Isometric path numbers of graphs*

Jun-Jie Pan
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan
Gerard J. Chang
Department of Mathematics
National Taiwan University
Taipei 106, Taiwan
E-mail: gjchang@math.ntu.edu.tw

October 3, 2003

Abstract

An isometric path between two vertices in a graph G is a shortest path joining them. The isometric path number of G, denoted by $\operatorname{ip}(G)$, is the minimum number of isometric paths needed to cover all vertices of G. In this paper, we determine exact values of isometric path numbers of complete r-partite graphs and Cartesian products of 2 or 3 complete graphs.

Keywords. Isometric path, complete r-partite graph, Hamming graphs

[^0]
1 Introduction

An isometric path between two vertices in a graph G is a shortest path joining them. The isometric path number of G, denoted by $\operatorname{ip}(G)$, is the minimum number of isometric paths required to cover all vertices of G. This concept has a close relationship with the game of cops and robbers described as follows.

The game is played by two players, the cop and the robber, on a graph. The two players move alternatively, starting with the cop. Each player's first move consists of choosing a vertex at which to start. At each subsequent move, a player may choose either to stay at the same vertex or to move to an adjacent vertex. The object for the cop is to catch the robber, and for the robber is to prevent this from happening. Nowakowski and Winkler [7] and Quilliot [9] independently proved that the cop wins if and only if the graph can be reduced to a single vertex by successively removing pitfalls, where a pitfall is a vertex whose closed neighborhood is a subset of the closed neighborhood of another vertex.

As not all graphs are cop-win graphs, Aigner and Fromme [1] introduced the concept of cop-number of a general graph G, denoted by $c(G)$, which is the minimum number of cops needed to put into the graph in order to catch the robber. On the way to give an upper bound for the cop-numbers of planar graphs, they showed that a single cop moving on an isometric path P guarantee that after a finite number of moves the robber will be immediately caught if he moves onto P. Observing this fact, Fitzpatrick [3] then introduced the concept of isometric path cover and pointed out that $c(G) \leq \operatorname{ip}(G)$.

The isometric path number of the Cartesian product $P_{n_{1}} \square P_{n_{2}} \square \ldots \square P_{n_{r}}$ has been studied in the literature. Fitzpatrick [4] gave bounds for the case when $n_{1}=$ $n_{2}=\ldots=n_{r}$. Fisher and Fitzpatrick [2] gave exact values for the case $r=2$. Fitzpatrick et al [5] gave a lower bound, which is in fact the exact value if $r+1$ is a power of 2 , for the case when $n_{1}=n_{2}=\ldots=n_{r}=2$. Pan and Chang [8] gave a linear-time algorithm to solve the isometric path problem on block graphs.

In this paper we determine exact values of isometric path numbers of all complete r-partite graphs and Cartesian products of 2 or 3 complete graphs. Recall that a complete r-partite graph is a graph whose vertex set can be partitioned into disjoint union of r nonempty parts, and two vertices are adjacent if and only if they are in different parts. We use $K_{n_{1}, n_{2}, \ldots, n_{r}}$ to denote a complete r-partite graph whose parts are of sizes $n_{1}, n_{2}, \ldots, n_{r}$, respectively. A Hamming graph is the Cartesian product of complete graphs, which is the graph $K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}$ with vertex set

$$
V\left(K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}\right)=\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right): 0 \leq x_{i}<n_{i} \text { for } 1 \leq i \leq r\right\}
$$

and edge set $E\left(K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}\right)$ is

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right)\left(y_{1}, y_{2}, \ldots, y_{r}\right): x_{i}=y_{i} \in V\left(K_{i}\right) \text { for all } i \text { except just one } x_{j} \neq y_{j}\right\}
$$

2 Complete r-partite graphs

The purpose of this section is to determine exact values of the isometric path numbers of all complete r-partite graphs.

Suppose G is the complete r-partite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$ of n vertices, where $r \geq 2$, $n_{1} \geq n_{2} \geq \ldots \geq n_{r}$ and $n=n_{1}+n_{2}+\ldots+n_{r}$. Let G has α parts of odd sizes. We notice that every isometric path in G has at most 3 vertices. Consequently,

$$
\operatorname{ip}(G) \geq\lceil n / 3\rceil
$$

Also, for any path of 3 vertices in an isometric path cover \mathcal{C}, two end vertices of the path is in a part of G and the center vertex in another part. In case when two paths of 3 vertices in \mathcal{C} have a common end vertex, we may replace one by a path of 2 vertices. And, a path of 1 vertex can be replaced by a path of 2 vertices. So, without loss of generality, we may only consider isometric path covers in which every path is of 2 or 3 vertices, and two 3-vertices paths have different end vertices.

Lemma 1 If $3 n_{1}>2 n$, then $\operatorname{ip}(G)=\left\lceil n_{1} / 2\right\rceil$.
Proof. First, $\operatorname{ip}(G) \geq\left\lceil n_{1} / 2\right\rceil$ since every isometric path contains at most two vertices in the first part.

On the other hand, we use an induction on $n-n_{1}$ to prove that $\operatorname{ip}(G) \leq\left\lceil n_{1} / 2\right\rceil$. When $n-n_{1}=1$, we have $G=K_{n-1,1}$. In this case, it is clear that $\operatorname{ip}(G) \leq\left\lceil n_{1} / 2\right\rceil$. Suppose $n-n_{1} \geq 2$ and the claim holds for $n^{\prime}-n_{1}^{\prime}<n-n_{1}$. Then we remove two vertices from the first part and one vertex from the second part to form an isometric 3 -path P. Since $3 n_{1}>2 n$, we have $n_{1}-2>2\left(n-n_{1}-1\right)>0$ and so $n_{1}-2>n_{2}$. Then, the remaining graph G^{\prime} has $r^{\prime} \geq 2, n_{1}^{\prime}=n_{1}-2$ and $n^{\prime}=n-3$. It then still satisfies $3 n_{1}^{\prime}>2 n^{\prime}$. As $n^{\prime}-n_{1}^{\prime}=n-n_{1}-1$, by the induction hypothesis, $\operatorname{ip}\left(G^{\prime}\right) \leq\left\lceil n_{1}^{\prime} / 2\right\rceil$ and so $\operatorname{ip}(G) \leq\left\lceil n_{1}^{\prime} / 2\right\rceil+1=\left\lceil n_{1} / 2\right\rceil$.

Lemma 2 If $3 \alpha>n$, then $\operatorname{ip}(G)=\lceil(n+\alpha) / 4\rceil$.
Proof. Suppose \mathcal{C} is an optimum isometric path cover with p_{2} paths of 2 vertices and p_{3} paths of 3 vertices. Then

$$
2 p_{2}+3 p_{3} \geq n
$$

Notice that there are at most $n-\alpha$ vertices in G can be paired up as the end vertices of the 3 -paths in \mathcal{P}. Hence $p_{3} \leq(n-\alpha) / 2$ and so

$$
2 p_{2}+2 p_{3} \geq n-(n-\alpha) / 2=(n+\alpha) / 2 \text { or } \operatorname{ip}(G)=p_{2}+p_{3} \geq\lceil(n+\alpha) / 4\rceil .
$$

On the other hand, we use an induction on $n-\alpha$ to prove that $\operatorname{ip}(G) \leq\lceil(n+$ $\alpha) / 47$. When $n-\alpha \leq 1$, we have $n=\alpha$ and G is the complete graph of order n. So, $\operatorname{ip}(G)=\lceil n / 2\rceil=\lceil(n+\alpha) / 4\rceil$. Suppose $n-\alpha \geq 2$ and the claim holds for $n^{\prime}-\alpha^{\prime}<n-\alpha$. In this case, $3 \alpha>n \geq \alpha+2$ which implies $\alpha>1$ and $n>3$. Then
we may remove two vertices from the first part of and one vertex form an odd part other than the first part to form a isometric 3-path P of G. The remaining graph G^{\prime} has $n^{\prime}=n-3$ and $\alpha^{\prime}=\alpha-1$. It then satisfies $3 \alpha^{\prime}>n^{\prime}$. Notice that $r^{\prime} \geq 2$ unless $G=K_{2,1,1}$ in which $n=4$ and $\alpha=2 \operatorname{imply} \operatorname{ip}(G)=2=\lceil(n+\alpha) / 4\rceil$. By the induction hypothesis, $\operatorname{ip}\left(G^{\prime}\right) \leq\left\lceil\left(n^{\prime}+\alpha^{\prime}\right) / 4\right\rceil$ and so $\operatorname{ip}(G) \leq\left\lceil\left(n^{\prime}+\alpha^{\prime}\right) / 4\right\rceil+1=\lceil(n+\alpha) / 4\rceil$.

Lemma 3 If $3 n_{1} \leq 2 n$ and $3 \alpha \leq n$, then $\operatorname{ip}(G)=\lceil n / 3\rceil$.
Proof. Since every isometric path in G has at most 3 vertices, $\operatorname{ip}(G) \geq\lceil n / 3\rceil$.
On the other hand, we use an induction on n to prove that $\operatorname{ip}(G) \leq\lceil n / 3\rceil$. When $n \leq 8$, by the assumptions that $3 n_{1} \leq 2 n$ and $3 \alpha \leq n$ we have $G \in\left\{K_{2,1}, K_{2,2}, K_{3,2}\right.$, $K_{2,2,1}, K_{4,2}, K_{4,1,1}, K_{3,3}, K_{3,2,1}, K_{2,2,2}, K_{2,2,1,1}, K_{4,3}, K_{4,2,1}, K_{3,2,2}, K_{2,2,2,1}, K_{5,3}, K_{5,2,1}$, $\left.K_{4,4}, K_{4,3,1}, K_{4,2,2}, K_{4,2,1,1}, K_{3,3,2}, K_{3,2,2,1}, K_{2,2,2,2}, K_{2,2,2,1,1}\right\}$. It is straightforward to check that $\operatorname{ip}(G) \leq\lceil n / 3\rceil$.

Suppose $n \geq 9$ and the claim holds for $n^{\prime}<n$. We remove two vertices from the first part and one vertex from the j th part to form an isometric 3-path P for G, where j is the largest index such that $j \geq 2$ and n_{j} is odd (when n_{i} are even for all $i \geq 2$, we choose $j=r$). Then, the remaining subgraph G^{\prime} has $n^{\prime}=n-3$ and $\alpha^{\prime}=\alpha-1$ or $\alpha^{\prime} \leq 2$. Therefore, $3 \alpha \leq n$ and $n \geq 9$ imply that $3 \alpha^{\prime} \leq n^{\prime}$ in any case. We shall prove that $3 n_{1}^{\prime} \leq 2 n^{\prime}$ according to the following cases.

Case 1. $n_{1} \geq n_{2}+2$.
In this case, $n_{1}-2 \geq n_{2} \geq n_{i}$ for all $i \geq 2$ and so $n_{1}^{\prime}=n_{1}-2$. Therefore, $3 n_{1}^{\prime}=3\left(n_{1}-2\right) \leq 2(n-3)=2 n^{\prime}$.

Case 2. $n_{1} \leq n_{2}+1$ and $n_{2} \leq 4$.
In this case, $n_{1}^{\prime} \leq n_{2} \leq 4$ and $n^{\prime} \geq 6$. Then, $3 n_{1}^{\prime} \leq 12 \leq 2 n^{\prime}$.
Case 3. $n_{1} \leq n_{2}+1$ and $n_{2} \geq 5$ and $r=2$.
In this case, $n_{1}^{\prime} \leq n_{2}-1$ and $n^{\prime}=n-3=n_{1}+n_{2}-3 \geq 2 n_{2}-3$. Then, $3 n_{1}^{\prime} \leq 3 n_{2}-3 \leq 4 n_{2}-8<2 n^{\prime}$.

Case 4. $n_{1} \leq n_{2}+1$ and $n_{2} \geq 5$ and $r \geq 3$.
In this case, $n_{1}^{\prime} \leq n_{2}$ and $n^{\prime}=n-3 \geq n_{1}+n_{2}+1-3 \geq 2 n_{2}-2$. Then, $3 n_{1}^{\prime} \leq 3 n_{2} \leq 4 n_{2}-5<2 n^{\prime}$.

According to Lemma 1, 2 and 3, we have the following theorem.
Theorem 4 Suppose G is the complete r-partite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$ of n vertices with $r \geq 2, n_{1} \geq n_{2} \geq \ldots \geq n_{r}$ and $n=n_{1}+n_{2}+\ldots+n_{r}$. If there are exactly α indices i with n_{i} odd, then

$$
\operatorname{ip}(G)= \begin{cases}\left\lceil n_{1} / 2\right\rceil, & \text { if } 3 n_{1}>2 n \\ \lceil(n+\alpha) / 4\rceil, & \text { if } 3 \alpha>n ; \\ \lceil n / 3\rceil, & \text { if } 3 \alpha \leq n \text { and } 3 n_{1} \leq 2 n\end{cases}
$$

In the proofs of the lemmas above, the essential points for the arguments is not the fact that each partite set of the complete r-partite graph is trivial. If we add some edges into the graph but still keep that each partite set can be partitioned into $\left\lfloor n_{i} / 2\right\rfloor$ pairs of two nonadjacent vertices and $n_{i}-2\left\lfloor n_{i} / 2\right\rfloor$ vertex, then the same result still holds.

Corollary 5 Suppose G is the graph obtained from the complete r-partite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$ of n vertices by adding edges such that each i-th part can be partitioned into $\left\lfloor n_{i} / 2\right\rfloor$ pairs of two nonadjacent vertices and $n_{i}-2\left\lfloor n_{i} / 2\right\rfloor$ vertex, where $r \geq 2$, $n_{1} \geq n_{2} \geq \ldots \geq n_{r}$ and $n=n_{1}+n_{2}+\ldots+n_{r}$. If there are exactly α indices i with n_{i} odd, then

$$
\operatorname{ip}(G)= \begin{cases}\left\lceil n_{1} / 2\right\rceil, & \text { if } 3 n_{1}>2 n \\ \lceil(n+\alpha) / 4\rceil, & \text { if } 3 \alpha>n ; \\ \lceil n / 3\rceil, & \text { if } 3 \alpha \leq n \text { and } 3 n_{1} \leq 2 n\end{cases}
$$

3 Hamming graphs

This section establishes isometric path numbers of Cartesian products of 2 or 3 complete graphs.

Suppose G is the Hamming graph $K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}$ of n vertices, where $n=n_{1} n_{2} \ldots n_{r}$ and $n_{i} \geq 2$ for $1 \leq i \leq r$. We notice that every isometric path in G has at most $r+1$ vertices. Consequently,

$$
\operatorname{ip}(G) \geq\lceil n /(r+1)\rceil
$$

Recall that the vertex set of $K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}$ is

$$
V\left(K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}\right)=\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right): 0 \leq x_{i}<n_{i} \text { for } 1 \leq i \leq r\right\} .
$$

We first consider the case when $r=2$
Theorem 6 If $n_{1} \geq 2$ and $n_{2} \geq 2$, then $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}}\right)=\left\lceil n_{1} n_{2} / 3\right\rceil$.
Proof. We only need to prove that $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}}\right) \leq\left\lceil n_{1} n_{2} / 3\right\rceil$. We shall prove this assertion by induction on $n_{1}+n_{2}$. For the case when $n_{1}+n_{2} \leq 6$, the isometric path covers

$$
\begin{aligned}
& \mathcal{C}_{2,2}=\{(0,0)(0,1),(1,0)(1,1)\}, \\
& \mathcal{C}_{2,3}=\{(0,0)(0,1)(1,1),(0,2)(1,2)(1,0)\}, \\
& \mathcal{C}_{2,4}=\{(0,0)(0,1)(1,1),(0,2)(1,2)(1,0),(0,3)(1,3)\} \text { and } \\
& \mathcal{C}_{3,3}=\{(0,0)(2,0)(2,2),(0,1)(0,2)(1,2),(1,0)(1,1)(2,1)\}
\end{aligned}
$$

for $K_{2} \square K_{2}, K_{2} \square K_{3}, K_{2} \square K_{4}$ and $K_{3} \square K_{3}$ respectively, gives the assertion.
Suppose $n_{1}+n_{2} \geq 7$ and the assertion holds for $n_{1}^{\prime}+n_{2}^{\prime}<n_{1}+n_{2}$. For the case when all $n_{i} \leq 4$, without loss of generality we may assume that $n_{1}=4$ and $3 \leq n_{2} \leq 4$. As we can partition the vertex set of $K_{n_{1}} \square K_{n_{2}}$ into the vertex sets of two copies of distance invariant induced subgraphs $K_{2} \square K_{n_{2}}$,

$$
\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}}\right) \leq 2 \mathrm{ip}\left(K_{2} \square K_{n_{2}}\right) \leq 2\left\lceil 2 n_{2} / 3\right\rceil=\left\lceil n_{1} n_{2} / 3\right\rceil .
$$

For the case when there is at least one $n_{i} \geq 5$, say $n_{1} \geq 5$, again we can partition the vertex set of $K_{n_{1}} \square K_{n_{2}}$ into the vertex sets of two distance invariant induced subgraphs $K_{3} \square K_{n_{2}}$ and $K_{n_{1}-3} \square K_{n_{2}}$. Then,
$\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}}\right) \leq \operatorname{ip}\left(K_{3} \square K_{n_{2}}\right)+\operatorname{ip}\left(K_{n_{1}-3} \square K_{n_{2}}\right) \leq\left\lceil 3 n_{2} / 3\right\rceil+\left\lceil\left(n_{1}-3\right) n_{2} / 3\right\rceil=\left\lceil n_{1} n_{2} / 3\right\rceil$.

Lemma 7 If n_{1}, n_{2} and n_{3} are positive even integers, then

$$
\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right)=n_{1} n_{2} n_{3} / 4 .
$$

Proof. We only need to prove that $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right) \leq n_{1} n_{2} n_{3} / 4$. First, the isometric path cover $\mathcal{C}_{2,2,2}=\{(0,0,0)(0,0,1)(0,1,1)(1,1,1),(1,0,1)(1,0,0)(1,1,0)(0,1,0)\}$ for $K_{2} \square K_{2} \square K_{2}$ proves the assertion for the case when $n_{1}=n_{2}=n_{3}=2$. For the general case, as the vertex set of $K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}$ can be partitioned into the vertex sets of $n_{1} n_{2} n_{3} / 8$ copies of distance invariant induced subgraphs $K_{2} \square K_{2} \square K_{2}$,

$$
\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right) \leq\left(n_{1} n_{2} n_{3} / 8\right) \operatorname{ip}\left(K_{2} \square K_{2} \square K_{2}\right) \leq n_{1} n_{2} n_{3} / 4
$$

Lemma 8 If $n_{3} \geq 3$ is odd, then $\operatorname{ip}\left(K_{2} \square K_{2} \square K_{n_{3}}\right)=n_{3}+1$.
Proof. First, we claim that $\operatorname{ip}\left(K_{2} \square K_{2} \square K_{n_{3}}\right) \geq n_{3}+1$. Suppose to the contrary that the graph can be covered by n_{3} isometric paths

$$
P_{i}:\left(x_{i 1}, x_{i 2}, x_{i 3}\right)\left(y_{i 1}, y_{i 2}, y_{i 3}\right)\left(z_{i 1}, z_{i 2}, z_{i 3}\right)\left(w_{i 1}, w_{i 2}, w_{i 3}\right),
$$

$i=1,2, \ldots, n_{3}$. These paths are in fact vertex-disjoint paths of 4 vertices, each contains exactly one type- j edge for $j=1,2,3$, where an edge $\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)$ is type- j if $x_{j} \neq y_{j}$. For each P_{i} we then have $x_{i 1}=1-w_{i 1}$ and $x_{i 2}=1-w_{i 2}$, which imply that $x_{i 1}+x_{i 2}$ has the same parity with $w_{i 1}+w_{i 2}$. We call the path P_{i} even or odd when $x_{i 1}+x_{i 2}$ is even or odd, respectively. Also, as P_{i} has just one type- 3 edge, by symmetric, we may assume either $x_{i 3} \neq y_{i 3}=z_{i 3}=w_{i 3}$ or $x_{i 3}=y_{i 3} \neq z_{i 3}=w_{i 3}$, for which we call P_{i} type 1-3 or type 2-2 respectively. For a type 2-2 path P_{i} we may further assume that $x_{i 1} \neq y_{i 1}=z_{i 1}=w_{i 1}$.

For $0 \leq x_{3}<n_{3}$, the x_{3}-square is the set $S\left(x_{3}\right)=\left\{\left(0,0, x_{3}\right),\left(0,1, x_{3}\right),\left(1,0, x_{3}\right)\right.$, $\left.\left(1,1, x_{3}\right)\right\}$. Notice that a type 1-3 path P_{i} contains 1 vertex in $S\left(x_{i 3}\right)$ and 3 vertices in $S\left(w_{i 3}\right)$, while a type 2-2 path P_{i} contains 2 vertices in $S\left(x_{i 3}\right)$ and 2 vertices in $S\left(w_{i 3}\right)$. We call a type 1-3 path P_{i} is adjacent to another type 1-3 path P_{j} if the last 3 vertices of P_{i} and the first vertex of P_{j} form a square. This defines a digraph D whose vertices are all type 1-3 paths, in which each vertex has out-degree one and in-degree at most one. In fact, each vertex then has in-degree one. In other words, the "adjacent to" is a bijection. Consequently, vertices of all type 1-3 paths together form p squares; and so vertices of all type 2-2 paths form the other $n_{3}-p$ squares.

Since $x_{i 1} \neq y_{i 1}=z_{i 1}=w_{i 1}$ for a type 2-2 path P_{i}, the first two vertices of a type 2-2 path together with the first two vertices of another type 2-2 path form a square. This shows that there is an even number of type 2-2 paths. Therefore, there is an odd number of type 1-3 paths.

On the other hand, in a type 1-3 path P_{i} we have $x_{i_{1}}+x_{i_{2}}=y_{i_{1}}+y_{i_{2}}$ has the different parity with $z_{i_{1}}+z_{i_{3}}$, and the same parity with $w_{i_{1}}+w_{i_{2}}$. So it is adjacent to a type 1-3 path whose parity is the same as $z_{i_{1}}+z_{i_{2}}$. That is, a type 1-3 path is adjacent to a type 1-3 path of different parity. Therefore, the digraph D is the union of some even directed cycle. This is a contradiction to the fact that there is an odd number of type 1-3 paths.

The arguments above prove that $\operatorname{ip}\left(K_{2} \square K_{2} \square K_{n_{3}}\right) \geq n_{3}+1$. On the other hand, since the vertex set of $K_{2} \square K_{2} \square K_{n_{3}}$ is the union of the vertex sets of $\left(n_{3}+1\right) / 2$ copies of $K_{2} \square K_{2} \square K_{2}$, by the cover $\mathcal{C}_{2,2,2}$ in the proof of Lemma 7 , we have $\operatorname{ip}\left(K_{2} \square K_{2} \square K_{n_{3}}\right) \leq$ $n_{3}+1$.

Theorem 9 If all $n_{i} \geq 2$, then $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right)=\left\lceil n_{1} n_{2} n_{3} / 4\right\rceil$ except for the case when two n_{i} are 2 and the third is odd. In the exceptional case, $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right)=$ $n_{1} n_{2} n_{3} / 4+1$.

Proof. The exceptional case holds according to Lemma 8.
For the main case, by Lemma 7, we may assume that at least one n_{i} is odd. Again, we only need to prove that $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right) \leq\left\lceil n_{1} n_{2} n_{3} / 4\right\rceil$. We shall prove the assertion by induction on $\sum_{i=1}^{3} n_{i}$. For the case when $\sum_{i=1}^{3} n_{i} \leq 10$, the following isometric path covers for $K_{2} \square K_{3} \square K_{3}, K_{2} \square K_{3} \square K_{4}, K_{3} \square K_{3} \square K_{3}$ and $K_{3} \square K_{3} \square K_{4}$, respectively, prove the assertion:

$$
\begin{aligned}
& \mathcal{C}_{2,3,3}=\{(0,1,1)(0,1,0)(0,0,0)(1,0,0),(0,2,2)(0,2,0)(1,2,0)(1,1,0), \\
& (0,2,1)(1,2,1)(1,1,1),(0,0,2)(0,1,2)(1,1,2) \text {, } \\
& (0,0,1)(1,0,1)(1,0,2)(1,2,2)\} ; \\
& \left(\begin{array}{rl}
\text { Let } \mathcal{C}_{2,3,3}^{*}= & \mathcal{C}_{2,3,3} \backslash\{(0,2,1)(1,2,1)(1,1,1),(0,0,2)(0,1,2)(1,1,2)\} \cup \\
& \{(0,2,1)(1,2,1)(1,1,1)(1,1,3),(0,0,2)(0,1,2)(1,1,2)(1,1,4)\} .
\end{array}\right) \\
& \mathcal{C}_{2,3,4}=\{(0,1,1)(0,1,0)(0,0,0)(1,0,0),(0,2,1)(0,2,0)(1,2,0)(1,1,0), \\
& (0,2,3)(0,2,2)(1,2,2)(1,1,2),(0,1,3)(0,1,2)(0,0,2)(1,0,2) \text {, } \\
& (0,0,1)(1,0,1)(1,1,1)(1,1,3),(1,2,1)(1,2,3)(1,0,3)(0,0,3)\} ; \\
& \mathcal{C}_{2,3,5}=\mathcal{C}_{2,3,3}^{*} \cup\{(0,1,4)(0,1,3)(0,2,3)(1,2,3),(0,0,3)(0,0,4)(0,2,4)(1,2,4), \\
& (1,0,3)(1,0,4)\} ; \\
& \mathcal{C}_{3,3,3}=\{(0,0,0)(0,2,0)(1,2,0)(1,2,1),(1,1,0)(2,1,0)(2,2,0)(2,2,1), \\
& (0,2,1)(0,1,1)(1,1,1)(1,1,2),(1,0,1)(2,0,1)(2,1,1)(2,1,2) \text {, } \\
& (0,1,0)(0,1,2)(0,2,2)(1,2,2),(0,0,1)(0,0,2)(2,0,2)(2,2,2) \text {, } \\
& (1,0,2)(1,0,0)(2,0,0)\} ;
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{C}_{3,3,4}=\{ & (0,0,0)(0,2,0)(1,2,0)(1,2,1),(1,1,0)(2,1,0)(2,2,0)(2,2,1), \\
& (0,2,1)(0,1,1)(1,1,1)(1,1,2),(1,0,1)(2,0,1)(2,1,1)(2,1,2), \\
& (0,1,0)(0,1,2)(0,2,2)(1,2,2),(0,0,2)(2,0,2)(2,2,2)(2,2,3), \\
& (0,1,3)(1,1,3)(1,0,3)(1,0,2),(1,0,0)(2,0,0)(2,0,3)(2,1,3), \\
& (0,0,1)(0,0,3)(0,2,3)(1,2,3)\}
\end{aligned}
$$

Suppose $\sum_{i=1}^{3} n_{i} \geq 11$ and the assertion holds for $\sum_{i=1}^{3} n_{i}^{\prime}<\sum_{i=1}^{3} n_{i}$. We shall consider the following cases.

For the case when there is some i, say $i=3$, such that $n_{3} \geq 7$ or $n_{3}=6$ with all $n_{j} \geq 3$, we have $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right) \leq \operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{4}\right)+\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}-4}\right) \leq$ $\left\lceil n_{1} n_{2} 4 / 4\right\rceil+\left\lceil n_{1} n_{2}\left(n_{3}-4\right) / 4\right\rceil=\left\lceil n_{1} n_{2} n_{3} / 4\right\rceil$.

For the case when some n_{i}, say n_{3}, is equal to 4 , we may assume $n_{1} \geq n_{2}$ and so $n_{1} \geq$ 4. Then $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{4}\right) \leq \operatorname{ip}\left(K_{2} \square K_{n_{2}} \square K_{4}\right)+\operatorname{ip}\left(K_{n_{1}-2} \square K_{n_{2}} \square K_{4}\right)=$ $\left\lceil 2 n_{2} 4 / 4\right\rceil+\left\lceil\left(n_{1}-2\right) n_{2} 4 / 4\right\rceil=\left\lceil n_{1} n_{2} n_{3} / 4\right\rceil$.

There are 6 remaining cases. The following isometric path covers prove the assertion for $K_{2} \square K_{3} \square K_{6}, K_{2} \square K_{5} \square K_{5}$ and $K_{3} \square K_{5} \square K_{5}$, respectively:

$$
\begin{aligned}
& \mathcal{C}_{2,3,6}=\mathcal{C}_{2,3,3}^{*} \cup\{(0,0,4)(0,0,3)(1,0,3)(1,2,3),(0,1,3)(0,1,4)(0,2,4)(1,2,4), \\
&(0,2,3)(0,2,5)(1,2,5)(1,1,5),(0,1,5)(0,0,5)(1,0,5)(1,0,4)\} ; \\
& \mathcal{C}_{2,5,5}= \mathcal{C}_{2,3,5} \backslash\{(1,0,3)(1,0,4)\} \cup \\
&\{(0,4,1)(0,4,0)(0,3,0)(1,3,0),(1,4,0)(1,4,1)(1,3,1)(0,3,1), \\
&(0,4,3)(0,4,2)(0,3,2)(1,3,2),(1,4,2)(1,4,3)(1,3,3)(0,3,3), \\
&(1,0,3)(1,0,4)(1,4,4),(0,4,4)(0,3,4)(1,3,4)\} ; \\
& \mathcal{C}_{3,5,5}= \mathcal{C}_{2,3,5} \backslash\{(1,0,3)(1,0,4)\} \cup \\
&\{(0,4,0)(2,4,0)(2,0,0)(2,0,1),(0,3,0)(2,3,0)(2,1,0)(2,1,1), \\
&(0,4,1)(0,3,1)(1,3,1)(1,3,0),(1,4,0)(1,4,1)(2,4,1)(2,2,1), \\
&(1,0,3)(2,0,3)(2,2,3)(2,2,0),(1,0,4)(2,0,4)(2,3,4)(2,3,1), \\
&(0,3,2)(2,3,2)(2,1,2)(2,1,3),(0,4,4)(0,4,2)(2,4,2)(2,0,2), \\
&(0,4,3)(1,4,3)(1,3,3)(1,3,2),(0,3,3)(2,3,3)(2,4,3)(2,4,4), \\
&(0,3,4)(1,3,4)(1,4,4)(1,4,2),(2,2,2)(2,2,4)(2,1,4)\} .
\end{aligned}
$$

The other 3 cases follows from the following inequalities:

$$
\begin{gathered}
\operatorname{ip}\left(K_{2} \square K_{5} \square K_{6}\right) \leq \operatorname{ip}\left(K_{2} \square K_{3} \square K_{6}\right)+\operatorname{ip}\left(K_{2} \square K_{2} \square K_{6}\right) \leq 9+6=15, \\
\operatorname{ip}\left(K_{3} \square K_{3} \square K_{5}\right) \leq \operatorname{ip}\left(K_{3} \square K_{3} \square K_{2}\right)+\operatorname{ip}\left(K_{3} \square K_{3} \square K_{3}\right) \leq 5+7=12, \\
\operatorname{ip}\left(K_{5} \square K_{5} \square K_{5}\right) \leq \operatorname{ip}\left(K_{5} \square K_{5} \square K_{3}\right)+\operatorname{ip}\left(K_{5} \square K_{5} \square K_{2}\right) \leq 19+13=32 .
\end{gathered}
$$

References

[1] M. Aigner and M. Fromme, A game of cops and Robbers, Discrete Appl. Math. 8 (1984) 1-12.
[2] D. C. Fisher and S. L. Fitzpatrick, The isometric number of a graph, J. Combin. Math. Combin. Comput. 38 (2001) 97-110.
[3] S. L. Fitzpatrick, Ph.D. Thesis, Dalhousie University, Nova Scotia, Canada, 1997.
[4] S. L. Fitzpatrick, The isometric path number of the Cartesian product of paths, Congr. Numer. 137 (1999) 109-119.
[5] S. L. Fitzpatrick, R. J. Nowakowski, D. Holton, and I. Caines, Covering hypercubes by isometric paths, Discrete Math. 240 (2001) 253-260.
[6] F. Harary and A. J. Schwenk, Evolution of the path number of a graph: covering and packing in graphs, II, Graph Theory and Computing (1972) 39-45.
[7] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete Math. 43 (1983) 235-239.
[8] J.-J. Pan and G. J. Chang, Isometric path numbers of block graphs, submitted.
[9] A. Quilliot, Thèse de 3e cycle, Université de Paris VI, 1978.

[^0]: *Supported in part by the National Science Council under grant NSC92-2115-M-002-015.

