVV 1) = Q+ 1, we deduce thatrank(���e) = Q+ 1, 8eee 6= 0.

Next, we prove the “only if” part by contradiction. Suppose that for
someeee, uuu = ���eee has onlyQ + 1 < Q + 1 nonzero corresponding
entries, that we collect inuuu = [un ; . . . ; un ]T . Then, similarly to the

“if” part, we can group the nonzero rows in a matrixDDD(uuu)DDD(!0)VVV 1.
Now thisVVV 1 is a(Q+ 1)� (Q+ 1) matrix, whileDDD(!0) is a(Q+

1)� (Q+ 1) matrix. It follows immediately that

rank(VVV 1) = Q+ 1 < Q+ 1

and, hence,rank(���e) < Q + 1, which implies that the maximum
diversity cannot be achieved.
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On Continuous-Time Optimal Deterministic Traffic
Regulation
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Abstract—In this correspondence, we study the continuous-time deter-
ministic traffic regulation problem. We propose a regulation form shown
to be the optimal deterministic traffic regulator in the sense that it outputs
the most packets while satisfying the constraint on the output process.
We further investigate the subtle relation between continuous-time and
discrete-time optimal deterministic regulators, and reduce our general
regulation form to the known discrete-time optimal deterministic regulator
when restricting arrival (departure) instants to integers and packet size
to unity. Therefore, by extending traffic-regulation theory to continuous
time, our work provides a fundamental framework for future research
regarding quality-of-service (QoS)-guaranteed network design/analysis in
continuous-time.

Index Terms—Constrained optimization, network flows, quality-of-ser-
vice (QoS), traffic management.

I. INTRODUCTION

Traffic regulation has been widely accepted as an indispensable tech-
nique to provide quality-of-service (QoS)-guaranteed multimedia ser-
vices in packet-switching communication networks (e.g., TCP/IP net-
works [1], asynchronous transfer mode (ATM) [2]). According to [3],
a traffic source conforms to a nondecreasing, nonnegative functionf

if R[t � �; t) � f(�) for all �; t � 0, whereR[t � �; t) (bits) de-
notes the amount of information bits in packets arriving in time interval
[t � �; t). A deterministic traffic regulator with constraint functionf
is a filter shaping an arbitrary traffic input such that the output process
conforms tof .

For discrete-timesystems, Chang [4] studied discrete-time deter-
ministic traffic regulators in great detail and developed a general
filtering method for traffic regulation. Forcontinuous-timetraffic
regulation, a number of results also have been proposed in the liter-
ature. A special traffic regulator called leaky bucket(�; �) regulator
was discussed in [5]–[8]. The(~�; ~�) regulators were investigated
in [3], [9], [10]. However, regulators of the(~�; ~�) type are lim-
ited to those with concave constraint functions. In [11], regulators
with nonconcaveconstraint functions can be realized with a cas-
cade of leaky buckets withstate-dependenttoken generation rates,
but the detailed implementation was left unspecified. In [12] and
[13], Le Boudec successfully applied the continuous-time “network
calculus” [14], [4], [15], [16] to traffic shapers, and we can further
improve Le Boudec’s results in several aspects. First, the regulators
Le Boudec considered arebit-processingdevices which assumefluid
input streams. In practical packet-switching networks, data arrivals
are packets or cells, and thus this assumption is generally not true.
Second, thecontinuity propertyof constraint functions is very impor-
tant to the derivation of the optimal regulation formulas, but this issue
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was not addressed in [12] and [13]. Third, although the regulators
(or shapers) in [12] and [13] are defined in continuous-time setting,
Le Boudec considered only systems for which there is a minimum
time granularity. This restriction implies these systems are still of
discrete-time type. Consequently, in packet-switching networks, how
to construct continuous-time optimal deterministic regulators with
general constraint functions is a very interesting problem that still
needs further investigation. In this correspondence, we present con-
tinuous-time optimal deterministic traffic regulation formulas which
specify the earliest possible departure time of each packet arrival.
Furthermore, we also show that discrete-time optimal deterministic
regulators discussed in [4] can be regarded as special cases of con-
tinuous-time optimal deterministic regulators. This fact demonstrates
the subtle relation between continuous-time and discrete-time optimal
deterministic regulators.

Throughout this correspondence, we denote the arrival time, the de-
parture time, and the length of thenth packet byan, bn, andLn, re-
spectively. In addition, we assume 1)Lmax (bits) is the maximal size of
the packets in an input source. 2) For anyt � 0, there are only a finite
number of packet arrivals in[0; t]. Thus, we havelimn!1 an = 1.
3) f � g means that the inequality holds pointwisely;sup f� and
inf f� are taken in a per-point manner, e.g.,(supf�)(x) = sup f�(x).
We also denote byT [t� �; t) (bits) the amount of information bits in
packets departing from a regulator in interval[t��; t). The entire con-
tentLn of a packet being released at timebn is assumed to be released
at timebn.

The rest of this correspondence is organized as follows. In Sec-
tion II, we introduce maximal embedded subadditive functions and
give some properties regarding these functions. The continuous-time
optimal regulation formulas are given in Section III along with the
corresponding mathematical proofs. In Section IV, we investigate the
subtle relation between continuous-time optimal regulators and the
known discrete-time ones. We present a potential realization structure
of the proposed optimal regulators in Section V, and, finally, conclude
this correspondence in Section VI.

II. M AXIMAL EMBEDDED SUBADDITIVE FUNCTIONS

For an arbitrary traffic source active in[0; '], the pointwisely
smallest constraint function~f which this source conforms to can be
constructed according to~f(�)

�
= supfT [t � �; t): t 2 [0; ']g. It is

not difficult to see that~f is always subadditive, i.e.,

~f(x+ y) � ~f(x) + ~f(y); for x; y � 0:

This observation shows that subadditive functions play an important
role in deterministic traffic regulation theory. To begin with, two im-
portant definitions are given as follows.

Definition 1: The collection of nonnegative, nondecreasing, and
left-continuous functionsf : +! + with f(0)=0 is denoted byG.

Definition 2: Givenf 2 G, we definef
�
= supfg: g 2 G; g � f; g

is subadditiveg.

Given f 2 G, one can easily show by definition that the corre-
spondingf is subadditive andf 2 G. Consequently, we call thef
corresponding tof 2 G themaximal subadditive function embedded
in f . The next theorem is of great importance for continuous-time de-
terministic regulators, and is actually a continuous-time extension of
[17, Lemma 2.1].

Theorem 1: A traffic source conforms tof 2 G if and only if it
conforms tof .

Proof: The necessary condition is clear. We only need to show
the sufficient condition.

Suppose there is a traffic source that does not conform tof . Then,
for somet � 0 and� > 0, we haveT [t � �; t) > f(�). Hence we
have ~f(�) > f(�), where

~f(�)
�
= supfT [t� �; t): t 2 [0; ']g

where[0; '] is the time interval over which the source is active. But by
its definition, ~f is subadditive and is pointwise upper-bounded byf .
This contradicts the definition off as the pointwise largest subadditive
function that is pointwise upper-bounded byf .

If we wish a regulator’s output to conform tof 2 G, thenf(0+)
(where the “+” means the limit from the right) must be larger than
or equal toLmax. Otherwise, a packet of lengthLmax would never
be allowed to pass the regulator. Therefore,f must satisfyf(0+) �
Lmax. The next lemma shows the relation betweenf(0+) andf(0+)
for a givenf 2 G.

Lemma 1: Givenf 2 G. Thenf(0+) = f(0+).
Proof: Sincef � f , we havef(0+) � f(0+). Conversely,

define ĝ(x) = 0 for x = 0 and ĝ(x) = f(0+) for x > 0. It is not
difficult to see that̂g � f and ĝ is subadditive. Hence, by definition
we knowf � ĝ and

lim
x!0

f(x) � lim
x!0

ĝ(x) = lim
x!0

f(0+) = f(0+):

Thus, we knowf(0+) � f(0+) and the lemma is proved.

Consequently, we know thatf(0+) � Lmax providedf(0+) �
Lmax. In summary, Theorem 1 and Lemma 1 tell us that constructing
an optimal deterministic regulator with constraint functionf 2 G with
f(0+) � Lmax is equivalent to constructing one with a pointwisely
smaller, subadditive constraint functionf 2 G.

In addition, continuous-time inverse functions are also defined as
follows.

Definition 3: For a nonnegative, nondecreasing functionf : + !
+, we definef�1: + ! + by

f
�1(x)

�
= inffs � 0: x � f(s)g:

III. OPTIMAL DETERMINISTIC REGULATION FORMULAS

To produce the output process of a regulator with asubadditivecon-
straint functionf 2 G with f(0+) � Lmax, we assert that the packet
departure times be determined by the following rules:

b1 = a1; and bn = maxfan; bn
0g; 8n � 2; (1)

where

b
0

n = max bi + f
�1

n

k=i

Lk : 1 � i � n� 1 : (2)

In the following, we show the output process determined by (1) con-
forms tof .

Theorem 2: For a given subadditive functionf 2G with f(0+)�
Lmax, the following three conditions are equivalent:

1) T [t � �; t) � f(�), for all �; t � 0;

2) for a fixed� > 0 and8n 2

T [t� �; t) � f(�); for 0 � �; t � bn + �;
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3) For a fixed� > 0 and8n 2

T
n[t� �; t) � f(�); for 0 � �; t � bn + �

whereTn[t � �; t) is defined using only the firstn packet
departures.

Proof: SinceT [t��; t) = T [0; t) andTn[t��; t) = Tn[0; t)
for � > t, without loss of generality we may assume� � t.

Condition 1) obviously implies condition 2). On the other hand, sup-
pose condition 2) is true. Sincelimn!1 bn = 1, for an arbitraryt it
follows that

T [t� �; t) � f(�); for all 0 � � � t:

To prove that condition 2) and condition 3) are equivalent, note that

T
n[t� �; t) � T [t� �; t); for all 0 � � � t

sinceTn[t � �; t) results from only the firstn packet departures.
Hence, condition 2) implies condition 3). Conversely, suppose condi-
tion 3) is true. Fixingn 2 , we can findm 2 large enough such
thatbm � bn + �. Then condition 3) implies that

T
m[t� �; t) � f(�); 8 0 � � � t � bm + �:

Sincebk � bn + � for k > m, it follows that

T [t� �; t) = T
m[t� �; t); 8 0 � � � t � bn + �

and, consequently, we have

T [t� �; t) � f(�); 8 0 � � � t � bn + �:

Sincen is arbitrary, it follows condition 3) implies condition 2). Thus,
we proved conditions 2) and 3) are equivalent.

Theorem 3: Given a subadditive functionf 2 G with f(0+) �
Lmax. The output process determined by (1) satisfies condition 3) of
Theorem 2. In particular, the output process determined by (1) con-
forms tof .

Proof: By (1), we knowb1 = a1. Clearly, for0 � �; t � b1+ �

we haveT 1[t � �; t) � L1 � f(�). Thus, the conclusion holds for
n = 1. Suppose

T
n�1[t� �; t) � f(�); for 0 � �; t � bn�1 + �: (3)

Now we considerTn[t � �; t) for 0 � �; t � bn + �.
Given departure timesb1; . . . ; bn, consider those� 2 [0; bn + �]

such that� = bj � bi for somei; j 2 f1; . . . ; ng andi < j, it can
be seen there are only a finite number of such points. Arrange those
� in an increasing order, and denote them by�1; . . . ; �l and also let
�0 = 0, �l+1 = bn + �.

Note that for0 � t � bn + �, we can write

T
n[t� �; t) =

n

i=1

Li � I�; i(t)

whereI�; i(t) = 1 for t 2 (bi; bi + � ] andI�; i(t) = 0 otherwise.
With the above decomposition, it can be seen that

hn(�)
�
= supfTn[t� �; t): 0 � t � bn + �g

is a nondecreasing, left-continuousstepfunction in [0; bn + �]. That
is, [0; bn + �] can be divided into a finite number of subintervals
I1; . . . ; Im such thathn(�) = ci for t interior to Ii. In addition,
the only possible discontinuous points ofhn(�) are those�k, k =
1; . . . ; l. Consequently, to check whetherTn[t � �; t) � f(�) for
0 � �; t � bn + �, we only need to checkhn(�k+) � f(�k+) for
k = 1; . . . ; l.

By (1), we know

bn � bi + f
�1

n

k=i

Lk ; 8 i = 1; . . . ; n� 1

which implies that for alli = 1; . . . ; n � 1

n

k=i

Lk � f f
�1

n

k=i

Lk + � f((bn � bi)+): (4)

Now, with (3) and (4), one can use mathematical induction to show that

hn(�k+) � f(�k+); for k = 1; . . . ; l

and, consequently,Tn[t� �; t) � f(�), for 0 � �; t � bn + �.
By mathematical induction, we conclude that the output process de-

termined by (1) satisfies the third condition of Theorem 2. In particular,
by Theorem 2, the output process determined by (1) conforms tof .

Having developed continuous-time deterministic regulators with
subadditiveconstraint functions, now we are ready to define contin-
uous-time deterministic regulators withgeneralconstraint functions
f 2 G with f(0+) � Lmax.

Definition 4: Suppose the departure time of thenth packet from a
continuous-time deterministic regulatorf 2 G with f(0+) � Lmax is
denoted bybn. Then we setb1=a1 andbn=maxfan; bn

0g 8n�2,
where

b
0

n = max bi + f
�1

n

k=i

Lk : 1 � i � n� 1 : (5)

The next theorem shows the optimality of the proposed contin-
uous-time deterministic regulators.

Theorem 4: Given an input processf(an; Ln)g. Then for any reg-
ulator output processf(cn; Ln)g conforming tof 2 G with f(0+) �
Lmax andcn � an for all n 2 , we must havecn � bn, wherebn is
the departure time calculated from Definition 4.

Proof: From Definition 4 we knowc1 � a1 = b1. Suppose
cj � bj holds for all1 � j � n � 1. If

cn < ci + f
�1

n

k=i

Lk

for somei 2 f1; . . . ; n � 1g, for

0 < � < ci + f
�1

n

k=i

Lk � cn

we would have

f(cn � ci + �) < f f
�1

n

k=i

Lk by definition off
�1

�

n

k=i

Lk by the left-continuity off

� T [ci; cn + �)

which impliesf(cn; Ln)g did not conform tof (by Theorem 1). How-
ever, sincef(cn; Ln)g conforms tof , we must have

cn � max ci + f
�1

n

j=i

Lj : 1 � i � n� 1 :

Hence, the induction hypothesis implies

cn � max ci + f
�1

n

j=i

Lj : 1 � i � n� 1

� max bi + f
�1

n

j=i

Lj : 1 � i � n� 1

�
= bn:

By induction, the theorem is proved.
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Note that the conditioncn � an is referred to as the causal condition
in [4] since the departure time cannot be less than the arrival time.

IV. SPECIAL FORM IN THE DISCRETE-TIME CASE

In this section, we consider a special case where packet arrivals and
departures occur only att 2 +, and all packets are with unit length.
Note that the constraint sequencef must satisfyf(1) � 1.

Similar to the continuous-time case, we denote byF the collection
of nonnegative, nondecreasing sequencesf : + ! + with f(0) =
0. The maximal subadditive sequencef embedded inf 2 F can be
defined similarly to Definition 2.

Definition 5: Givenf 2F , we definef
�
= supfg: g 2F ; g� f; g

is sub-additiveg.

According to [4, Lemma 2.2],f (the maximal subadditive sequence
embedded inf 2 F ) is pointwisely identical tof� (the subadditive
closure off ). Consequently, givenf 2 F , f has the following prop-
erties: 1)f is subadditive, 2)f 2 F , 3) f is subadditive if and only if
f = f , and 4) a discrete-time traffic source conforms tof if and only
if it conforms tof .

In addition, discrete-time inverse sequences are also defined as
follows.

Definition 6: For a nonnegative, nondecreasing functionf : + !
+. We definef�1: +! by f�1(x)

�
= minfs�0: x�f(s)g�1.

The constant “�1” in the definition off�1(�) is used to make dis-
crete-time regulation formulas identical to their continuous-time coun-
terparts. Otherwise, the right-hand side of (6) in Definition 7 would
need to append a constant “�1.” Also, by definition, one can show the
following inequalities

f(f�1(x)) < x � f(f�1(x) + 1)

and

1 + f
�1(f(x)) � x � f

�1(f(x) + 1):

Analogous to the continuous-time case, we define discrete-time op-
timal traffic regulators in a parallel form as follows.

Definition 7: Suppose the departure time of thenth packet from a
discrete-time deterministic regulatorf 2 F with f(1) � 1 is denoted
by bn. Then, we setb1 = a1 andbn = maxfan; bn

0g 8n � 2, where

b
0

n
= max bi + f

�1
(n� i+ 1): 1 � i � n� 1 : (6)

The following theorems justify Definition 7, and their proofs can be
obtained by slightly modifying those of Theorems 2, 3, and 4, respec-
tively.

Theorem 5: For a given subadditive sequencef 2F with f(1)�1,
the following three conditions are equivalent:

1) T [t � �; t) � f(�), for all �; t 2 +;

2) for a fixed � 2 and8n 2 , T [t � �; t) � f(�), for
�; t 2 [0; . . . ; bn + �];

3) for a fixed� 2 and8n 2 , Tn[t � �; t) � f(�), for
�; t 2 [0; . . . ; bn + �], whereTn[t � �; t) results from only
the firstn packet departures.

Theorem 6: Given a subadditive sequencef 2 F with f(1) � 1,
the output process determined by Definition 7 satisfies condition 3) of
Theorem 5. In particular, the output process determined by Definition
7 conforms tof .

Theorem 7: Given an input processf(an; Ln)g, then for any regu-
lator output processf(cn; Ln)g conforming tof 2 F with f(1) � 1
andcn � an, for all n 2 , we must havecn � bn, wherebn is the
departure time calculated from Definition 7.

We will show later that the discrete-time optimal deterministic reg-
ulators in Definition 7 are identical to those discussed in [4].

Lemma 2: Given subadditivef 2 F with f(1) � 1. Forx, y � 1
we havef�1(x) + f�1(y) � f�1(x+ y � 1).

Proof: Let q, r bef�1(x), f�1(y), respectively (q, r � 0 since
x, y � 1). By definition, it follows that

f(q + r) � f(q) + f(r) � x+ y � 2

and

f(f�1(x+ y � 1) + 1) � x+ y � 1:

Hence, we knowf(q + r) < f(f�1(x+ y � 1) + 1), which implies

q + r < f
�1(x+ y � 1) + 1

and

q + r � f
�1(x+ y � 1):

Hence, the result is proved.

With Lemma 2, we can show the following theorem.

Theorem 8: Forn � 2, (6) is identical to

b
00

n = max ai + f
�1

(n� i+ 1): 1 � i � n� 1 :

Proof: We prove this by induction. Ifm = 2, it follows that
b2

0 = a1 + f
�1

(2). By hypothesis, we know thatb1 = a1. Hence,
the conclusion holds form = 2. Suppose the conclusion also hold for
m 2 f2; . . . ; n� 1g. Now letm = n. It is easy to see thatbn0 � bn

00

sinceai � bi. For thosei 2 f1; . . . ; n � 1g such thatai = bi, we
have

bi + f
�1

(n� i+ 1) � ai + f
�1

(n� i+ 1):

For thosei 2 f1; . . . ; n � 1g such thatai < bi, there must exist a
j 2 f1; . . . ; i� 1g such thatbi = aj + f

�1
(i� j+1). However, by

Lemma 2, it follows that

bi + f
�1

(n� i+ 1) = aj + f
�1

(i� j + 1) + f
�1

(n� i+ 1)

� aj + f
�1

(n� j + 1):

Therefore, we must havebn0 � bn
00, and have proved the case for

m = n.

According to Definition 7,bn = maxfan; bn
0g, and note thatan =

an + f
�1

(n� n + 1). By Theorem 8, we then have

bn = max ai + f
�1

(n� i+ 1): 1 � i � n : (7)

After determiningbn, the departure time of thenth packet, we know
B[0; k), the amount of departure in[0; k), can be expressed as

B[0; k) = minfn� 1: bn � k; n 2 g: (8)

Discrete-time optimal deterministic regulators have been discussed in
[4], and we quote the definition here.

Definition 8: Suppose that each packet has unit length. LetB(i),
i 2 +, represent the amount of departure from the maximal deter-
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ministic regulator in[0; i). If f 2 F with f(1) � 1, thenB(i) is
constructed by

B(i) = min
0�j�i

fR[0; j) + f
�(i� j)g (9)

wheref� is the subadditive closure off .

Our primary goal here is to show that the discrete-time regulators
defined by (7) are precisely the discrete-time optimal deterministic
regulators in Definition 8.

Theorem 9: For eachk 2 +, we have

B[0; k) = minfR[0; s) + f(k � s) : 0 � s � kg:

Proof: By definition, we knowB[0; k) � R[0; k). Also, for
s 2 f0; . . . ; k � 1g, it can be seen that

B[0; k) = B[0; s) +B[s; k) � R[0; s) + f(k � s):

Consequently, we have

B[0; k) � minfR[0; s) + f(k � s): 0 � s � kg:

Conversely, ifR[0; k) = 0, then

minfR[0; s) + f(k � s): 0 � s � kg = R[0; k) + f(0)

= 0 � B[0; k):

So we have proved

B[0; k) = minfR[0; s) + f(k � s): 0 � s � kg:

Therefore, we may assumeR[0; k) > 0 and thusa1 < k. Supposês
is the argument achieving the minimum of

minfR[0; s) + f(k � s): 0 � s � kg:

By definition, we know that

b
R[0; ŝ)+f(k�ŝ)

�
= maxfai + f

�1
(R[0; ŝ) + f(k � ŝ)� i+ 1):

1 � i � R[0; ŝ) + f(k � ŝ)g:

Consideringa1 = l, 0 � l < k, we partition[1; R[0; ŝ)+f(k� ŝ)]
into subintervals

[1; R[0; l + 1)]; [R[0; l + 1) + 1; R[0; l+ 2)]; . . . ;

[R[0; k � 1) + 1; R[0; ŝ) + f(k � ŝ)]:

Then

b
R[0; ŝ)+f(k�ŝ)

= max ai + f
�1

R[0; ŝ) + f(k � ŝ)� i+ 1 :

i is the left boundary point of a nonempty sub-interval:

Fori = 1 = R[0; l)+1, sinceR[0; ŝ)+f(k�ŝ) � R[0; l)+f(k�l),
it can be seen that

a1 + f
�1

(R[0; ŝ) + f(k � ŝ)�R[0; l)) � l+ f
�1

(f(k � l))

� l+ k � l� 1 = k � 1:

For i = R[0; j) + 1, it follows that

aR[0; j)+1 + f
�1

(R[0; ŝ) + f(k � ŝ)�R[0; j))

� j + f
�1

(f(k � j))

� j + k � j � 1 = k � 1

which impliesb
R[0; ŝ)+f(k�ŝ) � k � 1.

However, according to (8), we know that

R[0; ŝ) + f(k � ŝ) < B[0; k) + 1

which implies

R[0; ŝ) + f(k � ŝ) � B[0; k)

and

B[0; k) � minfR[0; s) + f(k � s): 0 � s � kg:

From the inequality proved in the first paragraph and the fact thatk 2
+ is arbitrary, the theorem is proved.

V. A REALIZATION OF THE OPTIMAL REGULATION FORMULAS

The optimal deterministic regulator defined in Definition 4 is not
directly realizable since determiningfbng1n=1 needs infinite compu-
tation steps. In this section, we present a potential realization of the
proposed optimal regulators. According to Definition 4, forn � 2, we
can rewrite (5) as

bn
0 = max inf bi + t: t � 0; f(t) �

n

j=i

Lj :1 � i � n� 1 :

Since the setfbi+t: f(t) � n

j=i Ljgmust be of the form of interval
[a; 1) or (a; 1), it can be seen that forn � 2 (this can be shown by
mathematical induction)

bn
0 = inf

n�1

i=1

bi + t: t � 0; f(t) �

n

j=1

Lj �

i�1

j=1

Lj

= inf t � 0: min

i�1

j=1

Lj + f(t� bi): 1 � i � n� 1

�

n

j=1

Lj

which implies

bn
0 = B

�1
n

n

j=1

Lj

where

Bn(t)
�
= min

i�1

j=1

Lj + f(t� bi): 1 � i � n� 1 : (10)

With a subroutineminf�; �g to find the minimum of two functions,
we can setB2(t) = f(t � b1) = f(t � a1) and recursively update
Bn(t) by

Bn+1(t) = min Bn(t);

n�1

j=1

Lj + f(t� bn) : (11)

In summary, we sketch the complete realization structure in Fig. 1.
Note the dashed line implies the update ofBn(t) occurs only afterbn
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Fig. 1. The complete block diagram of the proposed realization.

has been determined. When thenth packet with lengthLn arrives at
t = an, bn is determined andBn(t) is updated according to (11).

VI. CONCLUSION

Discrete-time traffic regulation problem has been systematically
solved in [4]. However, to the best of the authors’ knowledge, how
to optimally regulate a traffic source in continuous-time setting has
remained open till now. In this correspondence, we successfully
determined the regulation formulas of continuous-time optimal
deterministic regulators. Theorem 4 shows that for all causal output
processes conforming to a given constraint functionf , the nth
departure time of the continuous-time optimal deterministic regulator
is earliest for alln 2 .

When comparing the continuous-time regulation formula (5) and its
discrete-time counterpart (6), one may find they are actually identical
(packet sizes are all unity in the discrete-time case). However, the con-
tinuous-time output accumulation functionT [0; t) cannot be written
in a form similar to (9). The critical point for this subtle distinction
is Lemma 2, whose continuous-time counterpart is not true. Conse-
quently, discrete-time optimal deterministic regulators can be regarded
as special cases of general continuous-time optimal deterministic reg-
ulators.

One important issue we did not discuss in this correspondence is
the implementation complexity of the realization structure mentioned
in Section V. Without some more carefully designed algorithms, the
current structure may be too complex to be realized. For example, how
to efficiently represent and recursively updateBn(t) in Fig. 1 is very
critical to the feasibility of these optimal regulators. In addition, a fast
inverse function computation (B�1

n
(�)) is also an important component.

These implementation issues will be studied in our future work.
Traffic regulation has been widely accepted as an indispensable part

of QoS-guaranteed multimedia networks. Therefore, by extending
traffic-regulation theory to continuous time, our work provides a
fundamental framework for future research regarding QoS-guaranteed
network design/analysis in continuous time.
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