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ABSTRACT 
 

Before 1993, there were only few papers using the Monte Carlo simulation 
approach to value American options. Since then, a number of articles developed 
alternative computational skills for the Monte Carlo simulation to value these 
options. Recently, Grant, Vora and Weeks (1996) successfully developed a 
technique which can simply and directly determine “whether early exercise is 
optimal or not for American options when a particular asset value is reached at a 
given time using the Monte Carlo approach “. In this paper we first use the Geske 
and Johnson (1984) method to improve the computational efficiency for the Grant, 
Vora and Weeks method for valuing plain vanilla American options. We then 
extend our computational algorithm to the case of American options on maximum 
or minimum of two risky assets, whose prices are jointly lognormal distributions. 
We also show how to calculate the hedge ratios using the Monte Carlo simulations. 
Furthermore, we investigate how the key parameters affect the values of options on 
maximum or minimum of two risky assets. 
 
Keywords: Monte Carlo simulation approach, American options, Values of 

options on maximum or minimum of two risky assets 
 
 

 

                                                 
1 The earlier version of this paper was presented at the Seventh Conference On Theories and 
Practices of Security and Financial Markets, the 1999 Financial Management Annual 
Conference, and the 2000 NTU international conference on Finance. We are especially 
grateful to Gang Shyy and Her-Jiun Sheu for helpful comments and discussions. 
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I.  Introduction 
 
    There are now an increasing number of important security models where 
analytical solutions are not available. These complex options require a flexible 
valuation method accommodating multiple assets, multiple types of uncertainty, and 
path dependence, including American-style options. Monte Carlo simulation is an 
inherently flexible valuation method and has been used widely to value complex 
European-style options, but not American-style options, even since Boyle (1977) 
first introduced Monte Carlo simulation as a numerical method to value contingent 
claims. 
    Despite the popularity of the Monte Carlo simulation approach, the valuation 
of early-exercise features remains a tough problem in many important settings, 
particularly for multifactor models2 (such as the development of natural resources 
(Brennan and Schwartz (1995), the adoption of technological innovation (Grenadier 
and Weiss (1994), etc.). Hence, it is important to develop an efficient computational 
algorithm for the Monte Carlo simulations to value American options on several 
state variables. 
    Tilly (1993) recently succeeded in developing a procedure for incorporating an 
early exercise in a Monte Carlo simulation. His method needs storage of the paths 
followed by the underlying asset prices, their ranking, and their re-ranking at each 
possible early-exercise date. He also illustrated his method for valuing a plain 
vanilla American put option. In his paper, Tilly reported, but did not demonstrate, 
that it was possible to handle two or more state variables influencing the 
early-exercise decisions. 
    Barraquand and Martineau (1995) subsequently proposed an approach that 
could track the conditional probabilities of path-specific outcomes in a Monte Carlo 
simulation. They used these values to make early-exercise decisions and to value 
American put options on one, three, and ten underlying homogenous asset prices. 
Writing the put options on the maximum of multiple assets rapidly reduces the 
relevant state space when the initial asset prices are close to the exercise prices. This 
can simplify the problem, because it narrows the state space that the users must 
examine. 
    Broadie and Glasserman (1996) also developed a simulation algorithm which 
produces two estimators for the true option value, one biased high and the other 
biased low, and both asymptotically unbiased as the number of simulations tends to 
infinity. By convergence principle, these two estimates provide a conservative 
confidence interval for the option values. In their paper, they achieve a high degree 
of accuracy using 100 iterations of a three-period tree (two early exercise dates) and 
50 branch nodes. 
    Grant, Vora and Weeks (1996)3 (hereafter GVW) more recently demonstrated 
how to simply and directly determine “whether early exercise is optimal when a 
particular price is reached at a particular time.'' Hence, their model is able to 

                                                 
2 For excellent survey papers on the recent developments of the Monte Carlo simulation 
approach, please refer to Boyle, Broadie and Glasserman (1997), and Broadie and 
Glasserman (1997). 
3 In another paper, they extended their approach to develop a computational algorithm for 
calculating American-style Asian options. 
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incorporate the early-exercise feature into Monte Carlo simulations in such a way 
that it is readily extendible to value very complex options. They showed that their 
approach could accurately value plain vanilla American options and also argued that 
it is easy to extend their approach to value American options depending on multiple 
assets, but they did not show how to do it. 
    The contributions in this paper are threefold. We first use the Geske and 
Johnson (1984) approach to improve the computational efficiency of the GVW 
method for valuing plain vanilla American options. Secondly, we extend our 
computational algorithm to the case of American options on the maximum or 
minimum of two risky assets4 , whose prices are jointly lognormal distributions. Our 
approach can thus be viewed as an alternative of Broadie and Glasserman (1996) 
method. Thirdly, practitioners are more concerned about hedging, hence we also 
illustrate how to calculate the hedge ratios using Monte Carlo simulations in this 
paper. 
    Our paper continues in five sections. Section 2 describes the basic ideas of 
Monte Carlo simulations and briefly reviews the GVW algorithm. Section 3 
illustrates how to incorporate the Geske and Johnson (1984) approach into the GVW 
method to improve computational efficiency for the case of plain vanilla American 
options. We then extend the technique to the case of options on the maximum or 
minimum of two risky assets whose payoff follows jointly lognormal distribution. 
We also describe how to use the Monte Carlo simulation approach to calculate the 
option's hedge ratio. Section 4 presents and analyzes the numerical results. We then 
draw conclusions in Section 5. 
 

II.  Literature Review 
 
2.1  Monte-Carlo Simulations 
    Boyle (1977) introduced Monte Carlo simulation as a numerical method to 
value contingent claims and we summarize the procedures for implementing that 
simulation approach as follows. We first simulate sample paths of the underlying 
state variables over the relevant time horizon in a risk-neutral world. Secondly, we 
evaluate the discounted cash flow of a security on each sample path, as determined 
by the structure of the security in question. Thirdly, we calculate the average value 
of the discounted cash flow over sample paths. Hence, we obtain the desired values 
of contingent claims. Bascially, Boyle's Monte-Carlo Technique can only value 
European options. 
    Grant, Vora and Weeks (1996) extended the Boyle's Monte-Carlo simulation 
methods to value American options. Suppose that the value of a derivative depends 
on a non-dividend paying underlying asset. Its price S follows a standard geometric 
Brownian Motion in a risk-neutral world given as 

,dzrdt
S

dS σ+=                               (1) 

where r, σ  and dZ are the risk-free interest rate, the instantaneous standard 
deviation of the rate of return, and the standard Brownian Motion process, 
respectively. Applying Ito's lemma, we rewrite equation (1) as follows:  

                                                 
4 The extension of our approach to the case of options on several assets is straightforward. 
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.)2/(ln 2 dZdtrSd σσ +−=                         (2) 
Equation (2) illustrates that the change of ln S during an interval of time (e.g. t to T) 
follows a normal distribution with the following property: 

[ ]tTtTrSS tT −−−Φ− σσ ),)(2/(~ ln ln 2               (3) 
where  is the normal distribution with mean m and standard deviation s.  ],[ smΦ
It follows that 

[ ],))(2/(exp 2 εσσ ⋅−+−−⋅= tTtTrSS tT              (4) 
where ε  is a random variable drawn from a standardized normal distribution. 
Employing equation (4) and drawing a sample from a standard normal distribution, 
we can compute the stock prices at time T.  
    Grant, Vora and Weeks (1996) attempted to identify the critical price  at 
selected instants t

*
it

S
i, i =1, 2, ... , N - 1, between the current time t and expiration time 

T. The determination of the critical price  is done by simulation at successive 

time steps proceeding backward in time. Once the critical price  is identified, 
the value of a derivative can be computed by the usual simulation procedures, 
respecting the early exercise strategy as dictated by the known exercise boundary.  

*
it

S
*
it

S

    We now illustrate the procedures using an American option depending on one 
underlying asset as an example. At any time t, the value of the American put is Pt, 
and to calculate the value of an American put option it is necessary to identify the 
critical price  at all dates between t and T. We state the valuation problem 
formally as follows: 

*
it

S

],[
}{

max
)( *

tt
t

tt SQ
S

SP =                          (5) 

where when early exercise is optimal, i.e., or tt SXQ −= *
tt SS <

[ ] τ
ττ

r
ttt eSPEQ −
++= )( *  when holding the option is optimal, i.e., .  is 

the expectation operator and 

*
tt SS ≥ [*]E

τ  is an arbitrarily small unit of time.  
    As mentioned above, the early-exercise decision at each date depends on the 
knowledge of the optimal early-exercise decisions at all future dates. We must thus 
employ the backward recursion of dynamic programming, beginning with the 
terminal condition. At time T, it is optimal to exercise if the put is in-the-money, 
when its value is ),0max( TT SXP −= , i.e., . The optimization process 
begins at the last date before the put expires, 

XST =*

τ−T . The holder of the put option 
can exercise early or hold until the expiration of the option. At time τ−T , the 
value of the put is τ−− TSX  for  or  for .  *

ττ −− < TT SS τr
T ePE −][ *

ττ −− ≥ TT SS
    We now identify the critical price by finding the price for which 

. Once the critical price at each date has been identified, we 
estimate the value of the option through a simulation initiated at time 0, for the 
appropriate initial conditions. Early exercise occurs on the first date when the stock 
price falls below the critical price. Apart from a pure diffusion process, GVW also 
showed how to calculate the American put option value under the assumption that 
the underlying asset follows a jump-diffusion process. Since the computational 

τ
τ

r
TT ePESX −

− =− ][*
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procedures of a jump-diffusion process are similar to those of a pure diffusion 
process, we do not review them. 
2.2  Richardson Extrapolation Techniques 
    In an important contribution, Geske and Johnson (1984) showed that it was 
possible to value an American-style option by using a series of options exercisable 
at one of a finite number of exercise points. They employed Richardson 
extrapolation techniques to derive an efficient computational formula using the 
values of Bermuda options. The Richardson extrapolation techniques were 
afterwards used to enhance the computational efficiency and/or accuracy of 
American option pricing. For example, Bunch and Johnson (1992) argue that there 
is nothing in the Geske and Johnson's approach that require the exercise points to be 
equally spaced. Therefore, they propose a model that has the optimal exercise points, 
i.e. to choose the exercise points as a wealth maximizer would. Hence they can only 
use the maximum value of once and twice exercisable option to value American 
options. 
    However, as pointed out by Omberg (1987), there may in the case of some 
options be the problem of non-uniform convergence. A plausible example of a 
non-uniform convergence is a deep-in-the-money put option written on a low 
volatility, high dividend stock going ex-dividend once during the term of the option 
at time T/2 (T is the time to maturity of the option). Chang, Chung and Stapleton 
(2001) show how to solve the problem of non-uniform convergence encountered in 
the original Geske and Johnson (1984) model. They make the exercise points of the 
n-point exercisable options cover those exercise points of the m-point exercisable 
options where n is great than m. However, in general, the non-uniform convergence 
problem is not very serious for most of the cases.   

 
III.  The Extended Grant, Vora and Weeks Method 

 
3.1  The Case of Plain Vanilla American Put Options 
    As mentioned earlier, GVW tactfully incorporated a backward recursion 
approach into the traditional Monte Carlo simulation method to value American put 
options. However, they had to consider the number of early-exercise dates over the 
range from 12 to 20 to get accurate approximated values of American put options. 
To calculate a plain vanilla America put option, the CPU time of their approach with 
20 early-exercise dates, and 1,000 iterations to estimate the critical prices, and 
200,000 iterations to estimate the put value, is about 2 minutes and 10 seconds. The 
computational time of their approach is relatively slow to other numerical methods, 
such as the binomial method. Apparently, their approach has limitations on the 
applications to the case of options depending on more than one underlying asset. In 
this section, we will show how to employ the Geske and Johnson (1984) approach to 
improve the computational efficiency of the GVW method. 
    In their original paper, Geske and Johnson (1984) showed that an American put 
option can be calculated with a high degree of accuracy using a Richardson 
extrapolation approach. If P(n) is the price of a Mid-Atlantic option exercisable at 
one of n equally spaced dates, then, for example, using P(1), P(2) and, P(3), the 
price of American put is approximately 

)).1()2((
2
1))2()3((

2
7)3(ˆ PPpPPP −−−+=              (6) 
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    Term P̂  denotes the approximated value of the American put option, P(1) 
denotes the value of a European option, P(2) denotes the value of a Mid-Atlantic 
option permitting exercise at time T/2 or T, and P(3) denotes the value of a 
Mid-Atlantic option permitting exercise at time T/3, 2T/3, or T. 
    Incorporating the Geske and Johnson (1984) approach into the GVW method, 
we do not have to consider 12 to 20 early-exercise dates to estimate the put values. 
In fact, we only have to use the closed-form solutions for European options to 
calculate P(1) and the GVW computational technique to compute  P(2) and, P(3) . 
Hence, using equation (6), we can obtain the approximated American put values 
with less computational efforts.  
    To improve the computational efficiency of the GVW method in another 
dimension, we use the closed-form solutions for European options to determine the 
critical prices for P(2) and P(3) at time T/2 and 2T/3. The reason behind this 
application is that the twice (thrice) exercisable option becomes a pure European 
option at time T/2(2T/3).  The advantages in using closed-form solutions to 
calculate the critical prices, instead of using 1000 paths in the GVW paper, are 
twofold. First, we can obtain more accurate critical prices. Second, we can save a lot 
of time to compute the critical prices. 
 
3.2  The Case of Options on the Maximum or Minimum of Two Risky Assets: 
    In this subsection we extend the computational algorithm developed in the 
previous subsection to the case of options on the maximum or minimum of two 
risky assets. There are four types of maximum and minimum options on n-risky 
assets. We summarize the payoff of these options as follows: 
  1. The payoff function of a maximum call option : 
     [ ]KSSSMaxMax nTTT −),...,,(,0 21

  2. The payoff function of a maximum put option: 
     [ ]),...,,(,0 21 nTTT SSSMaxKMax −
  3. The payoff function of a minimum call option: 
     [ ]KSSSMinMax nTTT −),...,,(,0 21

  4. The payoff function of a minimum put option: 
     [ ]),...,,(,0 21 nTTT SSSMinKMax −
    We use the maximum call option and minimum put option as examples to show 
how to extend the GVW and the extended GVW models to the case of options 
depending on two correlated state variables. It is noted that the critical price in a 
one-state variable case is a “point'' while the critical prices of two-state variable case 
are trajectories expanded by the two state variables.   
    Consider an American minimum put option depending on two underlying 
stocks, S1 and S2, and strike price X. Both underlying stock prices follow a 
geometric Brownian Motion in a risk-neutral world as shown in equations (7) and 
(8), 

1122 / dZrdtSdS σ+=                          (7) 

2222 / dZrdtSdS σ+=                          (8) 
    where )( 21 σσ  denotes the instantaneous volatility of the rate of return of 

, and  and  are the standard Brownian Motion, respectively. )( 21 SS 1dZ 2dZ
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Furthermore, the correlation between  and  is as follows: 1dZ 2dZ
dtdZdZ 1221 ))(( ρ= .                         (9) 

    The magnitudes of correlation coefficients affect the trajectories of critical 
prices.  
    Based on the study of Tan and Vetzal(1995), the critical price space of the two 
risky assets has the property as shown in Figure 1. The region “A” in Figure A 
indicates that early exercise is optimal, while the region “B” in Figure 1 suggests 
that the holders of the options should keep the option alive. 
 
                        S2 
 
                   K 
                             A             B 
 
 
 
                                        A 
 
                                             K     S1 
 
 
 
 

Figure 1  The regions of Early Exercise for the Minimum Put Options 
     

In our computational algorithm, we divided the S1-S2 space into several small 
square regions as shown in Figure 2. For the purpose of analyzing early exercise 
decisions, we must draw the trajectories of critical prices on the space S1-S2. In 
Figure 2, if the option's holding value is less than its early exercise value at point 
“a”, while the holding value of the option is greater than its early exercise value at 
points “b” and “c”, we can judge that the critical price trajectories should allocate 
between lines ab and ac. We then use linear interpolation to allocate two critical 
prices － one between “a” and “b”, and the other between “a” and “c”5. Using the 
same procedures, we are able to trace the critical price trajectories for American 
options on the maximum or minimum of two risky assets. 
 
 
 
 
 
 
 
 
 
 

                                                 
5 A numerical example for calculating the critical prices of the option is referred to Table 3. 
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Figure 2  The Small Square Regions in two-dimension 

for Early Exercise Decisions 
     

The calculations of critical price trajectories for other subintervals follow the 
same procedures and steps as mentioned above. The first step is to compute the 
critical price trajectories for one period away from the time to maturity of the 
options. We then move forward to compute the critical price trajectories for two 
periods away from the time to maturity of the options, and so on. Hence, the whole 
critical price trajectories can be done by simulation at successive steps proceeding 
backward in time. Once all the critical price trajectories of each subintervals are 
decided, we will know whether early exercise is optimal or not at any time interval. 
 
3.3  Hedge ratios 
    Option traders are interested in prices as well as hedge parameters such as delta, 
gamma, etc. These “Greeks” are used to evaluate and manage the risks of their 
option books. Usually the hedge parameters are approximated by a numerical 
differentiation when closed-form solutions are not available. For example, the delta 
and gamma are approximated by 

h
hSChSC

2
)()( −−+

=δ                         (10) 

    where C(S+h), C(S), and C(S-h) are the option values obtained from some 
numerical method (e.g. binomial tree method) with initial stock price S+h, S, and 
S-h, respectively.  
    When a Monte Carlo simulation is applied to estimate the hedge parameters, it 
is advised that the option values C(S+h), C(S), and C(S-h) are calculated using the 
same paths. The reason behind this advice is follows. If the option values are 
calculated using different paths, it is very likely that one value (let's say C(S+h)) is 
overestimated and one value (C(S-h)) is underestimated. In this case the numerical 
delta from equation (10) will be overestimated a lot (especially when h is very small) 
and may be higher than 1. Therefore, we use the same paths to calculate the option 
values C(S+h), C(S), and C(S-h), and substitute them into equation (10) to obtain the 
hedge parameters. 
    Pelsser and Vorst (1994) showed that contrary to intuition when working with 
numerical derivatives (where a small h is preferred), it is suggested that h should be 
large enough. Otherwise, the numerical deltas will be a piecewise function of the 



台 灣 管 理 學 刊 
第 4卷 第 2期，2004 年 8月 131  

 

initial stock prices and hence produce nonsense gamma 6 .  Following their 
suggestion, we set h equal to $1% of S to avoid the piecewise problem. 
 

IV.  Numerical Results 
 
4.1  The Computational Accuracy and Efficiency of the Extended GVW 

Method 
    We first carry out simulations to show the accuracy of the extended GVW 
approach for the case of plain vanilla American options. Table 1 shows that the 
extended GVW approach outperforms the GVW approach with 20 exercisable 
points using the CRR binomial method with 10,000 time steps as a benchmark. The 
pricing error of the extended GVW approach is on average less than 1 percent. 
Furthermore, we address the issue of the relative speed of estimations using the 
GVW approach and the extended GVW approach. For this experiment, we use a C++ 
programming language running on a Pentium II 233. The CPU time of the GVW 
approach with 20 early-exercise dates, 1,000 iterations to estimate the critical prices, 
and 200,000 iterations to estimate the put value, is about 181 seconds. On the other 
hand, the CPU time of the extended GVW approach with 200,000 iterations to 
estimate the put value is only 39 seconds. Hence, the extended GVW approach is 
4.5 times faster than the GVW approach.  
 

Table 1  American Put Option Prices using different methods 
 
 
Parameters 

(1) 
GVW method 

(2) 
Extended GVW Method

(3) 
CRR Binomial Model  

X =  90 4.9612 5.0737 4.9968 
     95 6.8572 6.9133 6.9148 
    100 9.1716 9.2250 9.2186 
    105 11.8223 11.8067 11.9069 
    110 14.8747 14.9809 14.9673 
r = 6% 9.9196 9.8928 9.9450 

    8% 9.5215 9.6591 9.5709 
   10% 9.1716 9.2250 9.2188 
   12% 8.8204 8.8814 8.8864 
   14% 8.5116 8.5511 8.5721 
σ = 0.5 11.8227 11.9490 11.9042 
    0.4 9.1716 9.2250 9.2188 
    0.3 6.5130 6.5600 6.5458 
    0.2 3.8813 3.9248 3.9185 
    0.1 1.4175 1.4937 1.4519 
Note: In Table 1, S equals 100 and T equals 0.5 year. Columns 1 to 3 represents the American put option value using 
the Grant, Vora and Weeks method, the extended Grant, Vora and Weeks method, and Cox, Ross and Rubinstein 
(1979) binomial method with 10,000 time steps respectively.   

                                                 
6 Chung and Shackleton (2000) show that when the perturbation $h$ is arbitrarily small, the 
(numerical) probability of finishing in the money for an option with initial stock price S+h is 
the same as that for an option with initial stock price S-h. As a result, the numerical delta is a 
piecewise function of S. From their proof, it is straightforward to conclude that the 
piecewise problem is more severe when the number of paths is fewer for the Monte- Carlo 
simulation method. 
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     We now demonstrate the computational accuracy and efficiency of the GVW 
and the extended GVW methods for the case of American options on the maximum 
or minimum of two risky assets. Table 2 shows that the extended GVW model on 
average outperforms the GVW model for valuing American put options on the 
minimum of two risky assets using Boyle (1988) trinomial method as a benchmark. 
We also illustrate the relative speed of estimations using the GVW approach and the 
extended GVW approach. For this experiment, we also use a C++ programming 
language running on a Pentium II 233. The CPU time of the GVW approach with 20 
early-exercise dates, 1,000 iterations to estimate the critical prices, and 30,000 
iterations to estimate the put value, is about 5,862 seconds. The CPU time, however, 
of the extended GVW approach with 30,000 iterations to estimate the put value is 19 
seconds. Hence, the extended GVW approach is about 308 times faster than the 
GVW approach. 
 
        Table 2  American Put Option on the Minimum of Two assets 
 
 

Strike Price 
 

GVW Method 
 

The Extended GVW 
Method 

 
Boyle Trinomial Method 
(50 stages) 

X =  35    1.397 1.389 1.423 
     40 3.808 3.862 3.892 
     45 7.566 7.728 7.689 
Note: In Table 2, we assume that S1=S2=40,σ 1 =0.2,σ 2 =0.3, ρ =0.5,r =0.05,T =7 months. We use the values 

computed by Boyle (1988) model with 50 time steps as benchmarks. 
 
4.2  The critical price trajectories 
    In this subsection we first show how to generate the critical price trajectories 
for the American call and put options on the maximum or minimum of two risky 
assets. We then use these critical price trajectories to compute the option values. For 
demonstration purpose, we only use the American call option on the maximum and 
American put option on Minimum of two stocks as examples. 
    From the previous section, we know that in order to value the American 
options on the maximum or minimum of two risky assets, we have to trace the 
critical price trajectories in a two-dimension space. Hence, when we divide the early 
exercise and holding regions, we have to fix one of the two risky assets, say S1, at a 
certain price. We then initiate a set of serial simulations, each with a different initial 
price of S2, over a certain range. Comparing the holding value with the option's early 
exercise value, we can obtain one point of the trajectories of the critical prices. 
Repeating the above processes, we can trace the whole critical trajectory for each 
sub-period.  
    Table 3 shows the case of American put options on the minimum of two-risky 
assets. When the option's time to maturity is 0.25 years, S1=100 and 

, the immediate exercise value of the option is zero. However, the 
holding value of the option is greater than zero, and hence the option holders should 
keep this option alive. When S

120100 2 ≤≤ S

1 equals 120 and S2 equals 96, the early exercise value 
of the option equals 4, while the holding value is 5.3404. Therefore, the option 
holders should still keep this option alive. In the case of S1=120, S2=92, the early 
exercise value of the option equals 8, which is greater than the holding value, 7.9829. 
In this case, the option holder should early exercise the option. From the above 
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demonstrations, we find that the critical price for S2 will allocate between 96 and 92, 
given S1=120. The exact critical price is 92.0503. Repeating the above algorithm 
and procedures on the dimension of (S1, S2), we can trace the critical price 
trajectories as shown in Figure 1.  
 

Table 3  The Critical Price Sets for American Put Options  
on Minimum Of Two Risky Assets 

 
      S2      
S1 120 116 112 108 104 100 96 92 88 84 80 
120 0.3213 0.5835 1.0884 1.9722 3.3695 5.3923 8.0663 11.3050 14.9203 18.7697 
116 0.2990 0.4260 0.6802 1.1736 2.0399 3.4157 5.4181 8.0771 11.3099 14.9223 18.7708 
112 0.5527 0.6733 0.9055 1.3759 2.2090 3.5338 5.4948 8.1173 11.3260 14.9296 18.7745 
108 1.0454 1.1512 1.3616 1.7794 2.5509 3.8002 5.6723 8.2240 11.3771 14.9490 18.7822 
104 1.9249 2.0128 2.1889 2.5473 3.2118 4.3374 6.0614 8.4725 11.5093 15.0089 18.8025 
100 3.3269 3.3900 3.5276 3.8091 4.3508 5.2936 6.7955 8.9538 11.7943 15.1475 18.8612 
96 5.3404 5.3785 5.4706 5.6731 6.0749 6.8014 8.0122 9.8321 12.3338 15.4420 18.9887 
92 7.9829 8.0050 8.0540 8.1784 8.4505 8.9476 9.8336 11.2407 13.3011 16.0066 19.2713 
88 11.1812 11.1916 11.2160 11.2762 11.4294 11.7424 12.3150 13.2905 14.8243 17.0026 19.8223
84 14.7888 14.7913 14.8008 14.8282 14.8971 15.0564 15.3836 15.9834 16.9967 18.5692 20.8065
80 18.6375 18.6382 18.6400 18.6466 18.6744 18.7375 18.8862 19.2035 19.7918 20.7944 22.3735 
76 22.5941 22.5944 22.5954 22.5996 22.6186 22.6736 22.8033 23.0925 23.6489 24.6242
72 26.5933 26.5933 26.5933 26.5933 26.5933 26.5962 26.6076 26.6512 26.7569 27.0109 27.5249
68 30.6021 30.6021 30.6021 30.6021 30.6021 30.6024 30.6035 30.6095 30.6407 30.7240 30.9404 
Point of  
critical price 
trajectory 

(92.05,120) (91.97,116) (91.74,112) (91.21,108) (90.23,104) (88.85,100) (86.64,96) (84.05,92) (98.47,88) 
(80.69,88) 

(92.05,84) 
(77.23,84) 

(87.28,80) 
(73.73,80) 

Note: We assume that S1=S2=100; the strike price K=$100; the volatility of stock price σσ 21 = =0.2; the correlation coefficient of two stock 

prices, ρ =0.3; the risk-free interest rate r=0.05; the time to maturity of the option, T=0.25 year. 

 
4.3  Sensitivity analysis 
    In this subsection we carry out simulations by changing parameters to detect 
how the key factors affect the values of options. The benchmark parameters are the 
following: The initial stock price S1=S2=100; the strike price K=$100; the volatility 
of stock price 2.021 == σσ ; the correlation coefficient of two stock prices 

3.0=ρ ; the risk-free interest rate r = 0.05; the time to maturity of the option T = 1 
year. 

(a) The change in the strike price on the option values 
    Like a plain vanilla put option, the lower the strike price is, the higher chance is 
that the option will be “in the money”. Therefore, the value of the put option on the 
minimum of two risky assets will increase as the strike price increases. On the other 
hand, the values of call options on the maximum of two risky assets will decrease as 
the strike price increases. We summarize the results in Table 4. 
 

Table 4  Sensitivity analysis: the case of changing strike prices 
 

  Call Options on Maximum of Two Stocks  Put Options on Minimum of Two Stocks 
Stock Price  Strike Price   Strike Price  
 K=90 K=100 K=110 K=90 K=100 K=110 
S1=80 ,S2=100 11.813793 6.269004 3.089185 11.407249 20.025911 29.624855 
S1=90 ,S2=100 13.182898 7.233236 3.607354 6.593451 13.227290 21.666472 
S1=100,S2=100 16.382200 9.570794 5.044669 4.153702 9.423715 16.722591 
S1=110,S2=100 22.041126 13.974738 8.030676 3.064775 7.489765 14.007339 
S1=120,S2=100 29.955490 20.780962 13.159774 2.631299 6.592614 12.667324 
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 (b) The change in the stock volatility on the option values 
    Based on option pricing theory, we know that the higher the volatility of the 
underling assets is, the more chances there will be that the options will be in the 
money. This property still holds for the case of a call (put) option on the maximum 
(minimum) of two risky assets. Table 5 and Figures 3 and 4 show the results of the 
volatility change from 1.021 == σσ  to 3.021 == σσ .  
 
         Table 5  The Sensitivity Analysis: the case of Volatility Change 
 
   Call Options  on Maximum  of Two Stocks   
Stock Price       Volatility    of   Stock  Price  
 σ1=σ2=0.1 σ1=σ2=0.15 σ1=σ2=0.2 σ1=σ2=0.25 σ1=σ2=0.3 
S1=80 ,S2=100 2.376900 4.155182 6.269004 8.385653 10.899750 
S1=90 ,S2=100 2.492130 4.606137 7.233236 9.769871 12.594995 
S1=100,S2=100 3.786014 6.563631 9.570794 12.525365 15.370221 
S1=110,S2=100 9.692407 11.323543 13.974738 16.886507 19.552776 
S1=120,S2=100 19.437464 19.489101 20.780962 22.786716 25.079649 
      Put Options   on Minimum  of Two Stocks   
Stock Price       Volatility    of   Stock  Price  
 σ1=σ2=0.1 σ1=σ2=0.15 σ1=σ2=0.2 σ1=σ2=0.25 σ1=σ2=0.3 
S1=80 ,S2=100 19.572483 19.565594 20.025911 21.304179 23.128235 
S1=90 ,S2=100 9.627274 10.968495 13.227290 15.707577 18.215881 
S1=100,S2=100 3.765051 6.567232 9.423715 12.223455 14.988344 
S1=110,S2=100 2.524401 4.880692 7.489765 10.210578 12.944098 
S1=120,S2=100 2.380748 4.319213 6.592614 9.047388 11.626433 

 

 

e 3  The volatility change in the case of call options on maximum of two 
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Figure 4  The volatility change in the case of put options on minimum of two 
risky assets 

(c) The change in the correlation coefficient of the two risky asset prices on 
the option values 

    The higher the correlation coefficient is between the two risky asset prices, the 
higher there is of a possibility where the two risky asset prices move up or down at 
the same time. Hence, a high correlation coefficient will not increase the probability 
that makes options become in the money. On the contrary, the lower the correlation 
is between the two risky asset prices, the lower the possibility will be for which the 
two risky asset prices will not move up or down at the same time. Hence, a low 
correlation coefficient will increase the chances that make options become in the 
money. Therefore, the change in the correlation coefficients has an inverse 
relationship with the change in the values of options on call and put options on the 
maximum and minimum of two risky assets. The results are shown in Table 6 and 
Figures 5 and 6. 

Table 6  The change of correlation 
 

       Call Options on Maximum of  Two  Stocks  
Stock Price   Coefficient  of   Two  Stocks   
 ρ=-1 ρ=-0.6 ρ=-0.3 ρ=0 ρ=0.3 ρ=0.6 ρ=1 
S1=80 ,S2=100 6.552075 6.599467 6.514948 6.310575 6.269004 6.012285 5.8879005 
S1=90 ,S2=100 8.279318 8.176158 7.842778 7.521178 7.233236 6.607903 5.888609 
S1=100,S2=100 11.716550 11.338548 10.754653 10.231882 9.570794 8.593609 5.846547 
S1=110,S2=100 17.051163 16.200921 15.557789 14.794249 13.974738 12.9685965 11.678880 
S1=120,S2=100 23.886681 22.876541 22.164606 21.436956 20.780962 20.050289 19.855904 
       Put Options on Minimum of  Two  Stocks  
Stock Price   Coefficient  of   Two  Stocks   
 ρ=-1 ρ=-0.6 ρ=-0.3 ρ=0 ρ=0.3 ρ=0.6 ρ=1 
S1=80 ,S2=100 22.818130 21.816484 21.141283 20.561605 20.025911 19.652977 19.635233 
S1=90 ,S2=100 16.663141 15.615911 14.836497 14.060149 13.227290 12.365191 11.281821 
S1=100,S2=100 11.994658 11.325033 10.729671 10.141745 9.423715 8.565649 5.667369 
S1=110,S2=100 8.960818 8.656335 8.357699 7.968040 7.489765 6.899270 5.996993 
S1=120,S2=100 7.092293 7.116772 6.946944 6.801280 6.592614 6.279063 6.025959 
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4.4  Hedge ratios 

Table 7 shows the hedge ratios using a Monte Carlo simulation approach. For 
each option, we generate 100 delta and gamma estimates. Each estimate are 
computed with 100000 sample paths. The errors of hedge ratios are on average less 
than 1% using the Pelsser and Vorst (1994) extended binomial tree with 10,000 time 
steps as a benchmark. These results indicate that the computational algorithm of 
hedge ratios proposed in this paper is reliable and applicable in practice. 
 
                Table 7  Hedge Ratios for American Put Options 
 

 
Parameters 

(1) 
GVW method 

(2) 
Extended GVW 

method 

(3) 
CRR Binomial 

Model 
X=90 -0.256127 -0.264753 -0.261041 

Absolute difference with (3) 1.8825% 1.4220%  
X=95 -0.317767 -0.313309 -0.331918 

Absolute difference with (3) 4.2821% 5.5065%  
 X=100 -0.395569 -0.400685 -0.407379 

Absolute difference with (3) 2.8990% 1.6432%  
 X=105 -0.472723 -0.475609 -0.485028 

Absolute difference with (3) 2.5370% 1.9419%  
 X=110 -0.537681 -0.540860 -0.563708 

Absolute difference with (3) 4.6171% 4.0532%  
r=6% -0.404591 -0.415726 -0.419194 

Absolute difference with (3) 3.4836% 0.8273%  
r=8% -0.404359 -0.409085 -0.412970 

Absolute difference with (3) 2.0851% 0.9407%  
 r=10% -0.395569 -0.400685 -0.407379 

Absolute difference with (3) 2.8990% 1.6432%  
 r=12% -0.386596 -0.404667 -0.402329 

Absolute difference with (3) 3.9105% 0.5811%  
 r=14% -0.384013 -0.398943 -0.397752 

Absolute difference with (3) 3.9628% 0.2994%  
σ =0.5 -0.389462 -0.392861 -0.400293 

Absolute difference with (3) 2.7058% 1.8566%  
σ =0.4 -0.395569 -0.400685 -0.407379 

Absolute difference with (3) 1.2898% 1.6704%  
σ =0.3 -0.403027 -0.400890 -0.411134 

Absolute difference with (3) 1.9719% 2.4916%  
σ =0.2 -0.385502 -0.400365 -0.408098 

Absolute difference with (3) 5.5369% 1.8949%  
σ =0.1 -0.359597 -0.362600 -0.389179 

Absolute difference with (3) 7.6011% 6.8295%  
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V.  Conclusions 
 
    In this paper we first use the Geske and Johnson (1984) approach to improve 
the computational efficiency of the GVW approach for plain vanilla American 
options. We then extend the extended GVW approach to value American options on 
the maximum or minimum of two risky assets, whose prices follow a joint 
lognormal distribution. We demonstrate that the extended GVW approach is not 
only more computationally efficient than the GVW approach, but also can value 
American put options on one and two state variables to a high degree of accuracy.  
    We also carried out simulations to detect how the key parameters affect the 
values of maximum and minimum options. From the sensitivity analysis, the call 
(put) option value will decrease (increase) as the strike price K increases. As the 
property of plain vanilla options, the put and call option values increase when the 
volatility of the underlying assets increases. However, there exists a negative 
relationship between the correlation coefficient of the two underlying stocks and the 
option values.  
    We should finally point out that the approach developed in this paper has the 
potential to be extended to value options on the maximum or minimum of several 
(more than two assets) assets. It can also be applied to value basket options or 
basket warrants. Furthermore, the variance reduction techniques can be 
accompanied with our approach to improve the computational efficiency.     
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摘要 
 

於 1993 年以前，只有少數論文探討如何利用蒙地卡羅模擬法來對美式選

擇權訂價，此後即有許多學者企圖提出各式各樣的蒙地卡羅模擬法來對美式選

擇權訂價。Grant-Vora-Weeks (1996)成功地發展出一種簡單的蒙地卡羅模擬法，

其可以決定美式選擇權在各個時點的提早履約價值，進而可以計算出美式選擇

權的價格。本文首先以 Geske-Johnson 的 Richardson 外插法，來增進

Grant-Vora-Weeks (1996)之蒙地卡羅美式選擇權訂價法之計算效率，並將此法擴

展至最小值或最大值選擇權的訂價，同時本文亦執行敏感度分析，來探討一些

重要模型參數之變動，如何影響最小值或最大值選擇權的價格。 
 
關鍵字：蒙地卡羅模擬法、美式選擇權、最小值選擇權、最大值選擇權 
 


