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Department of Mathematics
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Taipei 106, Taiwan, R.O.C.

Abstract

In this paper, simultaneous smoothing spline estimation methods are proposed
to estimate the coefficient curves on the varying coefficient model with repeatedly
measured (longitudinal) dependent variable and time invariant covariates. The
estimators are obtained from the penalized least squares with adjustment for the
variations of covariates in the penalized terms. We do this mainly to avoid the
penalized terms being influenced by the scales of the covariates and the random
smoothing parameters appearing in the estimators, which complicates the deriva-
tion of the properties of the estimators. We also develop the asymptotic properties
of the simultaneous smoothing splines. When the smoothing parameters within
each estimator are set to be equal, the simultaneous smoothing spline estimators
are shown to have smaller variances than the componentwise smoothing spline
estimators. Through a Monte Carlo simulation and two empirical examples, the
simultaneous smoothing splines are also found to be more accurate in the vari-
ances.

1 Introduction

In biomedical and epidemiology studies, longitudinal data with time invariant covariates
and repeatedly measured (longitudinal) dependent variable over time are frequently en-

countered. Generally speaking, this type of data is collected from n randomly selected

Key words and phrases: componentwise smoothing splines, longitudinal data, mean squared er-
ror, penalized least squares, simultaneous smoothing splines, smoothing parameters, varying coefficient

model.



subjects. For the ith subject, let my, t;;, Yi;, and XT = (X, -, Xu) with o = 1,
respectively denote the number of the repeated measurements, the time of the jth mea-
surement, the observed outcome at time ¢;;, and the observed time invariant covariate

vector. Here, the total number of observations is denoted by NV = 37| m,.

To model the relationship between the dependent variable Y'(¢) and the time depen-
dent or time invariant covariates X7 (t) = (Xo(t), -+, Xk(t)) with Xo(¢) = 1, Hoover,
Rice, Wu and Yang (1998) considered a more flexible varying coeflicient model of Hastie
and Tibshirani (1993)

Y(t) = XT()B(t) + (1), (1)
where B(t) = (6o(t),-..,B(t))T are smooth functions of ¢, and () is a mean zero
stochastic process and is independent of X(¢). They also proposed a class of smoothing
methods to estimate the coefficient curves. Based on model (1), Hoover, et al. (1998),
and Wu, Chiang and Hoover (1998) have developed inferences for the kernel estimators.
Under some specific designs, Fan and Zhang (2000) provided a simply implemented
two-step smoothing alternative. When the covariates are time dependent, Wu, Yu and
Chiang (2000) also proposed a two-step smoothing method to avoid large biases appear-

ing on the estimates.
In this paper, we focus on the covariates which are invariant with respect to the time
points. Under this data setting, model (1) will be reduced to
Y(t) = XTB(t) + (1), (2)

where XT = (Xy, -+, Xx) with Xy = 1. Substituting Y (¢), X and ¢ with observations

Y, X; and t;;, model (2) becomes

Y; = XIB(ty) +ety), i=1,-nmj=1-m. (3)



Based on (3), Wu and Chiang (2000), and Chiang, Rice and Wu (2001) modified the
methods of Hoover, et al. (1998) into componentwise estimation methods to significantly
simplify the computations. They also derived the asymptotic properties of the estimators
through the explicit expressions of their asymptotic risk representations. Meanwhile,
through a Monte Carlo simulation, the sample variances of their estimators are found
to be smaller than those of Fan and Zhang (2000). However, in succeeding sections, the
componentwise smoothing spline estimators are shown not as accurate as it is expected
in the variances under both the finite sample and the infinite sample. This is mainly
caused by the unexpected non-negative terms, which are functions of the moments of

the covariates X and the parameter curves 3(¢), in the variances of the estimators.

Instead of using the componentwise estimation methods, we propose the simulta-
neous smoothing spline estimation methods based on the penalized least squares with
adjustment for the variations of the covariates in the penalized terms, which avoid the
penalized terms being influenced by the scales of the covariates. There are two features
of our simultaneous smoothing spline estimation methods: First, our estimators are un- -
like the smoothing spline estimators of Hoover, et al. (1998), which are smoothen by
the random smoothing parameters and are more complicated in terms of deriving the
properties of the estimators. Second, when the smoothers within each estimator are set
to be equal, it is shown that the mean squared errors of our simultaneous smoothing

spline estimators are smaller than the corresponding componentwise smoothing splines.

The contents of this paper are organized as follows. In Section 2, we propose the
simultaneous smoothing spline estimation methods, and summarize the componentwise

smoothing spline estimation methods. The asymptotic mean squared errors of the pro-



posed estimators with or without equal smoothing parameters for each estimator are
developed in Section 3. For the sake of comparison, the asymptotic mean squared errors
of the componentwise smoothing splines are also stated in this section. In Section 4,
a Monte Carlo simulation is implemented to examine the finite sample properties of
the simultaneous smoothing spline estimators. Applications of our estimation methods
are also demonstrated in Section 5 through two empirical examples — a CD4 depletion
study and an opioid detoxification study. Finally, the proofs of the main results are

shown in the Appendix.

2 Estimation

Assume that the support of the design time points {¢;;} is contained in a compact set
[a,b], and Bi(t),l =0, - -, k, are twice differentiable. Also, let H, 4 be the set of compact

supported functions such that

Hiap) = {g(t) . g(t) and g((¢) are absolutely continuous, and ¢‘¥(t) € L?[a, b]} .

The simultaneous smoothing splines ,@(5)(13; A) = (Bo(s)(t; A), - ,Bk(s) (t; A)T of B(t)
proposed here are obtained by minimizing the penalized least squares with adjustment

for the variations of the covariates in the penalized terms

n my k 2 k b 9
J1s(B; N) Zzwz[ i — <ZXilﬁl(tij)>} +3 A8t / (62®) dt,  (4)
i=1j=1 1=0 =0 e
where A = (Ag, ..., Ax) are non-negative smoothing parameters, w = (wy,---,w,) are
non-negative constant weights with ¥ myw; = 1, 5 = %, (w;m;) X2, and ﬁ,(p)(t)

denotes the pth derivative of §;(t) with respect to ¢. In practice, w;’s are usually assigned

to be 1/N and 1/(nm;) which provide equal weight to each single observation and each
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single subject, respectively. However, as mentioned in Remark 8 of Chiang, et al. (2001),
there may not have the explicit risk representations for the estimators with w; = 1/(nm;)
or more general weights. When the numbers of the repeated measurements are bounded,
it was suggested by Lin and Carroll (2000) that w; = 1/N leads to asymptotically optimal
kernel smoothers for the generalized estimating equations. For the sake of comparison
with the existing estimators in the literature, the weights are assigned to be 1/ in the
succeeding discussions. Setting the Gateaux derivatives of Jy,(3; ) to zero, B(s)(t; A)

uniquely minimize Ji5(3; A) if they satisfy the following normal equations

n m; k =
> Ns 2 (Yij = 2 Bus(ti A) ztl) gz(tz;)} = /\t/ Byt A)gP (t)dt,  (3)
1=17=1 1=0

for { =0, --,k, and all g/’s in a dense subset of H, 4. A similar argument as in Wahba

(1975) shows that there is a symmetric function Sy, x, (¢, s) in H, so that Bz(s)(t; A) is
given by
I le
5[(5) t A Z Z IVS2 2 ﬂll(s) 13) ilI)Sz\z,Xl(ta tz]) (6)

i=1j=1 l L#l

By substituting (6) into (5) and rearranging the terms, we have the characterization of

the spline function S, x, (¢, t;),
[ St ) x, (8) + A [ 5Pkt 8)6 (1)t = alty), (7)
n mi;X?
where FN,X; (t) = i=1 W;?‘Ll[tij <t]-
In (6), we can see that the estimator Bl(s)(t; A) is influenced not only by the smoothing
parameter \; but also by the other smoothers. To make ,3,(3)(16; A) being smoothen only

by A;, the smoothing parameters A are set equal to A\;1. Then, the by-product estimators,

denoted by B,(s)(t; A1), can be expressed as

n m; X -
ﬁz(s) (t; Ar) Z Z Yi; - Z Buo(s) (tizs M) Xty ) Sa,x, (8, tij).- (8)
i= 1] 1 11#[
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For the smoothing spline estimation methods of Hoover, et al. (1998), their estima-

tors are obtained by minimizing

n m; k
Jos (85 A ;;:;(x] ;Xi,ﬂ,(tlj)) +Z)\ NGOG

i=1

The same reasoning as in the derivation of Bl(s)(t; A) shows that the corresponding
minimizers, say, B,*(s)(t; A*) of Jo5(B; A) are given by

. n m; X - .
ﬁl s) t ’\ Z Z (Y;j - Z ﬁzl(s)(tij; A )Xih> S/\,‘,X,(tatij)a (10)

i= 1] 1 ll;ﬁl

where A* = (Ag,---,A;) with A} = )\;/s?. As we can see, our procedures work like
the usual smoothing methods of Hoover, et al. (1998). However, the random smoothing
parameters A" will cause complexity in deriving the properties of B{( 5) (t; A*). By contrast,
the simultaneous smoothing spline estimators Bl(s) (t; A) can avoid this problem, and are
more common in many practical applications. In the following sections, we will focus

only on this discussion of Bl(s) (t; A).

To avoid intensive computation in the estimation of the coefficient curves B(t), Chi-
ang, et al. (2001) proposed the componentwise smoothing spline estimation methods
for the varying coefficient model (2). Even though these methods are fast in computa-
tion, the variances of the estimators, as shown later, are not accurate enough. Espe-
cially, computing considerations are no longer a major consideration in modern computer
equipment. For the sake of comparison in succeeding sections, we summarize here their

estimation methods.

Assume that the inverse of E[XXT], denoted by EZxr, exists. By multiplying the

both sides of (2) by X and taking expectations, 3(t) can be expressed as

B(t) = E[Z()], (11)



where Z(t) = (Zo(t),- -+, Zx(t))T with Z,(t) = SF_, e, X, Y (t) and e, the ([, r)th element
of Exyr. Since E[XXT] is unknown and is invariant with respect to time ¢, it is naturally
estimated by the sample mean
E[XXT] = n' S (XXT). (12)
=1
Assume further that the inverse of E[)’(\XT], denoted by Exk, exists. Substituting
E;&T with E{&, the componentwise estimator, say, Bl(c)(t; A1) of Bi(t) is obtained by

minimizing the following penalized least squares

Je(Bi; M) = ii( ijt = Bi( z;)>2+)\1/:( [(2)(t))2dt, (13)

where Zﬂ = Zf:o eir X3Yi; is the estimated observed value of Zij with €, being the
(I,r)th element of E’;& The minimizer BI(C) (t; A1) of J.(Bi; A1) can be expressed as
Bue)(t; M) = i ZZ ZijSh (8, t55), (14)

i=1j=1

where S, (t,5) = Sy, x, (¢, 8) is in H[py.

As derived in that paper, the asymptotic variance of the estimator B,(c) (t; A) con-
tains the unexpected non-negative terms, which are functions of the moments of the
covariates and the parameter curves. In Section 3, we will show that both Bl(s)(t; A1) and
Bl(c)(t; A1) have the same asymptotic bias, but the asymptotic variance of 5,(3)(t; Al is
smaller. Through a Monte Carlo simulation in Section 4 and two empirical examples in
Section 5, it appears that Bz(s)(t; A;) is more accurate in variance than ﬁl(c)(t; Ar). Except
the evidence from the finite and the infinite sample properties of the estimators, the
unexpected terms in the variances of ﬁ,(c)(t; Ar) can also be explained by the following

reasoning:



From (2) and the definition of Z(t) , Z(¢) can be reexpressed as

Z(t) = BExxeXY()
= Exxr(XXT)B(t) + ExxrXe(t)

= B(t) +(1), (15)

where

e*(t) = Exyxr (XXT — E[XXT))B(t) + ExxrXe(2).

One can observe that the new error process €*(¢) consists of two components: the variabil-
ities of the covariates and the original stochastic error process €(¢). Thus, the variances

of ﬁl(c)(t; A1)’s are enlarged by the extra non-negative terms.

3 Asymptotic Properties

The asymptotic mean squared errors of the simultaneous smoothing spline estimators
B,(s)(t; A), { =0,---,k, will be derived in this section. Without loss of generality, we
focus on the interval [0, 1]. Extension to the general interval [a, b] can be carried out by

the affine transformation u = (t—a)/(b—a) for ¢t € [a,b]. For the succeeding discussions,

we make the following assumptions:

(A1) The time design points {¢;;} are nonrandom and satisfy

Dy = sup |Fn(t) = F(t)| =0, asn— oo,
te(0,1]



(A2)

for some distribution function F with strictly positive density f on [0, 1], where
Fn(t) = NV T2, 1iy,<y, and f is three times differentiable and uniformly

continuous on [0, 1] with f*)(0) = f®)(1) =0 for v = 1, 2.

The coefficient curve [;(¢) is four times differentiable and satisfies the boundary
conditions 87(0) = 8{)(1) = 0 for v = 2,3. The fourth derivative 3{(¢) is

¢ for all

Lipschitz continuous in the sense that |/31(4)(31) — ;6,(4)(32)( < cylsy — 8o

s1, 52 € [0, 1] and some positive constants c;; and cy.
The fourth moment E [X}] exists.

Define Dy = supyey |Frvx (t) — F(t)l. A = O(x) — 0, N\/* — oo and

/\1_5/4DN,1 3 0 asn — oco.

Define o°(t) = E[e?(¢)] and p(t) = limy_,; E[e(t)e(t')]. Both o*(¢) and p(t) are

continuous at t.

“Under the validity of assumption A3, it is straightforward to show by the law of

large numbers that sup,ep 1) |Fn,x,(t) — Fn(t)| converges to zero almost surely. With

assumption Al and the property Dy; < Dy + SUP¢e(o,1] |Fn x,(t) — Fn(t)|, we can show

that Dy, in assumption A4 converges to zero almost surely. In general, o%(¢) need not

be equal to p(t). As discussed in Zeger and Diggle (1994), the strict inequality appears

when £(t) consists of a stationary process of ¢t and an independent measurement error.

Since the spline function Sy, x,(¢, s) in (7) does not have an explicit expression, it may

be approximated by the Green function Gy (¢, s) of the 4th order differential equation

g (t) + F@alt) = FOBE),  telo1], (16)



with g?(0) = ¢™(1) for v = 2,3. By substituting the smoothing spline function
Sx.x,(t, s) with the Green function G, (¢, s) and using the exponential bound of |Sy, x, (¢, s)
—G,,(t,s)], the asymptotic properties of B,(s)(t; A) can be conveniently derived. It was
also shown by Abramovich and Grinshtein (1999) and Chiang, et al. (2001) that the

Green function Gy, (t, s) can be approximated by

Ay—1/4 - )1/
e = B ro o)t (5 + B0 - o)

V2

where v = [ (f(s))Y/4ds and T'(t) = v~! f§(f(s))/*ds. Some important properties of

w<exp (- ) - ro), a7)

the functions Sy, (¢, s), Gy, (t, s) and Hj,(t, s), which will be used in the main results, are

stated in the following Lemma.

Lemma 1. Under assumptions Al and A4, there are positive constants i, o, K

and ko so that

|G (t,s) — Hy (8, s)] < k1 exp (—al/\fl/4|t - s[) , (18)
%GM (t,8)] < m X T exp (o A= s]), 0<v <3, (19)
[Sn.x(t8) = Gy (E,8)] £ /‘32/\;1/2DN,1 exp (—01/\1—1/4# — s[) a.s., (20)
and
%SA,,X,(t, s)| < kA UV Dy exp (—aA VAt - 5]) @, (21)

hold uniformly for ¢,s € [0,1] and 0 < v < 3.

Proof. The proof can be derived along the same lines as the proof in Lemma 3.1 of

Chiang, et al. (2001). O

10



Let B(,a(s)(t; A)) and V(,B(s)(t; A)) be the bias and the variance of B(s)(t; A). By the
decomposition principle of the mean squared error, we can separately evaluate the bias

and the variance of B(s)(t; A).

Theorem 1. Suppose that assumptions (A1)-(A5) are satisfied and ¢ € (0,1). Then,

for sufficiently large n, the bias and the variance of E(S)(t; A) are given by

B(B(s) (X)) = ~(f(1) ™ [(Bxke AEIXXTNBD(0)] " (1 +0(1)), (22)
and
V(B () = 5 ()% (1) Bk Axr Exe) (1-+ o{1)
# (0 p(t,) Bk (1+0(1). (23
where A = diag(Xo, -+, Ac), B9(t) = (657 (1), -, B(1)7, and Axxr = (M E[ X1, Xs)

)] with Ay, = (A" + 2741,

Proof. See Appendix.O

Following the arguments in Hoover, et al. (1998), the variance of Bl(s) (t; A) asymp-
totically converges to zero if and only if max;<i<,(m:/N) — 0. When the smoothing
parameters A in Bz(s)(t; A) are set to be equal to A1, the asymptotic properties of

Bl(s)(t; Ay) in (8) can be derived straightforward from Theorem 1.

Lemma 2. Suppose that assumptions (A1)-(A5) are satisfied and ¢ € (0,1). Then,

for sufficiently large n, the bias and the variance of 51(3)(t; M), =0, k are given by

B(Bus)(t; M) = —(f(£) 7180 ()M (1 + o(1)), (24)

11



and

V(Busy (M) = fﬁ<f<t>>-3/4<zVA}/4>-1eua2(t><1 +o(1))

n

+ (X ) eun(t, 1)(1+o(1)). (25)

i=1

To compare the asymptotic properties between BI(S)(t; A;) and Bz(c)(t; A), we summa-

rize the asymptotic properties of Bl(c)(t; A) in Theorem 2.

Theorem 2. Suppose that assumptions (Al)-(A5) are satisfied and t € (0,1).
When n is sufficiently large, conditional on X, the bias and the variance of B,(c)(t; A)s

[=0,---,k, are given by

B(Biey(t; M) = —(F(£) 1B (M (L + 0,(1)) + Op(n7172), (26)
and
V(B (t; N) = ﬁ(f(t))‘z/“(NAzl“)'l(Mz(t) + eqa®(t))(1 + 0,(1))

3

+ (Z(Yv—if)(M,(t) +eup(t, 1)) (1 +0p(1)) + Op(n™"),  (27)

where M, (t) = 33 5, (81, (8) Br, () B[ X0, X1, (T 20 €45 X15)?]) — (Bu(t)).

Proof. See Chiang, et al. (2001).

It follows from Lemma 2 and Theorem 2 that both the dominating terms in the biases
of B,(s)(t; A1) and Bl(c)(t; A;) are same. However, the dominating term in the variance of

ﬁ,(s)(t; A;) is smaller than that of 51(0) (t; A1) since M;(t) is nonnegative.

12



4 Monte Carlo Simulation

Consider the varying coefficient model (2) with coefficient curves

. _ . [tm
Bo(t) = 3.5+ 6.5sin (éﬁ) ,

30—t)3

G1(t) = —0.2 — 1.6 cos (

Ba(t) = 0.25 — 0.0074 (

and covariate vector X = (Xj, X1, X3)T, where X, and X, are independent Bernoulli

and Gaussian random variables with joint density

1 z2
flzy,22) = W exp (-3—;> 140,11 (%1) 1 (=00,00) (72).

In this simulation, 400 subjects are scheduled to appear at equally spaced time points
0,1,---,30 with a 60% probability of missing for each of the 31 “appointments”. The
covariates of each subject are independently generated from the above distribution. Un-
der the given time points {¢;;}, the errors £(t;;), which are independent of the covariates

X, are generated from the mean zero Gaussian process with covariance function

0.0625 exp (— |tij, — tinjnl), 1f 41 = 1o,
con (et) () = { 2002 ffu —bun 4 =

Finally, the dependent variables Y;; are automatically obtained by substituting X;, ¢,

and £(t;;) into (3).

Based on the above design, the longitudinal data are repeatedly generated 500 times.
In each set of simulated data, B[(s)(t; A1) and B,(c) (t; A1) are computed by (8) and (14)

with appropriate smoothing parameters. As mentioned in Chiang, et al. (2001), the

13



“leave one subject out” cross-validation procedure of Rice and Silverman (1991) may
sometimes select inadequate smoothing parameters. It is usually preferable to have a set
of smoothing parameters which has the corresponding cross validation score close to the
minimum and gives better estimators. For the purpose of comparison, the smoothing
parameters (Ag, A1, A2) = (1,1,1) from their simulation are used to both estimators.
Table 1 through Table 3 show the true curves, the 500 averages of the estimated curves
and the standard errors of the 500 simulation estimates at nine selected time points. As
shown in these tables, the variances of the componentwise smoothing spline estimators
are enlarged by the values of M,(¢)s, and thus are larger than those of the simultaneous
smoothing splines. The results are consistent with the asymptotic properties discussed

in Section 3.

5 Application

In this section, the proposed simultaneous smoothing spline estimation methods and the
componentwise ones are applied to two empirical examples. These longitudinal data sets

arise from a CD4 depletion study and an opioid detoxification study.

5.1 A CD4 Depletion Study

The first data set is from the Multicenter AIDS Cohort Study (MACS), which includes
283 homosexual men who were infected by HIV-1 virus. Measurements taken include
CD4 percentage, the cigarette smoking status, pre-HIV infection CD4 percentage, and
age at HIV infection. Individuals were repeatedly measured at scheduled semi-annual

visits between 1984 and 1991. During the study period, many individuals missed some

14



of their scheduled visits. Thus, the numbers of repeated measurements may differ among

subjects. Details of the design and the methods of this study are described in Kaslow,

et al. (1987).

In this study, the objective is to evaluate the effects of cigarette smoking, pre-HIV
infection CD4 percentage, and age at HIV infection on the mean post-HIV CD4 percent-
age at any given time since the infection among seroconverters. Based on model (2), the
simultaneous smoothing spline estimation methods and the componentwise smoothing
spline estimation methods are used to estimate the effects of the concerned covariates.
Estimators fys)(t; A;) and 51(6) (t; A;) are separately computed from (8) and (14) with the
smoothing parameters (Ao, A1, A2, A3) = (0.1,0.01,1,0.1), which have the corresponding

cross-validation score close to the minimum.

Figures (1a)-(1d) show the estimated curves and their 95% pointwise bootstrap con-
fidence intervals. From these graphs, we can see that Bl(c)(t;/\,) and B[(s)(t; A1) have
similar physical explanations. However, the confidence bands of Bl(c) (t; A) are wider
than Bl(s) (t; \). As mentioned in Section 3 and Section 4, the simultaneous smoothing
spline estimation methods are more reliable. From Figure (1a), the mean CD4 percent-
age for the non-smoking group with average pre-infection CD4 percentage and average
age at HIV infection appears depleting rather quickly at the beginning of HIV infection,
but the rate of depletion seems to be slowing down for the later period of the study
after infection. No significant effects are detected in Figures (1b) and (1d) for cigarette
smoking and age at HIV infection. However, it appears in Figure (1c) that the pre-HIV
infection CD4 percentage associated positively with higher CD4 percentage after the

infection.

15



5.2 An Opioid Detoxification Study

The second data set is from the National Institute on Drug Abuse (NIDA) opioid detoxifi-
cation study, which includes 60 opioid dependent (DSM-IV) heroin users seeking detox-
ification treatment. In the study design, 32 patients are randomly assigned to the
naltrexone-buprenorphine group and 28 to the placebo-buprenorphine group. Measure-
ments were taken at 9 scheduled times per day by a trained nurse for a total 72 (8 x 9)
measurements. During an 8 day inpatient clinical trial, each patient was subjected to
the observer-rated opioid withdrawal scale (OOW) measurement, a scale to rate opioid
withdrawal symptoms. Since some patients randomly missed some scheduled measure-
ments or quit the treatment altogether, the number of measurements may be different
for each patient. Details of this design and its medical implications can be found in

Umbricht-Schneiter, et al. (1999).

The objective here is to detect the effects of treatment status and the centered
baseline OOW score on the OOW scores over the trials. Similar to the process of
analysis in Section 5.1, two estimation methods are used to detect the effects of the
interesting cova‘riates. Here, estimators Bz(c) (t; Ar) and 3,(3)(t; A1) are computed with the

smoothing parameters (A, A1, A2) = (0.001,0.001,0.1).

Figures (2a)-(2c) show the estimated curves and their 95% pointwise bootstrap con-
fidence intervals. From these graphs, two estimation methods provide similar expla-
nations. Also, the confidence bands for some of the componentwise smoothing spline
estimators are close to the corresponding simultaneous ones. This can be explained by
the small effect of M;(t) to the variance of B[(C)(t; At) in (27) for some [. It is shown

that the placebo mean stays very close to a constant throughout the trials, while the

16



naltrexone treatment is generally associated with lower OOW scores roughly after the
later half of the trial. The peak at the beginning of the trial for the naltrexone treatment
is mainly caused by the patient’s initial negative reaction to the treatment. As expected,

the baseline OOW score has a positive association with the OOW scores.

APPENDIX A.

Before conducting the proof of Theorem 1, a technical lemma is stated first.

Lemma A. Suppose assumptions Al and A4 are satisfied, and let function M(¢t) be

continuous for all ¢ € [0, 1]. Then, for sufficiently small A,

[} G (851G, (6 1M () F(5)ds = () MM (1+01), (A1)

and

/01 G (t, $)M(s) f(s)ds = M(£)(1 + o(1)). (A.2)

for all ¢t € [r,1 — 7] with some 7 > 0.

Proof: It is easy to see that the quantity [} Gy, (t,8)G, (8, 8)M(s) f(s)ds can be

expressed as

/01 G,\,1 (t, S)G,\,2 (t, s)M(s)f(s)ds
B /OI(G,\“ (8,5) = H, (8, 5))G, (8, )M (s) f (s)ds + /01 Hy, (t,5)(Gy, (L, 5)
—Hy, (t,s))M(s)f(s)ds + /01 Hy, (t,s)Hy,, (t,5)M(s)f(s)ds. (A.3)
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From (17), Lemma 1, and the properties of double exponential distributions, there exists

a positive constant ¢; so that, as A, — 0, A\, = 0, and A, = O(\,),

’ | (G, (,5) — Hy, (t, )G, (t, 5) M (5) f(5)ds

< /01 |G, (t,5) = Hy, (¢, 5)] |G, (£,5)] 1M (5)] £(5)ds
< /0 (o)A exp (= (@ An Y + asAg Y4t = 5]) [M(s)] F(s)ds

= c [M (&) F()(1 + o(1)). (A.4)

Similarly,

[ Ha, (6:5)(Gog (8,9) = Hi (6,9)M(9) £ (5)ds

< e [M(B)] F(8)(1 +0(1)), (A.5)

for a positive constant c;. Let u = I'(¢t) and v = I'(s). Again, using the properties of

double exponential distributions, it can be shown that

/01 Hy, (¢, 5)Hx, (t,5)M(s)f(s)ds

— (72(/\l1/\12)_1/4) /1 . m /\UIU'—’UI : m /\tz,u—v’
= 1 A sin 4+7—\/§— sin 4+7_\/_T

cap (=222 pr(e-t )y - e

= 53U MOy (1 + (1), (A.6)
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where A}, = /\_1/4 + /\—1/4 By substituting (A.4), (A.5) and (A.6) into (A.3), (A.1) is

then obtained. Similar arguments can be used to show that (A.2) also holds.

APPENDIX B.

Proof of (22)

From (3) and (6), we can derive the equations

Bisy (A -y Z (ﬂt(tzj)xiz = > Bi(s)(tij; A) zll) Sxx (B, tij)
=N 1 #l
UL zl '
;J—; S U S,\lx,(t tz]) [=0,---,k, (B.l)

where By (5)(tij; A) = (3,1(3)(&5; A) — B, (ti;)). By the law of large numbers and assump-

tions Al, A3, it can be shown that

aXi (XX, ]

IPIEL m]qﬁ—a( g )F(t). (B.2)

i=1j=1
Using the properties (20)-(21) in Lemma 1, (B.2), assumption A4, and taking expecta-

tion of the left hand side of (B.1),

- Xy
ZZ (ﬂl l] ZBh s) l]: Xill) S/\[,X[(tytij)}

=1 7= 1 l1#1

= B;+ By, (B3)

where

Br = E [Bin (6 V)] = [ 6is)Ga(t,9)£(5)ds(1+ (1)),
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and

Let g[(t)

X’X“ / (B = B1,(5)) G (8, 5).f (s)ds(1 + o(1)).
¢

= [} Gi,(t,5)8i(s)f(s)ds. It follows by the definition of the Green function

in (16) and Lemma 6.1 of Nychka (1995) that

alt) - Bi(t) = fi%gf‘*’(txuo(l))

= A0 40

Thus, from (B.4) and Lemma A, we can get

and

B =

Br = E[B(N] - (80 - 25890 + o)1 +o(1)

f&)™

= (B [Bu)] - 60 + 7500 )) 2+ o) (8.35)
> Zed (B 6] - (340 - 25000 + o)) (1+ o(1)
1 £l E[X}] A 1 f(@)

E[Xi X, 3 | A @) .
> “H (B Bucots V] - (0 + 6 ) @+ o(r)

E[X,X,,] 3 (s A B
5 2 (B (uats n) + 7580)) (1 -+ot1) (B6)

By substituting (B.5) and (B.6) into (B.3),

E BI(S)(t; )‘) - Z Ns l2 (ﬁl( 11 ZBll(s)(tU )‘) "ll) S/\: Xz(t tz])}

L#l

(B (B (X)) + ﬁﬂ“"(t)) (1+o(1)). (B.7)
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Since €;(t) is a mean zero stochastic process and is independent of the covariates X, it

implies that

n m; X
ZZ (tij)Snx. (¢, tiy) | = 0. (B.8)

zl]l

Finally, from (B.7) and (B.8), the bias of B(s)(t; A) in (22) is obtained.
Proof of (23)

Following (B.1), we can get the following equations

H (Bl(s)(t; A) Z jV (ﬁl z] Z st(s) z]y 113) S/\l Xz(t tl]))

{i=l1,l2} {ij} l3#l

= ]I (ZZ e(ty Smt;;)) Vi, by € {0,- -, k}. (B.9)

{l=l1,12} \i=1j=1

From Lemma 1, (B.2), (B.4), assumptions A1-A4, and Lemma A, the expectation of the

left hand side of (B.9) is derived as

II (Bl(s)(t; A) - Z N == (ﬁz( i) Xa = Bt3(s)(tij;)\)Xus) S/\,,Xz(tvtij)):l

{{=tl1,l2} {i.J} l3#l

E

= Bl IT (Buo(6N) = [ Bis)Gr(t,9)f(s)ds(1 + 0,(1)

{i=t1,l2}

+ [Z#E[—)-Q—Xh—/ Biy(5)(8; X)G (2, 5) f(s)ds(1 + 0,(1)))]

[ k
=5 _{l:II—II,IQ} (12 —E%(%(Bl3(s)(t; ’\) /zi) (4)( ))(1 + Op(l))>:’

[ k ) A
- _{l=lt_1[,t2} (lsz::o _Eéi[)?ji](ﬁ Lo (tA) = B [ﬁla(-‘i)(t; /\)})(1 + 0,,(1))”
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* (E[X, X,]E[X, X, ~ -
= {gi}( [E‘[X%}E{Xé] ’]>cov (Bis(s) (85 A), Biggs) (85 X)) (1 + 0(1)). (B.10)

Taking expectation of the right hand side of (B.9),

n mg X ]
E H (Z Z 2] S/\l X:(t tzg)):, = VI + V[[ + 1/111, (B.ll)
{l:ll,lz} i=1j= 1
where
oo [ Xy X
S PP (Na;;z ) S, (80) S, “J’J |
1= ]: 1 2
- le Xz
VII - E Z Z <N2; 3 > é.(tijl)E(tijz)”s"\ll’Xll (t’ tijl)S/\,2,X,2 (t’ tlh)} ’
1=1 {j1#j2} L°ly
and
Xi l Xi l
Vi =8 Z z ( le;2 322 2) g(tiljl)g(tisz)S’\'l’X‘l (t’ til?l)S/\lzrxlz (tv tizjz):! ‘
{i1#d2} {j1,52} Lol

From assumption A4, Lemma 1, and Lemma A, it can be derived that

Vi = NE[))((;X@( o / ()G, (t, 5)G, (¢, 5) f(5)ds(1 + o(1))

1 3/a [ Aup E[X, Xi,)
van (E[Xi}E[Xi‘;J

)az(t)(l +0(1)), (B.12)

and

- E[X, X,
Vir = Z% ‘I/N)( E[X7] 2 12>//P(31,82 GA, (t,s1)
=1 ll

G, (8, 52) f(51) f (s2)dsidsa(1 + o(1))

= (S (g ot +o(0) (B.13

Since ¢;(t) is a mean zero stochastic process and is independent of the covariates X, it

implies that

Vir = 0 (B.14)



Substituting (B.12), (B.13), and (B.14) into (B.11), we can get

(L1, (55 )

{l=tlyl2} 1—-1] 1

E[‘leXlz] )‘hlz -3/4 2 S ) 2
(i) (o O™ + (om0

x (1 + o(1)). (B.15)

From (B.10) and (B.15), the variance of E(s)(t; A) in (23) is then obtained.
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Table 1: The real curve B(t), the averages of 500 estimated curves Boo)(t;1) and
BO(S)(t; 1), and the standard errors of 500 simulation estimates at nine time points.

Time 3.0 6.0 9.0 12.0 | 15.0 | 18.0 | 21.0 | 24.0 | 27.0
Bo(t) 4517 | 5.509 | 6.451 | 7.321 | 8.096 | 8.759 | 9.292 | 9.682 | 9.920
m(Bo(e) (t; 1)) | 4.513 | 5.499 | 6.448 | 7.323 8.103 | 8.766 | 9.291 | 9.660 | 9.901
(s.d.) 0.096 | 0.111 | 0.127 | 0.140 | 0.156 | 0.177 | 0.187 | 0.188 | 0.201
m(Bos)(t;1)) | 4525 | 5.509 | 6.449 7.317 | 8.091 | 8.747 | 9.270 | 9.652 | 9.913
(s.d.) 0.013 | 0.011 | 0.010 | 0.011 | 0.010 | 0.010 | 0.010 | 0.010 | 0.012

Table 2: The real curve (3,(t), the averages of 500 estimated curves Bl(c)(t;l) and

-~

Bi(s)(t; 1), and the standard errors of 500 simulation estimates at nine time points.

Time 30 | 60 ] 9.0 | 120 | 150 | 18.0 | 21.0 [ 24.0 | 27.0
Bi(?) 045 | -0.60 | -0.93 | -1.14 | -1.33 | -1.49 | -1.63 | -1.72 | -1.78
m(Pro (& 1)) | 0.4 | -0.68 | -0.92 [ -1.15 [ -1.35 [ -1.51 [ -1.64 | -1.71 | -1.77
(s.d.) 0.176 | 0.204 | 0.233 | 0.255 | 0.283 | 0.319 | 0.335 | 0.338 | 0.364
m(Bigy (t;1)) | -0.46 | -0.70 | -0.92 [ -1.14 | -1.32 | -1.48 | -1.60 | -1.69 | -1.79
(s.d.) 0.017 | 0.015 | 0.015 | 0.015 | 0.015 | 0.014 | 0.014 | 0.015 | 0.017

Table 3: The real curve f(t), the averages of 500 estimated curves Bg(c)(t; 1) and
Bas)(t; 1), and the standard errors of 500 simulation estimates at nine time points.

[ Time 3.0 6.0 90 ] 120 | 150 | 18.0 | 21.0 | 24.0 | 27.0

Ba(t) 0.104 | 0.148 | 0.181 | 0.207 | 0.225 | 0.237 | 0.245 | 0.248 [ 0.250
m(Bage) (£; 1)) | 0.103 | 0.146 | 0.181 [ 0.207 | 0.225 [ 0.235 | 0.243 | 0.248 | 0.251
(s.d.) 0.022 | 0.027 | 0.030 | 0.031 | 0.033 | 0.037 | 0.041 | 0.042 | 0.047
m(Ba) (£ 1)) | 0.103 | 0.146 | 0.181 | 0.207 | 0.225 | 0.237 | 0.245 | 0.248 | 0.250
(s.d.) 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002
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(1a) Time Effect Curve (1b) Smoking Effect Curve

)

{ | Q-
I=3 o
g NI
o’ o
2] -
P=) (=3

CD4 percentage
0.30
1
Coef. of Smoking
0.0
1

< -
o ] S ]
=] N
S - s
5_7 ™
o jﬁ T T T T T T @ T T T T T L T
[¢] 1 2 3 4 s 6 o] 1 2 3 4 5 6
Year Year
(1c) Pre-Infection CD4 Effect Curve (1d) Age Effect Curve
uw 0
S A S -
o o
S (=}
S A S
o (=3
S w 0
o 8 A 3
§ ©° s ©
3 <
s 2 | 5 2
& ©° =
£ 3
B v 8
< 3
2 3 §
S S :
) w
S 3
< T T T T T T o- 1 T T T T T T
0 1 2 3 4 S 6 0] 1 2 3 4 5 6
Year Year

Figure 1: The simultaneous smoothing splines Bz(s)(t; A1) (solid curve) and the componen-
twise smoothing splines 8y (t; A;) (dotted curve) with the corresponding 95% bootstrap
confidence intervals.
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(2a) Placebo Mean Curve
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Figure 2: The simultaneous smoothing splines B,(s) (¢; A1) (solid curve) and the componen-
twise smoothing splines fy)(t; ;) (dotted curve) with the corresponding 95% bootstrap
confidence intervals.
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