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Abstract—The offset discrete Fourier transform (DFT) is a dis-
crete transform with kernel exp[—j27(m — a)(n — b) /N]. Itis
more generalized and flexible than the original DFT and has very
close relations with the discrete cosine transform (DCT) of type 4
(DCT-1V), DCT-VIII, discrete sine transform (DST)-IV, DST-VIII,
and discrete Hartley transform (DHT)-IV. In this paper, we de-
rive the eigenvectors/eigenvalues of the offset DFT, especially for
the case where a + b is an integer. By convolution theorem, we
can derive the close form eigenvector sets of the offset DFT when
a + b is an integer. We also show the general form of the eigenvec-
tors in this case. Then, we use the eigenvectors/eigenvalues of the
offset DFT to derive the eigenvectors/eigenvalues of the DCT-IV,
DCT-VIII, DST-1V, DST-VIII, and DHT-IV. After the eigenvec-
tors/eigenvalues are derived, we can use the eigenvectors-decompo-
sition method to derive the fractional operations of the offset DFT,
DCT-1V, DCT-VIIL, DST-IV, DST-VIII, and DHT-IV. These frac-
tional operations are more flexible than the original ones and can
be used for filter design, data compression, encryption, and water-
marking, etc.

Index Terms—Discrete fractional Fourier transform, eigen-
vectors, offset discrete Fourier transform, offset discrete cosine
transform.

I. INTRODUCTION

HE discrete Fourier transform (DFT) is a very useful tool
in digital signal processing. The offset DFT, however, is a
generalization of the DFT. It is defined as

X, p[m] =DFT, (2[n])

N-1
=VN-1. Z e_j%(m_"’)("_b)w[n]. (1)

Its inverse operation, i.e., the offset inverse discrete Fourier
transform (IDFT), is defined as

a[n] =IDFT,, (Xa v[m])

_\/_ Z 'nb'ma)X

blm]. 2)
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The offset DFT has two parameters a, b, which correspond to the
offsets in the frequency domain and time domain, respectively. It
was first introduced in [1]. When a = b = 1/2, it is also called
the odd-time odd-frequency DFT [2]. The offset DFT is more
flexible than the original DFT and can solve some problems
that cannot be solved well by the original DFT. Its applications
to filter design, signal representation, and fast computation of
DFT have been developed [3], [4]. Many applications of the
original DFT are also the potential applications of the offset
DFT. Besides, the offset DFT has very close relations with the
discrete cosine/sine transforms (DCT/DST) of types 2~4 and
6~8, and the discrete Hartley transform (DHT) of types 2~4
(see Section V).

In this paper, we derive the eigenvectors/eigenvalues of the
offset DFT, especially for the case where a + b is an integer.
In [5], Tseng has derived an eigenvectors set of the offset DFT
when a = b = 1/2 by the commutative matrix method. In Sec-
tion II, we make a more complete discussion on the eigenvectors
of the offset DFT. In the case where a + b is an integer, we can
derive the closed form of the eigenvectors/eigenvalues of offset
DFTs successfully from the eigenfunctions/eigenvalues of con-
tinuous offset FTs [6]. We also show the general form of the
eigenvectors of the offset DFTs when a + b is an integer.

When a + b is not an integer, although the close form eigen-
vectors/eigenvalues of the offset DFT are very hard to derive,
however, they have some regularities. In Section III, we describe
these regularities.

In Section IV, we describe some interesting properties of the
eigenvectors of the offset DFT.

After the eigenvectors/eigenvalues of the offset DFT are de-
rived, in Section V, we use the relations between the offset DFT
and the DCT-1V, DCT-VIII, DST-IV, DST-VIIL, and DHT-1V to
derive the eigenvectors/eigenvalues of these transforms. We can
use the eigenvectors/eigenvalues obtained in this paper to de-
rive several fractional operations. The discrete fractional Fourier
transform [8], [9], [21], the fractional DCT-I and DST-I [10],
and the fractional DCT-II [11] have been derived already. In
Section VI of this paper, we use the eigenvectors-decomposition
method to derive the fractional offset DFT (FRODFT), the frac-
tional DCT-1V, the fractional DCT-VIII, the fractional DST-1V,
the fractional DST-VIII, and the fractional DHT-IV. These frac-
tional operations are more flexible than the original ones. They
can replace the original operations in some signal processing
applications (such as filter design and data compression). They
are also useful for encryption, watermarking, and computing the
continuous offset Fourier transform.
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II. EIGENVECTORS/EIGENVALUES OF OFFSET DFTS WHEN
a + b = Integer

A. Reviews of the Eigenfunctions/Eigenvalues of Continuous
Offset FTs

Before discussing the eigenvectors/eigenvalues of the offset
DFT, we first review the eigenfunctions/eigenvalues of its con-
tinuous counterpart, i.e., the continuous offset Fourier transform
(offset FT). It is defined as

[9()]

- L / exp[—j(w — 7)(t — )] g(t)dt. (3)

GF(w) = FT,,
1
V2

oo

The continuous offset FT is a generalization of the Fourier trans-
form (FT) and is a special case of the special affine Fourier trans-
form [22], [23]. In [6], we derived the following lemma.
* If E(t) is an eigenfunction of the original FT, and \ is its
corresponding eigenvalue

oo

FT[E(t)]:\/% / exp(—jwt) E(t)dt = AE(w) (4

then the offset FT with parameters 7, n has the eigen-
function as in (4), and the corresponding eigenvalue is

Aexplj( —n)*/4]:

E..(t) = oxp [‘%(n - ,r)t] E (t — ”) 5)

Fr oy [Ery(t)] = Xexp [%(T — n)Q] E. (1) (6)

Thus, we can obtain the eigenfunctions/eigenvalues of the
continuous offset FT from those of the original FT. For
example, since the functions as follows are the eigenfunc-
tions of the original FT, and their corresponding eigen-
values are (—j)™

12
¢dm(t) = exp (—5) H,,(t)

FT [$pm ()] = (=5)" ¢m(w) ™
H,,(t) : the Hermite polynomial of order m

me Z+t

we can conclude that the continuous offset FT has the
eigenfunctions as in (8), and the corresponding eigen-
values are (—j)9 explj(T — n)?/4]:

=7, (2t—n—1)
O, (1) = / t—
¢, (t) = exp [J 5 <
x H, (t— ";T>, VARG
. (r—m)?
FT:, [q)qmn (t>] = (_J)qej (I)q,T-,n(t)- )

2033

Besides Hermite functions, some other functions (such as
follows) are also the eigenfunctions of the original FT

[12]:
a) > 8(t—pVer)
p=—00
t _%

b) T

¢) sech Q@)

and we can substitute them into E(¢) in (5) to obtain other
eigenfunctions of the continuous offset FT. There are also
many other possible choices for E(t) in (5). Thus, as the
original FT, the continuous offset FT also has varieties of
eigenfunctions. Nevertheless, since the original FT only
has four eigenvalues 1, —j, —1, j, the offset FT has only
four possible eigenvalues as well.

(10)

3 _ 2
A= (=j)lexp [M} , whereq=0,1,2,3. (11)

B. Close Form Hermite-Like Eigenvectors of the Offset DFT

In [13], Mehta used the continuous eigenfunctions of the orig-
inal FT to derive the discrete eigenvectors of the DFT. In this
subsection, we use the continuous eigenfunctions of the offset
FT [6] to derive the discrete eigenvectors of the offset DFT when
a + b is an integer.

As the case of the original FT, for the offset FT, the sampling
operation in the time domain also corresponds to the summation
of replication in the frequency domain:

- t
k=—oc0 .
- jn. 2% T, 2w

where Gr™"(w) means the continuous offset FT [see (3)] of
g(t). If we choose ¢(t) = E.,(t), where E. ,(t) is an eigen-
function of the continuous offset FT with parameters 7, n

FTrn (Ery(t)) = A Ery(t) (13)

then Gr™"(w) = A - E; ,(t), and (12) becomes

Z e—j(w—‘r)(kAf,—'q)ET’n(kAt)

_ = in 2=q 2
= )\ Z e Ay ET,U ((/.) — Eq) . (14)

g=—o0

After setting Ay = /27 /N and w = my/27 /N, we obtain

LS i (e E) (v E) N
Vi d e By (k5o

k=—00

=AY VNI, ((m - qN),/%“> . (15)

g=—00
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Then, we replace k as n + pN and replace g as —p and obtain

| N
- 27
_ e~ % (m—a)(n—b)
U 2
% Z e p <(n+pN) %)
p=—o00
> ion 2
= )\p;we imbrp ((m+pN) W)
| N | N
wherea = 74/ —, b=m/—. (16)
2T 2w
That is
DFT, [ Z Bﬂﬂ-apE'r,n <(7‘L+pN) Wﬂ->‘|
p=—00
=) f: e~ I2mbr B (m+pN)1/2—7r . (7
p=—00 ! N

Besides, if a + b = A, where A is any integer, then
exp(j2rap) = exp(—j2nbp). Therefore, we obtain the
following conclusion:

e The offset DFT with parameters a, b, where a +b = A (A
is an integer) has the eigenvectors as

(e}

Guslil = 3 05, e
p=—o00
2m
X <(n+pN) W) , ne[0,N—-1] (18)

where £ Nk \/T/N(t) is the eigenfunction of the contin-
uous offset FT (see (3)) with parameters a\/27 /N, by/27/N

(suppose that its corresponding eigenvalue is \):

P, a3 (Bay oy E®) =3 Eoyay 0

The corresponding eigenvalue for G, y[n] is also A (the same as
the above):

DFTGJ, (Gayb[n]) =\ Gmb[n]. (19)

Thus, we can obtain the eigenvectors/eigenvalues of the offset
DFT easily from the eigenfunctions/eigenvalues of the contin-
uous offset FT.

Since the continuous offset FT has infinite possible
eigenfunctions, there are also infinite possible choices of
E Nt m(t) in (18). As usual, the infinite summation
in (18) converges. However, sometimes, it may not converge.
Approximately, the condition that (18) converges is that

/ ‘Eaﬁyb =) < oo, (20)
For example, if we choose F Nt \/m(t) as the Her-

mite—Gaussian function in (8), or the shifting-modulation ver-
sion of the function in (10c), the series in (18) converges.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 7, JULY 2004

However, if we choose it as the shifting-modulation version of
the functions in (10a) and (10b), the series does not converge.

If we choose E ,(t) as the Hermite—Gaussian function [see
(8) and (9)], after substituting (8) into (18) (r = a+/27/N,

n = by/2mw/N), we obtain

2
oo w(n+p1\17@)

PO C i

p=—00

x H, <<n+pN— “;b) %ﬁ) Q1)

where n € [0, N — 1]. We use V, o 3[n] to denote the eigen-
vectors obtained this way. Besides, from (9), we find that its
corresponding eigenvalue is

Vyapln] = 75"

(22)

Thus, when a + b is an integer, we can obtain the close form
eigenvectors of the offset DFT from the summation of the sam-
pling values of Hermite functions with some extra phase terms.
In (21), it seems that we should calculate the infinite summa-
tion. Nevertheless, from experiments

2
when |z| > threshold ~ 4.73 + 0.47 - ¢* 3.

l’2 5
exp <——> H,(z)<107°
(23)
The error of the above approximation is very small when ¢ <

25. Therefore, in (21), we only have to calculate the summation
of

Vyapln] = ™ w7 3 (1) ethres ~
p=P

xH, <<n+pN— a-2|-b) 2%) (24)

where
Py =k |—(4.73 +0.47¢°7) Lo
! ‘ ‘ 2N N
G
Py = |(4.73 4 0.47¢%™) o
? ‘ ' 2N N|
n =n— 010 (25)

and [x]¢ means the largest integer no more than x. Thus, there
are at most

[ 1
2(4.73 4047 - ")y | ——
[ 2n N .

that should be considered. For example, if ¢ = 5 and N = 8§,
then 2(4.7340.47-¢%7 /1/27 N) = 1.766. In this case, only
two terms (p = —1, 0) should be considered. When

1
4.73 4+ 047 -¢*7)/ —— < 0.5
(4.73 + ¢ ")/ 5oy <05

+ 1 terms (26)

27)
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TABLE 1
DISTRIBUTION OF THE EIGENVALUES OF N -POINT OFFSET DFTS WHEN a + b IS AN INTEGER. WHEN a + b IS EVEN, ¢ = 1 AND 0 = (. WHEN
a+bIsODD,e = 0ANDO =1
Number of Multiplicities of the eigenvalues (¢ = 7(a—b)*/2N)
points exp(j¢) —jexp(j¢) —exp(j¢) Jexp(jP)
N=4m mte m m m—1+o
N=4m+1 mte mto m m
N=4m+2 m+l m+o mte m
N=4m+3 m+1 m+1 mte m+o
only one term has to be considered. In this case, V, 4 5[n] can For example, when N = 7, a = 0.3, and b = 0.7, from

be expressed as

w(ntpn -2t 2
1)pn(a+b) - ( i NN )

a+b
T2 )\W) @
where

pn =0 when 0 < ((n—M>> <E
2 N 2

((')) means modulus operation
N b
pn = — 1 when — < <(n— M)) < N. (29)
2 2 N

That is, if (27) is satisfied, then V, , 3[n] is quite similar to the
continuous Hermite function, except for some modulation, and
the negative part of the continuous Hermite function is mapped
to the locations of N/2 < ((n — (a + b)/2))n < N. The
constraint in (27) is satisfied if

. _b—a
e]7an

Vq,a,b[n] ~

xH, n—i—pn

@ N islarger (@ g is small. (30)

Thus, we can conclude that if the number of points increase,
Va,ab [n] converges to the continuous Hermite function. The rate
of convergence is faster when the order q is smaller.

In (21), ¢ can be any non-negative integer. Nevertheless, for
the N -point offset DFT, there are at most NV independent eigen-
vectors. We then try to select IV of the eigenvectors to construct
a complete and independent eigenvectors set. We can first ob-
serve the eigenvectors of the offset DFT. From the “eig” com-
mand of MATLAB, we obtain the results in Table I:

From (22), we find that Agyur = (—7)7 - exp(j¢)

for any integer L. Therefore, the multiplicities of
(=2 - exp(jo) (¢ = 0,1,2,3) are just the rank of
Span{Vy a[n], Vit4,a,[n], V:J+8,a,b[”] g+12,a0n] e

We also find the following theorem.

Theorem 1: If the multlphcltles of (—7)?-exp(j¢) are k, then
{Vatanap[n]lh=0,1,2,...... — 1} form a complete inde-
pendent eigenvectors set of the elgenspace of (—)? - exp(jo).

The proof of Theorem 1 is in the Appendix. Besides, the
eigenvectors belonging to different eigenspaces must be inde-
pendent. We can use the above results to choose the complete
and independent eigenvectors set among (21).

Table I, we find that the multiplicities of exp(j¢), —j exp(j¢),
—exp(jo), and jexp(jo) are 2, 2, 1, and 2, respectively. Thus,
the complete independent eigenvectors set for each eigenspace
are

exp(j¢) : Vo,apln],  Vaap[n]
—jexp(jp) : Viap[nl,  Vsapln]
—exp(j¢) : Va,ap[n]
jexp(jé) : Vsaplnl,  Vzapln] (31)

Thus, the complete independent eigenvectors in this case are
{Vganln]lg =0,1,2,3,4,5,7}. We can use the similar way to
obtain the complete independent eigenvectors set among (21) in
other cases. The general results are as follows:

oThe complete, independent, and close form Hermite-like
eigenvector set of the N-point offset DFT when a + b is an
integer [the corresponding eigenvalues are as (22)]

. oo w(vlerN*@)Q
Viapln] = ™5 Y 7 (—1)letrem
p=—o00
+b 2
><Hq<(n+PN—a2 )\/ﬁ’r) (32)
where
ne [07N - 1]
¢q=0,1,2,.......N =2, N,

N1 =N when N + a+ biseven

N1 =N —1when N + a + b is odd. (33)

C. Eigenvectors of the Offset DFT Obtained by Commutative
Matrix and Linear Combination Methods

Except for the sampling method introduced in Section II-B,
we can also use other methods to obtain the eigenvectors of the
offset DFT when a + b is an integer.

Commutative Matrix Method: In [14] and [21], the authors
developed a novel commutative matrix method to obtain the
eigenvectors of the DFT. The commutative matrix has a close
relation with the continuous differential equation [21]. Recently,
in [5], Tseng has used the similar commutative matrix method
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to derive the eigenvectors of the offset DFT whena = b = 1/2.
In fact, as long as a+b is an integer, we can use the commutative
matrix method to derive the eigenvectors of the offset DFT.

If Sap is the matrix commutative with the offset DFT, it
satisfies

Sa,bFa,b = Fa,bSa,b (34)
where F, , is the offset DFT transform matrix:

Fablm,n] = \/Nfle_j%r(m_“)("_b), m,n € [0, N — 1].

(35)
There are many possible choices for S, 1, when a + b is an
integer. Here, we choose S, p, as

Dy Cs 0 o --- 0 Cs T
cCi Dy Cy 0 - 0 0
0 C; Dy Gy : :
Sab=|0 0 C . . 0 : (36)
| Cy 0
0 Ci Dy_a (o
LCy O 0 0 Ch Dn_1 ]
where
2T a+b
D,, =2cos [W <m— ;_ )}
Cy = ed 7 (b—a)
Cy = eI 7 (a=0)
Oy = eI % (b=a) ;—j2d
C, =elw(a=b)g—i2ma, (37)

We can show that if a + b is an integer, then (34) is satisfied.
There are some facts to be noticed.

1) Sab is a Hermitian (conjugated symmetric) matrix

Sab = Sap - (38)

Besides, except for some exceptional cases, all the eigen-
values of S, 1, are different. The two exceptional cases
are ) a + biseven, and N = 4m (m is an integer), 2)
a + bis odd, and N = 4m + 2. In these cases, the multi-
plicities of A = 0 are two.

2) From the theorems of linear algebra, if e1, e2 are two
eigenvectors of the Hermitian matrix S, 1, with different
eigenvalues A1, Ao, then e; and eq are orthogonal:

N—-1

(e1,e2) = > ex[nez[n] =0

n=0

if Saper =Aje1, Sapez = Aez, A1 # A2 (39)

Since all the eigenvalues of S, 1, are different, the eigen-
vectors of S, p, form an orthogonal eigenvectors set.

3) If e is an eigenvector of S, 1, and the corresponding
eigenvalue is A, then since

Sa,bFa,be = Fa,bsa,be = )\Fa,be (40)
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4)

5)

Fa b -eis also the eigenvector of S, 1, and its eigenvalue
is also A. Since all the eigenvalues of S, 1, are different,
if Fa 1, - € and e are the eigenvectors of S, , belonging to
the same eigenvalue ), then F, 1, - € must be the constant
multiplication of e:

Fape = pe, where p is some constant. 41

That is, if e is the eigenvector of S, p, then it is also the
eigenvector of Fy .

Since S, b and F 1, have the same eigenvectors, and the
eigenvectors of S, p, are orthogonal, we can use the com-
mutative matrix S, 1, to find the orthogonal eigenvector
set of the offset DFT. Although the eigenvector set ob-
tained from the commutative matrix method has no closed
form, it is an orthogonal eigenvectors set.

When N = 4m and a + b is even, or when N = 4m + 2
and a + b is odd, since the multiplicities of A = 0 are
two, the above conclusions should be modified a little. In
this case, the two eigenvectors of S, 1, belonging to zero
eigenvalue may not be the eigenvectors of the offset DFT.
However, we can still derive the eigenvectors of the offset
DFT from them. Suppose that

Sa,b - €1 :Sa,b r€ = 0
N =4m and a + b is even
or N =4m + 2 and a + b is odd. 42)

We first define the 2N -length vector €1 [n] as

ei1[n] =e1[n], whenn=0~N —1
ei[n] =e1[n—N], whenn=N~2N —1
N =4m and a + b is even
ei[n]= —ei[n— N], whenn=N~2N —1
N =4m+ 2 and a + b is odd. (43)

Then, we define the operations Og( ) and Op( ) as in
(44), shown at the bottom of the next page, where (( ))
means modulus operation. In fact, Og( ) and Op( )
are similar to the operations of taking even part and
taking odd parts, respectively. Then, we can show that
Og/(e1[n]) and Op(e1[n]) are eigenvectors of the offset
DFT:

DFT,; [OF (e1[n])] = AgOk (e1[n])
DFTa’b [OO (61 [’I”L])] = )\OOO (el [n])

Ae = exp(j¢) (W)

Ao =jexp(jp), when N =8m

Ap = —exp(j¢)
Ao = —jexp(jo)
when N =4(2k + 1)m. (45)

Besides, we can also show that

Og(e1) =C10g(ez)
Oo(e1) =C200p(ez2), C4,Cy are some constants. (46)
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Linear Combination Method: In [7], the authors
used a simpler way to find the eigenvectors of the
original DFT. That is, for any N-point vector g[n], if
9s[n] = gln] + j*Gln] + (—1)*g[—n] + (=j)*G[-n], where
G[n] = DFT(g[n]), then g,[n] is the eigenvector of the N -point
DFT. We can also use the method similar as above to derive the
eigenvectors of the offset DFT when a + b is an integer.

For any N-point vector g[n], if

s g la=b)?
=g[n] + j%e™/" 2 " DFTqy (g[n])

gs[n]
+ (=1)%ei™ DFTab(DFTab( [n]))
+ (=)o DFTab
x (DF ab(DFTab( 7))

= gln] + joe I Ga,b[n]
s s —jmla=p)?
+(=1)°gl=n] + ()%™ TG p[-n] (47)
where G, 3[n] = DFT, ;(g[n]), then when a + b is an integer,

four times the offset DFT is just some constant phase multipli-
cation of the identity operation:

DFT,, (DFT 5 (DFTa (DFTa p (g[n]))))
(a—b)2
N

= %™ g[n] when a4+ b is aninteger. (48)

Therefore

DFT, (gs[n]) =DFTay (g[n])
+ jSe*J’“—‘“z’? DFTa » (DFT, 4 (g[n]))

+ (-1 S DET,
X (DFTa b (DFTa b ( [n])))

+ (_J)@e—]Sﬂ'(

\ S ja'r—(a.fb)
=(—j)%’" 27 "gsn].

(a—b)2
N

v)?
2N e

g[n]
(49)

That is, gs[n] is the eigenvector of the offset DFT belonging
to the eigenvalue (—j) - exp[jm(a — b)2/2N]. Therefore, we
can obtain the eigenvector of the N-point offset DFT from any
N-point vector easily by (47) when a + b is an integer.

D. General Form of the Eigenvectors of the Offset DFT

In Sections II-B and C, we illustrated that when a + b is an
integer, we can use at least three methods to obtain the eigen-
vectors of the offset DFT.

(@ Sampling the eigenfunctions of the continuous offset
FT Close from eigenvectors set is available, and the eigen-

2037

vectors have very clear relations with the eigenfunctions of
the continuous offset FT.

(@ Commutative matrix method (the orthogonal eigenvec-
tors set is available).

(® Linear combination method (the simplest way to obtain
the eigenvectors).

The eigenvector sets obtained from these methods are dif-
ferent. In fact, when a + b is an integer, the offset FT has infinite
possible eigenvectors.

From the theory of linear algebra, if e1,es, ..., and ek are
the eigenvectors of an matrix M belonging to the same eigen-
value A, the linear combination of them is also the eigenvector
of M belonging to the eigenvalue A. Since in (32), V,, 4 p[n] and
Vy+4.a.0[n] always have same eigenvalue, we can conclude the
following.

o The general form of the eigenvector of the offset DFT when
a + b is an integer

Lg
Eqap[n]= Z cLVasar,ap[n]
L=0
oo - (2N ()
~<n Z (_1)(a+b)pe—+
p=—o00
Lq
a+b 2T
Xy cLHd+4L((n+pN— > ) \ N) (50)
L=0
where
d=0,1,2,3, cr'sare free to choose

Ly =Max{L|d +4L €0,1,2,...... N —2,N}
when NV + a + b is even

Ls=Max{L|d+4L €0,1,2,...... ,
when N + a + b is odd.

N-1)

The corresponding eigenvalues for E,4 4 y[n] are

M= (=)t - eim T (51)
The eigenvectors derived from Sections II-B, C are all the

special cases of (50).

III. EIGENVECTORS/EIGENVALUES OF OFFSET DFTS WHEN
a + b # Integer

In Section II, we use three methods to derive the eigenvec-
tors/eigenvalues of the offset DFT when a + b is an integer.
However, when a + b is not an integer, these methods cannot be

pdm RN (ef““T"’"'eH [n] + ™ % (@H=m)xg, [((a + b - n))ZN])

a—b

b= - n~ .
)TN (TR "eqn] —eIT N

2
b=a (a+b=n))n g,y [((a+b— n))2N])

3 (44)
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applied, and we can only explore the eigenvectors/eigenvalues
by experiments. In this case, we find that the eigenvectors/eigen-
values of the offset DFT when a + b # integer are rather com-
plicated. Nevertheless, there still exists some regularity. We de-
scribe the regularity as follows.

A. Regularity of Eigenvectors

When a + b is not an integer, the vectors V, , ;[n] defined as
(32) are no longer the eigenvectors of the offset DFT. Neverthe-
less, by approximation, we find that

DFT, 5 (Vy,a8[n])

cx (a=b)? img
2

e’ 2 N e*]
X Vq,a‘,)b [n], when 0<n/ < % _A )
15 8 pizm(a+b)

xe 15 Vyap[n], when F+A<n'<N-1.

where n’ = ((n — (a+b)/2))n, and A is the smallest positive
integer that satisfied

exp(—QWA)M

<2w<%N—A)2>q

Equation (53) can be proven from the fact that the Hermite func-
tion of order ¢ is dominated by the term of exp(—=2/2) - .
Equation (52) can be proved as follows.

The transformation relation in (17) is satisfied even when
a + b is not an integer. We can also choose E ,(t) as the Her-
mite—Gaussian function defined in (8). Then

< threshold. (53)

2
oo Tr(n+pN—M)

DFT, eI Z el ™P(ath) o= N

p=—00

(oo 22) %)

(g imiest
_( _7) e IN

. b—
IR

n

# (- 25)?

oo
x S eIl - m——

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 7, JULY 2004

If the constraint of (27) is satisfied, the infinite summation can
be simplified into only one term:

b—a_ _m(n'+pn N)?
DFT, [e” N Neimpn(ath) g N

x H, <(n' —l—pnN)\/%)]

. . (a=52 . b—a . _ w(n'4pnN)?
z(_j)qeﬁr—w TN Jﬂpn(a+b)e e

x H, <(n’ —l—pnN)\/%)

where n’ = ((n — (a +b)/2))N, pn = 0when 0 < n’ < N/2,
and p,, = —1 when N/2 < n’ < N. After applying (28), the
above equation can be rewritten as

(55)

DFTa’b |_Vq,a,b[n” ~ )\nV ,a,b[n] (56)

where V, , 3[n] is defined as (21) and can be approximated by
(28) if (27) is satisfied. The value of \,, depends on whether
n' = ((n — (a+b)/2))y is greater than N/2 or not.

. w(a—b)?

N
An =(—j)% 28 when n’ < >

2
et yon(at)]

A :(—j)qej[ whenn' > 2. (57)

This matches the conclusion in (52).

B. Regularity of Eigenvalues

1) Strictly speaking, when a + b is not an integer, all the
eigenvalues of the offset DFT are different. Nevertheless, we
find that if IV (the number of points) is sufficient large, most of
the eigenvalues can still be approximated as

= onli(-240)

7 (a — b)?
0= 7r(a+b) + 5 T
For example, when a = 0.1,b = 0.3, and N = 32, from Matlab
experimentation, the phases of eigenvalues of the offset DFT
are as in (59), shown at the bottom of the page. In comparison,
the phases obtained from (58) are mq/2 + w(a — b)?/2N +
m(a+ b) = 1.2586, 2.8294, —1.8830, and —0.3122. There are
24 eigenvalue phases in (59) that can be approximated well by
the four values, and only eight eigenvalue phases cannot. Thus,
using (58), we can approximate most of the eigenvalues of the

where q is any integer. (58)

P offset DFT even when a + b # integer.
< H, (n—i—p N_9 + b) [ 27 . (54) Notice that in (59),. many qf the eigenvalues seem to be the
2 N same. However, they in fact differ only very slightly. We make
—2.4809 —1.8830 —1.8830 —1.8830 —1.8830 —1.8830 —1.8830 —1.8759
—0.6495 —-0.3139 -0.3122 -0.3122 -0.3122 -0.3122 -0.3122 -0.3122 (59)
0.5947 1.2586 1.2586 1.2586 1.2586 1.2586 1.2586 1.2590
1.3730 2.8006 2.8293 2.8294 2.8294 2.8294 2.8294 2.8294
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this conclusion from the experimental results shown in Table II.
We measured the minimal phase difference (denoted by dy)
among all the eigenvalues of the offset DFT for N = 7 ~ 22.
(We fix {a,b} to {0.1, 0.3}.) We found that d is never zero.
When N is increased by 1, dy 41 becomes 7~9 times smaller
than dpy. Thus, we can conclude that if @ + b # integer, no
matter how much larger N is, the offset DFT has no repeated
eigenvalues. The minimal-phase difference among all the eigen-
values becomes smaller and smaller when N grows larger; how-
ever, this difference is never zero.

The approximation of eigenvectors in (56) and (57) and the
approximation of eigenvalues in (58) are well known when N
is large since when [V is large, the offset DFT is more and more
similar to the continuous offset FT. In Table III, we show how
many eigenvalues satisfying

arg(A,) — (—% + a)‘ <10°* (60)
when a, b are fixed to 0.1 and 0.3. When N > 100, more than
90% of the eigenvalues can be approximated well by (58).

Besides, we also find that when the value of a+b is near some
integer, and a — b is near 0, then the approximated formula in
(58) is even better.

There is an interesting thing to be noticed. In (52),
we have stated that after doing the offset DFT for
Vg.ap[n], the left-half part of V,,,[n] is multiplied by
s1 = (—j)7expljm(a — b)?/2N], and the right-half part
of V,.p[n] is multiplied by so = (—j)%expljn(a —
b)2/2N]exp[j2m(a + b)]. Their geometric average is
V5152 = (—j)?expljm(a — b)?/2N]exp[jm(a + b)]. It is just
the approximated eigenvalue [see (58)] found by experiments.

2) When a =~ 0 and b = 0, there are only two eigenvalues that
cannot be approximated by (58). Although the two eigenvalues
cannot be approximated by (58), they can be approximated by
(61)

Ao R expljg], Ao~ exp[j(—m+ 60— )]

where ¢ = m(a 4 b)(1 — N~1/2)/2, and 6 is defined as (58).

IV. PROPERTIES OF THE EIGENVECTORS/EIGENVALUES OF
OFFESET DFTSs

The following properties are satisfied for any a and b: The
offset DFT matrix is unitary. Besides
F.,=F],=1F,, =1IF], (62)

where F, ; and IF, ; mean the transform matrices of the offset
DFT and offset IDFT. Thus, we have the following.

a) All the eigenvalues have unity amplitude.

b) If E[n] is an eigenvector of F, ; with eigenvalue A, then
@ conj(En]) is an eigenvector of F;, , with eigen-
value A.
® EIn] is an eigenvector of IF, ; with eigenvalue
conj(A).
® conj(E[n]) is an eigenvector of IF; , with eigen-
value conj(\).

2039

TABLE 1I
MINIMAL-PHASE DIFFERENCE (DENOTED BY dn) AMONG ALL THE
EIGENVALUES OF THE OFFSET DFT WHEN ¢ = 0.1,b = 0.3,AND N = 7 TO 22

N 7 8 9 10 11
dy| 1293 1.767 0.224 0.030 |4.10E-03
N 12 13 14 15 16
dy | 5.50E-04 | 7.32E-05 | 9.58E-06 | 1.24E-06 | 1.57E-07
N 17 18 19 20 21
dy | 1.97E-08 | 2.44E-09 | 2.99E-10 | 3.61E-11 | 4.41E-12

c) The offset DFT has at least one complete orthogonal
eigenvectors set.

(® When a + b is not an integer, since all the IV eigen-
values are different (/V is the number of points), the
eigenvectors belonging to each of the eigenvalue con-
struct an orthogonal eigenvectors set. However, when
N is larger, many eigenvalues are nearly the same. Due
to the round-off error, the two eigenvectors obtained
from computer may not be orthogonal if their corre-
sponding eigenvalues are almost the same. In these
conditions, we should use Gram—Schmidt method [15]
to convert them into an orthogonal eigenvectors set.
(® When a+b is an integer, the eigenvectors belonging
to different eigenvalues are orthogonal, but the eigen-
vectors belonging to the same eigenvalue may not be
orthogonal. We can use the Gram—Schmidt method to
convert the eigenvectors belonging to the same eigen-
value into an orthogonal eigenvectors set.

The following properties are satisfied when a + b is an in-
teger: Suppose that a; + by is some integer, and G p1[n] is
any eigenvector of the offset DFT with parameters a1, b;. Then,
from (32), we can prove the following.

1) If ag + bs = a3 + by, we can always find an eigen-
vector of the offset DFT with parameters az, bs (denoted
by Ga2.p2[n]) that satisfies

|Gazp2[n]] = |Garpi[n]]- (63)

2) If ao = a1 + B and by = b1 + B, where B is some
integer, then we can always find an eigenvector of the
offset DFT with parameters as, b2 (denoted by G 42 p2[n])
that satisfies

|Ga2,p2[n @ B]| = |Ga1,p1[n]] @ : cyclic shift.  (64)

The following properties are satisfied when a = b = M/2
(M is some integer):

1) In this case, the offset DFT matrix is symmetric. There-
fore, the offset DFT has real eigenvectors sets. In other
conditions, the offset DFT has no real eigenvector set.

2) The eigenvalues are 1, —1, 7, or —j. This is all the same
as the original DFT.
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TABLE 1II
NUMBER OF THE EIGENVALUES THAT CAN BE APPROXIMATED BY (58) WHEN ¢ = 0.1 AND b = 0.3 (DENOTED BY M) AND ITS RATIO TO N

50 100 200 300

41 90 188 288

N 7 10 20
M 2 4 13
M/N | 28.6% | 40% 65%

75%

82% | 90% | 94% | 96%

3) Inthis case, the eigenvectors are symmetric or asymmetric
with respect to a or N + a:

Eln] =+E[((2a —n))yy],  (()):modulus  (65)

where

length (E[n]) —9N, En] = En]
when 0<n<N -1
E[n] = E[n — NJ, N<n<2N-1
a is an integer
E[n] = — E[n — N,

when

when N <n<2N -1

1
a = integer + 3" (66)

V. EIGENVECTORS/EIGENVALUES OF DCTS/DSTS OF TYPES 4
AND 8 AND DHTS OF TYPE 4

There are eight types of discrete cosine transforms (DCT-I,
DCT-II, DCT-VIID) [16]-[18], eight types of discrete
sine transforms (DST-I, DST-II, DST-VII) [16]-[18],
and four types of discrete Hartley transforms (DHT-I ~
DHT-1V) [19]. Since the DCT-I, DCT-V, DST-I, DST-V, and
DHT-I have very close relations with the original DFT, we can
use the eigenvectors/eigenvalues of the original DFT to derive
their eigenvectors and eigenvalues.

Although the DCTs, DSTs, and DHTs of other types have
no obvious relations with the original DFT, they have close re-
lations with the offset DFT. We can use these relations together
with the eigenvectors/eigenvalues of the offset DFT to derive the
eigenvectors/eigenvalues of the DCT-IV, DCT-VIII, DST-1V,
DST-VIII, and DHT-V.

.......

.......

A. Eigenvectors and Eigenvalues of the DCT-1V and the
DCT-VIII

There are eight types of DCTs [16]-[18]. We list the DCT-IV
and DCT-VIII as follows:

DCT-1V :
Xca[m]=DCTy(z[n])
[ZCO{ )(n+§)>x[n] 67
DCT-VIII :
Xcs[m]=DCTs(z[n])
[ 2 N m=3) (n=3)
= N-I—%T;)COS( N—I—% z[n]. (68)

In fact, the N-point DCT-IV can be viewed as the special case
of the 2N -point offset DFT, where a = b = —1/2. If

A

X, i [m] =DFT_y _, (ifn])
2N -1
:\/W Z e—j%(m+%)(n+%)£[n] (69)
n=0
where

#n]=—&2N-1—-n), n=0,1,2,......., N -1 (70)
we can show that
N—-1 1
A 2
sl = [ 3 3 e (Ao
:Xc4[m]
where  Xcu[m] = DCT4(&[n))
m=0,1,2,......,N — 1. (71)
Notice that when ¢ = b = —1/2 and q is even, the close

form Hermite-like eigenvectors of the 2N-point offset DFT
[see (32), where N is replaced by 2N] satisfy the symmetric
relation in (65). Thus, if V, ca[n] is the former half part of

qu,—l/z,—l/z[n]i

Vysa = Ve oy 1 [
when n=0,1,2,..........,N—1 (72)
andg =0,1,2,...... ,IN — 1, then
DCT (Vy,can]) =DFT_y _y (Vo3 _1[n])
(=1)"Vay 1 1[m]
= (—1)*V,,calm] (73)

Thus, Vg c4[n] is the eigenvector of the N-point DCT-IV. From
the above discussion, we can conclude that the close form Her-
mite-like eigenvectors set of the N-point DCT-1V is

> w(nt2rntd)?
Vpoaln] = D (=1)Pe = 2%
p=—o0
1 T
X qu n+ 2pN + By N (74)

where n=0~N—-1, ¢g=0~N—-1
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and the corresponding eigenvalues are £1:

DCTy (Vo,caln]) = (=1)* - Vy,can]- (75)

The eigenspace belonging to the eigenvalue 1 has the rank of
N — [N/2]¢ ([ ]e is Gaussian symbol), and the eigenspace be-
longing to the eigenvalue —1 has the rank of [N/2]q

Besides, since quc4 [TL]/ V(1+2_Vc4 [n]7 Vvq+4vc4 [TLL
............ belongs to the same eigenspace, we can conclude
that the general form of the eigenvectors of the N -point DCT-1V
is

e 7r(77.+2pN+%)2
Eqcaln] = ) (—1)Pe %
p=—o0
La 1 s
H 2pN + = — 76
X;CL 2d+4L <<n+ D +2> N) (76)

where d = O or 1, ¢1,’s are any constants, and Ly = Max{L|d+
2L < N — 1}. The corresponding eigenvalue for Eq ca[n] is
(-1)".

The eigenvectors of the DCT-VIII can also be derived sim-
ilarly. Since the close form Hermite-like eigenvectors of the
2N + 1-point offset DFT with parameters a = b = —1/2 satis-
fies the symmetric relations as follows:

V2q,— -

1-iln] = =Vog 1 12N =n], Vog 1 _1[N]=0
(77
and the corresponding eigenvalue for Vo, _1/2 _1/2[n] is (1),

then

(=1)"Vaq 1 _1[m]
1 X ,
— )—7"1 m+3 n+5
2N £ 1 Zoe A Vel
TR (e )
1= 2N + 1
VQq,_%y_;[n] (78)

Therefore, the close form Hermite-like eigenvectors set of the
N-point DCT-VIII is

> w(ntpeNi1)+1)?
Vy,csln] Z (=1)Pe” ( T .
p=—00
1 T
><H2q<<n—|—p(2N+1)+ )”2N+1> (79)
where ¢=0,1,2,......,N —1

and the corresponding eigenvalues are (—1)¢

DCT (Vy,esfnl) = (~1)7 - Vycslnl. (80)

2041

The general form of the eigenvectors of the DCT-VIII can be
obtained by the linear combination of V; cs[n] (d = 0 or 1),
Vito,csn), Vaya,csn], Vaye,cs[n],

Although it seems that DCT-II, DCT-III, DCT-VI, and
DCT-VII have some relations with the offset DFT, it is still
very hard to derive their eigenvectors and eigenvalues.

B. Eigenvectors/Eigenvalues of DST-1V, DST-VIII, and
DHT-1V

DST-1V, DST-VIII, [16]-[18] and DHT-IV [19] are defined
as follows:

DST-IV :
X54[m]:DST4 (:v[n])
N-1 1 1
- % T;sm((m”)(nﬂ)) ] 81
DST-VIII :
ng [m] = DSTg (I’[’I’LD
5 N1
= N1 2 B(m)B(n)
1 1
X Sm(r(m—f]—VQZ(;-i- 2)) [n] (82)
1 .
where B(n)= 7 whenn=N—1, B(n)=1 otherwise
DHT-1V :
XH4 m] DHT4
41 1
[Z cas( jzv)(”‘i'z)) z[n]  (83)

where cas[n]=cos[n]+sin[n]. (84)

Following the similar process as in Section V-A, we can derive
their eigenvectors and eigenvalues from those of the offset DFT.
The results are shown as follows:

e The close form Hermite-like eigenvectors set of the

DST-1V:
> w(nt2pn+1)?
Vg,s4[n] = Z (=1)Pe” ( N 4
p=—o00
1 T
where ¢=0,1,2,...... ,N—1

and the corresponding eigenvalues are (—1)7:
1)*Vy,sa[n].

e The close form Hermite-like eigenvectors set of the
DST-VIII

DST, (Vg saln]) = (— (86)

o (marav-n+1)?

q SS 2N—1

= S[n] Z

p=—00

1 21
XH2q+1<<n+P(2N—1)+§> TN

1) 87)
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S[N—-1]=1/V2

where ¢=0,1,2,......,N—1,
S[n]=1, whenn#N-1

and the eigenvalues are (—1)%.
e The close form Hermite-like eigenvectors set of the
DHT-VI
Cba e 1r(n.+pN—A>2
Voo = 75" 37 (-trem

p=—00

A\ [2
xHq((n—l—pN—?) N”) (88)

where A = a+0b,q=0,1,2,....,.N — 1 foreven N,
andg=0,1,2,....,N — 2, N for odd N. Notice that the
eigenvectors of the N-point DHT-IV are all the same as
those of the N-point offset DFT with parameters a = b =
—1/2. However, the their eigenvalues are different:

DHTy (Vy,m4[n]) = Vg, m4[n]
when ¢ = 4L,4L + 1

DHT, (Vg ma[n]) = — Vg, maln]

when ¢ = 4L + 2,4L + 3. (89)

The eigenvectors sets shown as the above are not the only
eigenvectors set for the DST-IV, DST-VIII, and DHT-VI. The
general form of the eigenvectors can be obtained by a linear
combination of the eigenvectors with the same eigenvalue.

VI. FRACTIONAL OPERATIONS AND APPLICATIONS

After the eigenvectors/eigenvalues of the offset DFT,
DCT-1V, DCT-VIII, DST-IV, DST-VIII, and DHT-IV were
derived, we can use them to discuss the properties and perfor-
mance of these operations. Besides, we can use them to derive
the fractional operations.

The fractional operation has been a popular topic in re-
cent years. The continuous fractional operation (such as the
fractional Fourier transform [20]) has been extensively ex-
plored. Some discrete fractional operations have also been
developed. Several different types of the discrete fractional
Fourier transform (DFRFT) were derived [8], [9], [21]. In
[9] and [21], the authors used the eigenvector-decomposition
method to derive the DFRFT. Besides, in [11], the similar
eigenvector-decomposition method was used to obtain the dis-
crete fractional cosine transforms of type 2. In [5], Tseng
also used the eigenvector-decomposition method to derive the
fractional operation of the offset DFT when a = b =1/2. In
this section, we use eigenvector-decomposition method to de-
rive the fractional operations of the general offset DFT (when
a+ b is an integer), DCT-1V, DCT-VIII, DST-1V, DST-VIII,
and DHT-1V (see Fig. 1).

If a discrete transform can be expressed as the matrix opera-
tion as follows:

X = Ax, where A is the transform matrix 90)
we can define its corresponding fractional transform as
X a = AQX, (91)
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s*%*:

T T

T T T T T
The eigenvectors are symmetric / asymmetric
with respect to a or N—a 1

H P *
S *******a&*****—

H L 1 ! 1 L 1
n ‘a

E2a—n I

Fig. 1.
integer).

Symmetry property of eigenvectors when a = b = M /2 (M is some

If we know the eigenvectors/eigenvalues of A, we can calculate
A® as

A® =ED°E! (92)
where E = [vg vi V§—1J
vn's: the eigenvectors of A (93)
and D is a diagonal matrix where
D%(n,n) =A%, A,'s are the corresponding
eigenvalues of vy,'s
D%(m,n) =0, ifm #n. (94)

Since the eigenvectors/eigenvalues of the offset DFT (when a +
b is an integer), DCT-1V, DCT-VIII, DST-1V, DST-VIII, and
DHT-IV have been derived, we can use the above method to de-
rive the fractional operations of these transforms. For example,
to define the FRODFT, we can choose the eigenvectors set as
follows [from (32)]

e 2 (ntpn—4)?
Vm[n] =" F " Z (—1)APe =~
p=—00
A 27
H,, N — — —
X <<n +p 9 ) N)
where m =0,1,2,...... N —2 Ny

Nyr =N —1when N + a4+ bisodd

Ny =N when N + a + b is even. (95)

Besides, \,, = (—7)™ - exp[j(a — b)?7/2N] [from (22)]. We
can set the fractional powers of \,,,’s as

o P (a —b)? m
/\m—exp{Joz[ SN T3 | (-
After substituting (95) and (96) into (92)—(94), the FRODFTs
are defined successfully.
Because of the following two reasons, the offset DFT,

DCT-1V, DCT-VIII, DST-1V, DST-VIII, and DHT-IV have
various definitions of fractional transforms.

(96)

1) The eigenvector set is not unique.

From the discussion in Sections II and V, all the dis-
crete transforms described above have infinite possible
eigenvectors sets (due to the fact that all the eigenvalues
of these transforms are not distinct). Therefore, in (93),
there are many possible choices for v,,’s.

2) The fractional power of the eigenvalue is not unique.

From (94), to calculate the fractional operation, we
must calculate the fractional power of A,,’s. Nevertheless,

Authorized licensed use limited to: National Taiwan University. Downloaded on January 21, 2009 at 22:39 from |IEEE Xplore. Restrictions apply.



PEI AND DING: GENERALIZED EIGENVECTORS AND FRACTIONALIZATION OF OFFSET DFTs AND DCTs

500 500

o

ol ”l MM/VM”V

10 20 30 40 50 20 30 40 50
@ (®)
500 500

_—noise peak

«}}\///

signal spectrum

N

0 10 20 30 40 50 0 10 20 30 40 50

© @

Fig. 2. Example for using the fractional offset DFT (FRODFT) with
parameters ¢ = 0.3,b = 0.7, and a = 0.76 to remove the noise. (a) Input
signal. (b) Input signal + noise. (c) Results of FRODFT. (d) Recovered signal.

500 500
; W\MW'V\W
-500 -500
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(a) (b)
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0 ﬁA\\4f J\Kﬁ/\l/\f\NAﬁ 0
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© )

Fig.3. Transform results of the interfered signal in Fig. 2(b). (a) Original DFT.
(b) Original offset DFT (a = 0.3,b = 0.7, = 1).(c) FRODFT witha = 0.3,
b=0.7,a0 = 0.5. (d) FRODFT witha = 0.5,b = 0.5, « = 0.67.

the fractional powers of \,,’s have many possible choices.
In fact, if

An = exp(jbyn) 7

the general form of \,,“ is

Ao =exp[ja(f, + 2w M,)], where M,,'s are any integer.
(98)
Although there are infinite possible fractional operations,
all of them have the following properties.

A)  When o = 1, the fractional operation becomes the
original operation. When @ = 0, the fractional oper-
ation becomes the identity operation.

B)  If the eigenvectors set and the values of M,,’s in (98)
we choose are fixed for a; and «s, the fractional oper-

ation has the following additivity property:

AT A — A01+02 (99)
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especially A A~* = I, which means that the inverse
of the fractional operation with parameter « is just the
fractional operation with parameter —a.

We can use the fractional operations of the offset DFT,
DCT-1V, DCT-VIII, DST-IV, DST-VIII, and DHT-IV for some
applications.

1) Replace the original operations in some digital signal pro-
cessing applications:

Since the fractional operation has a parameter «, it is
more flexible than the original transform. We can adjust
the parameter « to control the performance. It can happen
that for some «, the performance of the fractional oper-
ation is better than that of the original one, and we can
use the fractional operation instead of the original one to
improve the performance.

For example, the original offset DFT can be used for
filter design and signal compression. We can use the frac-
tional offset DFT instead of the original offset DFT to
improve the performance of filter design and signal com-
pression. The DCT-IV can be used for data compres-
sion. We can also use the fractional DCT-IV instead of
the original DCT-IV to improve the performance of data
compression.

We give an example in Fig. 2. We use the FRODFT,
defined as in (95) and (96), instead of the original offset
DFT for filter design. We use Fig. 2(a) as the input signal
(we use two lines to show the real part and the imaginary
part). It is interfered with by shifted-modulated chirp-like
noise, as in Fig. 2(b). Then, we try to use the FRODFT to
remove the noise. We find that when we do the FRODFT
with parameters ¢ = 0.3, b = 0.7, and a« = 0.76, the
spectrums of the noise part (around the peak at m = 18)
and signal part (in the range of [0, 15] and [35, 50]) are
well-separated, as in Fig. 2(c). Therefore, we can remove
the spectrum of noise part and do the inverse transform
(i.e., FRODFT with parameters ¢ = 0.3, b = 0.7, and
a = —0.76). Then, we find that in the time domain, the
noise is removed perfectly [Fig. 2(d)].

In contrast, if we use the original DFT [Fig. 3(a)] or
the original offset DFT with parameters a = 0.3, b =
0.7 [Fig. 3(b)] or the FRODFT with wrong parameters
[Fig. 3(c) and (d)], the spectrums of the noise and the
signal are not separated well, and the noise cannot be
removed.

2) Encryption and watermarking:

The block diagrams of encryption and watermarking
are shown in Figs. 4 and 5. In convention, we choose Or
and O, 'in Figs. 4 and 5 as the DFT and IDFT, respec-
tively. Then, in Fig. 4, the key is Ei[n], and in Fig. 5,
the key is the embedded algorithm. If we do not know the
key, we cannot recover the original data X [n] in Fig. 4 and
cannot recover the watermark in Fig. 5. However, for the
applications of encryption and watermarking, using just
one key is not safe enough. To protect the hidden data, it
is better to use more keys.

Thus, in Figs. 4 and 5, we can choose Op as the
fractional operations of the DFT, DCT-IV, DCT-VIII,
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Data — p—p| Forward transform Encrypted data
X[n] 0r() Y. Y[n] = Op(X[n]E[n])
1[n] e keys: B[, Or() transmoit
Eq '[n]
Recovered data Inverse transform
) -1 - Encrypted data i
Xn) = Er 07 ' 0ln) ¢ _é._ or'0) M) €
Fig. 4. Block diagram of encryption.
Data —py Forward —»  Embedded -9 Inverse trans- —pWatermarked
X[n] transform O7() algorithm form O7() data W[n]
Watermark Wn] . .
: . transmit
keys: embedded algorithm, O7()
v
Data Inverse trans- Extracted Forward Watermarked
Xn] < form O7'() & algorithm (@ transform O7() —data W[n]
Watermark W[n] <«——
Fig. 5. Block diagram of watermarking.

DST-IV, DST-VIII, or DHT-IV instead of the DFT. Then,
many components of these fractional operations can be
treated as the keys for encryption and watermarking.

A) parameter «;

B) eigenvectors vy, s in (93) we choose

C)  definitions of the fractional powers of eigenvalues [i.e.,
the choices of M,,’s in (98)];

D)  if the original operation is the offset DFT, then there

are two extra parameters a, b.

Even if someone knows the value of F[n] in Fig. 4
and the embedded algorithm in Fig. 5, if they do not
know one of the parameters or components of the frac-
tional operations described above, they cannot recover
the original data or watermark. Thus, the safety is im-
proved a lot.

3) Digital implementation of their continuous counterpart:
For example, we can use the FRODFT to implement
the continuous fractional offset Fourier transform [6]
digitally.

VII. CONCLUSION

In this paper, we derive the close and the general forms of
eigenvectors of the offset DFT when a + b is an integer (a
and b are the parameters of the offset DFT) and their corre-
sponding eigenvalues. In the case where a + b is not an integer,
although the eigenvectors and eigenvalues are rather compli-
cated, we also found some of their regularities. We also use
the eigenvectors/eigenvalues of the offset DFT to derive the
eigenvectors/eigenvalues of the DCT-IV, DCT-VIII, DST-1V,
DST-VIII, and DHT-IV.

Besides, since the eigenvectors and eigenvalues have been
derived, we can use eigenvector-decomposition method to de-
rive the fractional operations of the offset DFT, DCT-IV, DCT-
VIII, DST-1V, DST-VIII, and DHT-IV. These fractional opera-
tions are more flexible than the original ones. They can replace

the original operations in digital signal processing applications,
such as filter design. Besides, they are also useful for encryption
and watermarking.

APPENDIX
PROOF OF THEOREM 1

We prove the case where q is even. In this case, the corre-
sponding eigenvalue of Va5 4 p[n] is exp(j¢) (when ¢ = 0)
or —exp(jp) (when ¢ = 2), ¢ = w(a — b)?/2N.

In(21), V; 4.5[n] is obtained from Hermite functions. Besides,
the Hermite function H,, () is the linear combination of 2% (¢ =
0,1,....,q/2)if ¢ is even. Thus, V, 4 p[n] can be expressed as

q
2
Vianln] =™ 73" aydy[n]
t=0

where ¢ is even, a;'s are constants (100)
s} 5[72
difn] = 37 (=1 exp (——"?N) TN
p=—00
a+b 27
n = — —. 101
. (n ! ) o (101)

We then apply the theorem of Chebyshev set [22]. A con-
tinuous functions set {1 (z) @2 (z), s ()} is called a
Chebyshev set on [«, (3] if and only if any linear combination

[a, B1.
If we sample the Chebyshev set

{e1(2) pa(2), s (@)}

at J-point z;’s (j = 1 ~ J), where J < M, a < z; < 3,
xz; # xjif ¢ # j, and z; is not a zero for all ¢,,,(z;)’s, then
{om(zj)|m,j=1,2,......,J} form an independent discrete
vectors set.
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The following functions form a Chebyshev set in Q@ =

[0, \/7N/2]:

di(x) = D (=1)lettr
p=—00
/ 2
X exp _(z+pv2rN) (z+pV2rN)2 (102)

The value of T is hard to determine. However, it is always no
less than [N/2 4+ 1]¢ ([ ] is Gaussian symbol). In (101), we
can see that d;[n] is in fact the uniform sampling of 1;(z):

dt[n] = ¢t($)|z:n’A
(a+b)

2
5 A:”ﬁ' (103)

where n' =n — ——~2

We then calculate how many sampling points are in the range of

[0,n/7N/2]. We find that

Casel: Niseven, a+biseven, n'AcQ
N N
ifn' =0,1,...... , =, — + 1 points
2 2
Case2: Nisodd a+biseven n'AeQ
iftn/ =0.1 M
e —
N+1
<%+1points>
Case3: Niseven a+bisodd 7n'Ae€Q
13 —
it =3 W=D
272 2
N .
5+1pomts
Case4: Nisodd a+bisodd n'A €
1 _
ifn’——,§, ...... ,M
2°2 2
W-b
5 points

(104)

In Case 4, we exclude the sampling point n’ A, where n’ = N/2
because ¢;(NA/2) = 0 for all t’s when a + b is odd. From the
above results and the theorem of the Chebyshev set, we obtain
that

{th[nHt:O,LZ ..... ,To—l}

’

(105)

form an independent vector set, and Ty = N/2+1, (N+1)/2+
1, N/2+1,and (N —1)/2+1 for Cases 1-4, respectively. Since
{d[n]|t = 0,1,2,....,Tp — 1} are independent, and Va4 5[]

is the linear combination of dg[n], d1[n],...... ydg—1[n]

{Vagaplnllg=0,1,2,....,To — 1} (106)
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also forms an independent vectors set. Among the above eigen-
vector sets

’

{V4m+2,a,b[n]|m = 07 1, 2, e .,T2 — 1}

{Vimap[n]lm =0,1,2,.... , Ty — 1}
(107)

belonging to the eigenvalue of exp(j¢), —exp(j¢), respec-
tively. The values of 73 and 75 can be calculated from 7. After
some computation, we find that

T, =m+e,
if N=4mordm+1,
e=0if a + bisodd
Ti=m+1, To=m+e
if N=4m+ 2or4dm + 3.

ngm

e=1ifa -+ biseven

(108)

That is, in (107), the values of 77 and T, match the multiplici-
ties of the eigenvalues exp(j¢) and — exp(j¢) found in Table L.
In other words, if the multiplicities of (—j)?exp(j¢) (¢ =
0,2) are k, {Vytanap[n],|h = 0,1,2,...... .k — 1} forms
a complete independent eigenvectors set of the eigenspace of
(=) exp(j).

We can use the similar way to prove that Theorem 1 is also
satisfied when ¢ = 1 or 3.
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