Simultaneous routing and buffering in SOC floorplan

design

J.P. Fang, Y.-S. Tong and S.J. Chen

Abstract: An EDA tool to deal with the problems of routing and buffer-insertion in system-on-chip
floorplanning simultaneously is developed. This routing and buffering tool mainly consists of a
Manhattan routing (MR) algorithm and a maze-based between-buffer routing algorithm. Since the
processing speed of its MR is very fast, this tool can be integrated into an iterative floorplanning
algorithm to promote the routability of a floorplan solution.

1 Introduction

With the fast scaling of modern VLSI technology the
routability of a floorplan dominates the success of subsequent
routing stage, also the interconnect delay plays a significant
role in IC performance. Typically, congestion is estimated
during the routing phase to generate a routable topology and
after a routing pattern is generated, buffer insertion is
frequently applied to reduce the interconnect delay.

For the congestion estimation problem a stochastic
congestion estimation method [1] has been proposed and
is suitable for combination with a buffer planning algorithm
[2]. Concerning the buffer-insertion problems, Cong et al.
[3] proposed a buffer block planning method to allocate
buffers into feasible regions (FRs). The idea of FRs has been
expanded by Sarkar er al. [4] into independent feasible
regions (IFRs) to place more than one buffer on a single net.
In the methods proposed [3, 4], the routing is sometimes
restricted because the net must go through predefined buffer
blocks. Besides, buffer block planning is designed to
meet the timing constraint; it is hard to meet the routing
congestion constraint at the same time. Dragan et al. [5, 6]
proposed an approximation method based on multicom-
modity flow to solve the same routing problem. Alpert et al.
[7] introduced a buffer site approach (BSA), where routing
is guided by a Steiner tree and buffers are added at optimal
locations rather than being predefined as in FR and IFR.

Instead of dividing the problem into a routing stage and a
buffering stage, our method routes and places buffers at the
same stage. In our algorithm we consider net congestion
constraint, buffer congestion constraint, and delay constraint
of each net simultaneously, which has not been considered
previously.

Two algorithms are combined in our method to route and
place buffers: Manhattan routing (MR) and maze-based
between-buffer routing (MBR). MBR is used mainly as a

© IEE, 2004

IEE Proceedings online no. 20040072

doi: 10.1049/ip-cdt:20040072

Paper first received 20th February and in revised form 1st October 2003

The authors are with Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, National Taiwan University, Taipei,
Taiwan, ROC

S.J. Chen is also with the IBM Thomas J. Watson Research Center on
Sabbatical

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

postprocessing router for the nets that MR failed to route.
The experimental results showed that the failure rate of our
routing—buffering method is apparently lower than other
existing techniques.

2 Problem formulation

Given a floorplan and the delay budget ‘as defined in [3]" of
each net we want to determine the routing path of each net
and location of buffer insertion such that the delay budget of
each net is met and the routing/buffer congestion constraints
of the whole floorplan are satisfied. In our problem
modelling, only two-pin nets are considered because a
multipin net can be divided into several two-pin nets and
treated in the same way. We divide the whole routing plane
into tiles, and create two matrices for recording net upper
bound and buffer upper bound information.

The routing and buffer-insertion problem is formulated as
follows:

Given: A tiling G(V, E) of the chip, a set of nets N =
{nl1, n2, n3,...}, a net upper-bound matrix NUB with each
element denoted as NUB(, j), a buffer upper-bound matrix
BUB with each element denoted as BUB(I, j), locations of
two end-points, and a delay budget for each net.

Goal: Route each net and insert buffers such that its delay
budget is not violated and the following congestion
constraints are satisfied:

Constraints:

(i) n(i, j) < NUB(i, j), where n(i, j) is the number of nets
running through tile (i, j); and

(ii) b(i, j) < BUB(i, j), where b(i, j) is the number of buffers
assigned in tile (i, j).

We adopt the model presented by Sarkar et al. [4] to
calculate delay and apply their IFR (independent feasible
region) formula to calculate the regions where a buffer can
be put. In the formula of IFR, the feasible region of the ith
buffer is expanded from its optimal location by a distance
decided by its width. The key parameters based on 0.18 pm
technology in NTRS’97 [8] and used in [4] for calculating
the optimal location and the width of the ith buffer are also
adopted here, which include unit-length wire resistance
(0.075 Q/pum), unit-length wire capacitance (0.118 fF/um),
input capacitance of a buffer or sink (23.4fF), output
resistance of a buffer or driver (180 Q), and intrinsic delay of
a buffer (36.4 ps). Hereinafter, for convenience, the formula

17

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

for calculating IFR regions and its associated parameters are
termed IFR formula and IFR parameters, respectively.

3 Models and cost functions

Applying IFR formula and IFR parameters to a routing path,
the possible locations for buffer insertion are determined
such that the delay constraint is not violated. This Section
introduces the model and cost functions that we used in our
method for satisfying the net congestion constraint and the
buffer congestion constraint.

3.1 Net density estimation

Applying the stochastic model proposed by Lou et al. [1],
we obtain the increased net density that a single net
contributed to each tile in a tile model. For each net, on a tile
graph, after its net-density estimation matrix is calculated
we store this matrix for future procedure. Also, accumulat-
ing the net-density estimation matrix of each net gets the
total net-density estimation matrix NEV, in which each
element of the net density estimation matrix is denoted as
NEV(i,j), which contributes to the calculation of net cost
functions (see Section 3.3).

3.2 Buffer density estimation

Buffer-density estimation is much more complicated than
net-density estimation. For each routed net to fit its delay
budget the acceptable number of buffers to be added may
vary in a range, and each buffer can be put in a rather
wide range. For example, based on the IFR parameters, to
route a net through 4800 um Manhattan distance with a
delay constraint of 1.17 in which delay constraint was
defined in [3], we can use one, two, or three buffers, each
with an IFR range of 3787, 1837, and 644 pum,
respectively. Such a wide possibility makes buffer-density
estimation difficult.

We assume all feasible buffer numbers that are equal to,
or smaller than, the buffer number with which net delay can
be minimised appear with same possibilities. We also
assume that buffers are distributed evenly within their
feasible ranges. Thus we can calculate the buffer-density
estimation matrix of each single net; accumulating the
buffer-density estimation matrix of each net creates a total
buffer-density estimation matrix BEV. Likewise, each
element of the buffer density estimation matrix is denoted
as BEV(i,j), which contributes to the calculation of buffer
cost functions (see Section 3.3).

3.3 Cost functions

In our algorithm, net cost function and buffer cost function
are defined in each tile. For a single tile (i,j) its net cost
function is set to be

. NEV(i, j) — NUB(i, j
NCF(i, j) = cl x Exp((Nl)]B(i 7 ()>7

if NUB(i, j) # 0;

NCF (i, j) = oo, if NUB(i,j)=0. (1)

where NCF is net cost function, NUB net upper bound (net
constraint), NEV net estimation value, and ¢l a constant.
For comparable NEV(i,j) and NUB(,j), NCF(i, j) = cl.
On the contrary, if NEV(i,j) is greater than NUBC(, j),
NCF(i,j) becomes a big value, which will guide the routing
procedure to avoid using possibly congested areas and keep
these areas for later net routing.

18

In the same manner the buffer cost function is set to be
BEV(i, j) — BUB(i, j)
BUB(i, j) ’
if BUB(i, j) # 0;
if BUB(i,j)=0. (2)

BCF (i, j) = 2 x Exp(

BCF(i, j) = oo,

where BCF is buffer cost function, BUB buffer upper bound
(buffer constraint), BEV buffer estimation value, and ¢2 a
constant. Likewise, for comparable BEV(i,j) and BUB
(i,), BCF(i, j) = ¢2. On the contrary, if BEV(, j) is greater
than BUB(i,j), BCF(i,j) becomes a large value, which
facilitates avoiding buffer insertion at possibly congested
areas and these areas are reserved for later buffer insertion.

Finally, for an m X n tile graph, the cost function CF for
congestion evaluation is expressed as

CF = [NCF(i, j) + BCF(i, j)]. (3)
=1 =1
Before illustrating our routing and buffering algorithms in
the following Section, some terminologies used are
described as follows.

Manhattan distance: The distance between points (x1, yl)
and (x2,y2) = |x1 — x2| + [yl — y2|.

Manhattan box: A rectangle having source (x1, yl) and
destination (x2, y2) as its diagonal corner points; the paths
from source to destination are restricted inside the rectangle.
Buffer set: A collection of tiles that are candidates for buffer
insertion.

Buffer site: A tile chosen from ‘buffer set’ for buffer
insertion.

4 Routing and buffer-insertion algorithm

In our routing-buffer-insertion algorithm, the plane is
divided into tiles. For a single tile its values of BUB and
NUB depend on the occupied area of a tile and its fabrication
parameters. Nets are sorted by delay budgets. Nets with the
tightest delay budgets (closest to 1) are routed first, by using
an MR procedure.

The net density matrix and the buffer density matrix are
updated net by net. When a net is routed and its buffers
are determined, the corresponding NEV(i, j) and NUB(, j)
are updated according to the routing path, while the
corresponding BEV(i,j) and BUB(i, j) values are updated
according to the locations of buffering, and as well, cost
functions should be recalculated. If the routing of a net
failed during this procedure, this net is recorded and needs
further processing.

Also, the cost functions presented in Section 3.3 do not
include delay constraint; this is because the IFR ensures the
delay budget of a given net is not violated. Once the buffer
sets are decided according to the IFR formula and IFR
parameters, efforts are focused on the evaluation of net
congestion and buffer congestion according to (1) and (2).
From these evaluations and MR introduced in the following
Section, we can separately select one buffer site from each
buffer set for buffer insertion.

4.1 Manhattan router

The MR procedure is used to route a net with minimal cost
such that the net congestion and buffer congestion are
minimised. The path must reside in a Manhattan box and no
detour is permitted. If there are numerous paths satisfying
this criterion, all we have to do is to choose a path with a
minimal accumulative cost value and assign this path as the
final routing path.

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

Bn,2’ e Bn,mn}'

site.

Given: Two end-points S and T; n buffer sets {B, y, By 5, ---, By g}, {Boys Boo, -5 Bo ol - {Bp1s

Goal: Choose a min-cost path from S to T, which resides within the Manhattan box with no detour.

The path will intersect each buffer set with one element, choose this element as the buffer

Algorithm MR

{SB, 1. SBy 5. .., SBy i}
2.For (i=2ton)do

buffer set and store them as {SB,,, SB;,, ..

TB,o s TByn 1

1. Find min-cost paths from S to all elements of the 1st buffer set {B, ;, B, ,, ..., By p}, store them as

Use a previously stored min-cost path to find the min-cost paths from S to all elements of the /th

1.
i
3. Find the min-cost paths from T to all elements of the nth buffer set and store them as {7B,,,,

4. Combine {SB,, ,, SB,,,, ..., SBy mt and {TB,,,, 7B, ...

s By, mpn } to find @ min-cost path from S to T.

Fig. 1 Algorithm MR

The min-cost path with buffers inserted has an optimal
substructure, which makes dynamic programming possible.
We formulate our algorithm as shown in Fig. 1. In the figure,
the given n buffer sets are calculated according to Sarkar
et al.’s algorithm [4] and exact one element in each buffer
set {B,,1,B,2; ..., B, } will be chosen as the buffer site on
the min-cost path from S to T. Since the chosen path from S
to T has a min-cost, both the subpath from S to the ith buffer
site and the subpath from the ith buffer site to T should be
min-cost subpaths, which obviously have the property of
optimal substructures. Besides, at each iteration of step 2 in
Fig. 1, the calculations of min-cost paths from S to each
elements of the (i 4+ 1)th buffer set are all based on the min-
cost paths found at previous iteration {SB;,;, SB;»;, ...,
SB; i} For the problem of the (i+ I)th iteration, there
apparently exists a property of overlapping subproblem.
These two properties imply the correctness of the applica-
bility of dynamic programming.

Take Fig. 2a as an example; the cost of each buffer in
Fig. 2a is deliberately set to zero to simplify the illustration.
In practice the cost of buffer congestion is included as well

8(7|c|4|8(|[0]f 10 (14 (11 |14 (19 |15 | 15

5(d|[2|4|7|g]|3 15 (14 (13 [17 (24 | 15

e| 4|6 (4| h|9]|7 15 |18 |19 |21 | 21

6|13 |2 i 9|45 21 |21 (21 |21

3 1 i 8|14 1]|6|T 24 122 |21 T
a b

S S|[3]9 |[0|fo |12 |21

15 10 {14 |11 |14 |19 |5 | 30

15 15 | |15 [14 {13 |17 |24 |po [|15

18 |18 |12 15 (18 (19 (21 [39 (18 |j12

18|18 (9 | 5 21 (21|21 |39 (18| 9 [|5

18|18 |10 | 6 | T 24 (22|39 |18 (10| 6 |IT

c d
Fig. 2 [llustration of algorithm MR

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

as the cost of net congestion. In Fig. 2a, two buffer sets,
{a,b,c,d,e} and {f, g, h,i,j}, calculated according to IFR
formula, are ‘coloured’ grey; all other tiles except source S
and target T are weighted by costs. To find a routing path
from source S to target T we first find the min-cost paths
from source S to tiles a, b, ¢, d, and e, which are,
respectively, 10, 10, 11, 14, 15, as shown in Fig. 2b, and
store them. Then we find the min-cost paths from source S to
tiles f;, g, h, i, and j, based on the previously stored data as
done in step 2 of Fig. 1. The newly generated min-cost paths
from source S to tiles f, g, A, i, and j are, respectively, 15, 15,
21,21, 21, which are stored as shown in Fig. 2b. Finally, the
min-cost paths from target T to tiles f, g, h, i, and j are found,
which are, respectively, 15, 15, 18, 18, 18, as shown in
Fig. 2¢, and stored. Combining the data stored at previous
steps, the min-cost from S to T is 30, as shown in Fig. 2d, the
buffer site a or buffer site b is chosen from buffer set
{a,b,c,d, e}, the buffer site f or g is chosen from buffer set
{f,& h,i,j}. Therefore the routing path is optionally
S—a—-f—-T, S—a—-g—T, S—=b—f—T, or
S — b — g — T, as shown in Fig. 2d.

4.2 Analysis of MR

Consider a two-pin net with end-points S and T and assume
its Manhattan box has [x w tiles; if n buffers have to be
added on this net, the space between any two neighbouring
buffer sets s = (I +w — 1)/(n + 1). The time complexity of
our algorithm is described as follows.

Theorem 4.1: The time complexity of MR for a single net
described is O(s’n x (I + w)), where s is determined mainly
by fabrication specifications, actual tile size, and delay
budget and thus can be treated as a constant. Therefore the
original complexity is reduced to O((I + w)?).

Proof: The space between any two neighbouring buffer sets
=(+w—1)/(n+ 1), on atile graph, each element in one
buffer set has at most (I +w — 1)/(n + 1) connections with
adjacent buffer sets, i.e. each element in one buffer set has at
most O(s) connections with adjacent buffer sets. Since each
buffer set has O(/ + w) elements, the time complexity of
finding the shortest path of an adjacent buffer site can be
shown to be O(s®) and there are n buffer sets for each of
which we have to select one buffer site for buffer insertion,
the total time complexity becomes O(s’n x (I +w)).
Since s is treated as a constant, and n (the total number of

19

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

does not violate any delay budget.

Given: source S and target T; a buffer set B={B,, B,, ..., B,}.
Goal: Choose a min-cost path from S to T, going through a subset of B, and which total delay value

Algorithm MBR

the cost and delay values.
3. Backtracking from T to S.

1. Use MR to route a path from S to all possible buffer sites, store the cost and delay values.
2. While (not all buffer sites are chosen as a new source) do
2.1. New source « pick up an unchosen buffer site

2.2. Use MR to route paths from the new source to all unchosen buffer sites and target T, update

Fig. 3 Algorithm MBR

buffers to be added in this net) is roughly proportional to
[+ w, the complexity is reduced to O((/ + w)?).

4.3 Maze-based between-buffer router

Not necessarily all nets can be routed successfully using
MR. When a large block is located between the source and
target of a net it is unavoidable to route a detour path.
Therefore we proposed a Maze-based between-buffer router
(MBR) to route a detour path between buffers, as shown
in Fig. 3. Generally speaking, this method can find a path
satisfying a delay budget if the path exists, but it needs a
longer computation time in contrast to MR. Thus this
method is designed mainly for postprocessing those nets
that have been failed during MR.

Before using MBR we need to know the locations of
buffer sites. The distance of a routing path during MBR is
dependent on a routing path that is unknown before routing,
while the distance of a routing path during MR is the
Manhattan distance from source to tile. To decide the
distances of all possible routing paths, the labelling
technique of Lee’s maze router [9] is adopted. After the
maze-based ‘wave propagation’ procedure is performed,
the filled labels together with IFR formula are used to derive
the available locations of buffers.

In Fig. 3, at step 1, we try to find a path from S to all
possible buffer sites using MR, check the delay budgets,
store the costs and delay values of qualified buffer sites. At
step 2, from buffer sites with delay values qualified at the
previous step, one buffer site is chosen as a new source.
From this new source, we use MR to route path to all
unchosen buffer sites and target T, check accumulative
delay values of these paths, store the costs and delay values
of qualified buffer sites. Repeat this step until all buffer sites
have been chosen as a source. Finally, at step 3, by treating
target T as the current buffer site, starting from the target
and backtracking to the buffer site next to the source, we

3 3|14 al 9

4 4|1]4a|2 blo |12

[+]
s |2 - 6 |12 |12

df 8 | x [x | x
5 |4]2 2 |6

x | x| x |x |10
c[8]6 2 T| x |17 | x |15 |12 |14
6 [3|2]3 4 S a c d e
a b

Fig. 4 [llustration of algorithm MBR
20

find the preceding buffer site where the min-cost path has
passed through according to the accumulative costs of all
paths reaching the current buffer site.

Take Fig. 4a as an example, in which the blocked tiles
caused by congested wires are black and the buffer locations
are grey. To find a min-cost detour path from source S to
target T, a min-cost table like that in Fig. 4b is built
according to algorithm MBR, in which min-costs between S,
T and buffers are listed, entries are marked x when the delay
budget is violated or routing is failed. First, the entries at
column S are obtained according to step 1 of Fig. 3, the min-
costs from S to a, b, ¢, and d are, respectively, 9,9, 6, 8, and
the entries from S to e and T are both marked x because of
blocked routing paths. Then the min-cost from a to b, ¢, d, e,
T are obtained, which are, respectively, 3, 3, X, X, and 8.
Accumulating theses values to the min-cost from S to a, we
have the entries of column a, which are 12, 12, x, x, 17,
respectively. In an iterative manner, as shown in step 2 and
step 3 of Fig. 3, we have the other entries for the remaining
columns. Comparing entries at row 7, the min-cost entry 12
is located at column d. Inspecting entries at row d, the min-
cost entry 8 is located at column S. The path from S to T is
thus obtained from the backtracking procedure and is found
to be S — d — T with the min-cost = 8 +4 = 12.

4.4 Procedure of floorplanning

It is easy to integrate MR and MBR into an iterative
floorplanning algorithm. The procedure to integrate

Procedure floorplanning
floorplan = random_floorplanning(); T = initial_temperature;
while (7 >= threshold) {
count = 0;
while (not_equilibrium(count, floorplan, T)) {
mr=mbr = FAIL; new_floorplan = perturb(floorplan);
AC = cost(new_floorplan) — cost(floorplan);
if (MR(new_floorplan) == OK) mr = OK;
if {mr == FAIL) and (AC < 0))
if (MBR(new_floorplan) == OK) mbr = OK;
if ((mr == OK) or (mbr == OK))
if (AC < 0) floorplan = new_floorplan;

else { prob = Min(1, e™7); if (random(0,1) <= prob)
floorplan = new_floorplan; }

count =count + 1; }
update(T); }

Fig. 5 Integrating MR and MBR into SA-based floorplanning
algorithm

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

algorithms of MR and MBR into a SA-based floorplanning
algorithm is shown in Fig. 5 as an example.

In Fig. 5, mr and mbr are two flags separately indicating
the results of MR and MBR. Perturb() is a perturbation
function which is used to generate the next floorplan from
the current floorplan. Not_equilibrium() is a function that
decides the termination condition at a given temperature,
and update() is used to cool down the temperature. After
each perturbation, cost() evaluates the area change between
old floorplan and new floorplan, the cost change is
expressed as AC. For each newly generated floorplan, MR
is performed to qualify its wire congestion and buffer
congestion. As MBR takes longer computation time than
MR, MBR is performed only when MR fails and the newly
generated floorplan has smaller area (AC < 0).

5 Experimental results and discussion

We take several random tile patterns as test benches for the
following two experiments; each pattern has about a
thousand nets, and each net has a delay budget ranging
from 1.00001 to 1.2.

5.1 Routing with different MR and MBR
schemes

There are two schemes to apply our routing algorithms. One
scheme is to route all nets with MR and record the failed
nets; then route these failed nets (if any) using MBR. The
other is to route a single net with MR. If it succeeds,
continue with the next net; otherwise route the net with
MBR.

Table 1 shows the comparisons of routing results with the
above two schemes on a 20 x 20 grid. The Table lists the
number of failed-to-be-routed nets after running MR, after
running MBR with scheme 1, and after running MR and
MBR with scheme 2, respectively, for five random-
generated testbench circuits. From these results we observed

Table 1: Comparison of failed nets in different schemes

1st scheme 1 2nd scheme 1 Scheme 2
Circuit Net after MR after MBR (MR + MBR)
1 944 77 71 70
2 1122 297 286 288
3 823 298 289 290
4 1114 180 172 170
5 858 47 44 44

Table 2: Comparison of failed nets in different net orderings

that these two schemes differ little, which can be explained
by an evident fact: over 95% nets are routed successfully
using MR.

5.2 Routing with different net orderings

We also want to know the relationship between net order
and the routing result. To show it, we perform the same
routing algorithm with our proposed sorted-by-delay net
ordering and with four other random net orderings. Scheme
1 was chosen as our routing procedure. The results are
summarised in Table 2, where the results of average, max,
min and numerous are collected after 30 different random
net ordering experiments.

Table 2 showed the superiority of our net ordering. The
results of our proposed sorted-by-delay net ordering are the
best in each test-bench circuit compared with the other net
ordering methods.

5.3 Comparison with buffer-site algorithm

Based on the same test benches and technology parameters,
we compare our method with Alpert et al.’s buffer-site
approach [7]. First, we implemented a kernel of the buffer-
site algorithm, in which we consider 2-pin nets only. Then
we examined the impact of different Li (the number of tiles
that a buffer can drive) to the routing; the evaluation is
described by the number of failed nets. It is observed that
when Li > 10, there is no difference in the number of failed
nets. This can be explained by the fact that when Li reached
a specific value, almost all nets can put buffers within its
path as long as the net is routed successfully. The following
reasons of failure are observed: fail to route a net, fail to
place buffers within Li, and mostly fail to fit the delay value
to our delay budget.

We use the test-bench circuits as listed in Table 1 to
compare the buffer-site algorithm with ours, as shown in
Table 3, in which Li = 11. It is surprisingly that the buffer-
site algorithm has a higher rate of failed nets. Using our
approach the failed net percentage decreased by 34.2 to
55.6%. This is because we tried to customise the buffer-
insertion scheme for each net, while their algorithm uses the
same Li for every net. In VLSI design, especially in system-
on-a-chip design, different nets have a different delay
budget and their values can be roughly determined only
after the logic design stage is completed. Our algorithm
provides a good method for routing with a detailed delay
budget specified for each net.

Net orderings Circuit 1 (944) Circuit 2 (1122) Circuit 3 (823) Circuit 4 (1114)
1st 2nd Tst 2nd 1st 2nd 1st 2nd
Delay-sorted 77 71 297 286 298 289 180 172
Random order
(average) 79 78 307 304 304 300 185 180
Random order
(max) 87 86 318 316 312 308 211 193
Random order
(min) 72 72 299 296 293 290 178 173
Random order
(numerous) 77 75 309 305 308 304 186 179

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

21

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

Table 3: Comparison of Alpert’s and our algorithm

Benchmark circuits Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5
Total net 944 1122 823 1114 858
Alpert’s algorithm fail net 569 790 571 692 521

fail percentage 60.2 70.4 69.4 62.1 60.7
Our algorithm fail net 70 288 290 170 44

fail percentage 7.4 25.7 35.2 15.2 5.1
Improvement percentage 52.8 a44.7 34.2 46.9 55.6

Fig. 6 Result of integrating MR and MBR into SA-based
algorithm

a Floorplan generated by SA+ MR +MBR H =4.97; W =8.092;
dead space = 11.87%

b Floorplan generated by SA+MR H =6.958;
dead space = 18.96%

5.4 Integration of MR/MBR and SA-based
floorplanning algorithm

We integrated both MR and MBR into a SA-based
floorplanning algorithm and used MCNC circuit, ami49,
as a test bench. It is assumed that each block can supply
some buffers, and the amount of buffers available in each
block is dependent on its area. For each floorplan, the
necessary buffers can be either inserted at dead space or
supplied by blocks. When the floorplan is divided into 10 X
10 tiles, NUB and BUB are separately 45 and 20, the
resultant floorplan is shown in Fig. 6a. As a contrast, the
resultant floorplan generated by a SA-based floorplanner
integrating only MR is shown in Fig. 6b. Obviously the
ability of detour possessed by MBR facilitates obtaining
more compact floorplan.

W = 6.286;

6 Conclusions

We have proposed a routing-buffering tool to perform
global routing and buffer insertion simultaneously for
immediate evaluating routability of a floorplan design.
The algorithm includes a Manhattan routing algorithm and a
maze-based between-buffer routing algorithm. Our method

22

e considers net congestion constraint and interconnect
delay together, not easily done by Cong et al.’s and Sarkar
et al.’s algorithms

e for two pin nets, instead of buffering at the shortest path as
proposed by Alpert et al. [7], we insert buffer into a path
such that the path is min-cost in terms of net congestion and
buffer congestion while the delay constraint is not violated.

7 Acknowledgments
This work was supported by the National Science Council,
R.O.C., under grant NSC91-2215-E002-042. The authors

would like to thank Prof. Jason Cong for providing the
source code for buffer-block planning [3] and benchmarks.

8 References

—

Lou, J., Thakur, S., Krishnamoorthy, S., and Sheng, H.S.: ‘Estimating
routing congestion using probabilistic analysis’, IEEE Trans. Comput.-
Aided Des. Integr. Circuit Syst., 2002, 21, (1), pp. 32-41

2 Sham, C.W., Wong, W.C., and Young, E.F.Y.: ‘Congestion estimation
with buffer planning in floorplan design’. Proc. Conf. on Design and Test
in Europe, Paris, France, March 2002, pp. 696-701

Cong, J.,, Kong, T., and Pan, D.Z.: ‘Buffer block planning for
interconnect-driven floorplanning’. Proc. Int. Conf. on Computer-
Aided Design (ICCAD), San Jose, CA, November 1999, pp. 358-363
4 Sarkar, P., Sandararamanm, V., and Koh, C.-K.: ‘Routability-driven
repeater block planning for interconnect-centric floorplanning’. Proc. Int.
Symp. on Physical Design, San Diego, CA, April 2000, pp. 186-191
Dragan, F.F., Kahng, A.B., Mandoiu, L.I., Muddu, S., and Zelikovsky, A.:
‘Provably good global buffering using an available buffer block plan’.
Proc. Int. Conf. on Computer-Aided Design (ICCAD), San Jose, CA,
November 2000, pp. 104-109

Dragan, F.F., Kahng, A.B., Mandoiu, L.I., Muddu, S., and Zelikovsky, A
‘Provably good global buffering by multiterminal multicommodity flow
approximation’. Proc. Conf. on Asia South Pacific Design Automation
(ASP DAC), Yokohama, Japan, January—February 2001, pp. 120—125
Alpert, C., Hu, J., Sapatnekar, S., and Villarrubia, P.: ‘A practical
methodology for early buffer and wire resource allocation’. Proc. Design
Automation Conf. (DAC), Las Vegas, NV, June 2001, pp. 189-194
‘National technology roadmap for semiconductors’, Semiconductor
Industry Association, 1997

9 Lee, C.Y.: ‘An algorithm for path connection and its application’, IRE
Trans. Electro. Comput., 1961, 20, pp. 346—365

w2

W

[=)}

-

o]

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

