Corrigendum to "The path-partition problem in block graphs" [Information Processing Letters 52 (1994) 317-322]

Gerard J. Chang ${ }^{1}$
Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

Recently, Wong [1] pointed out that Yan and Chang's [2] linear-time algorithm for the path-partition problem for block graphs is not correct, by giving the following example. Suppose G is the graph consisting of a vertex w and a set of triangles $\left\{x_{i}, y_{i}, z_{i}\right\}$ such that each x_{i} is adjacent to w for $1 \leqslant i \leqslant k$, where $k \geqslant 3$. Then $p(G)=k-1$, but Yan and Chang's algorithm gives $p(G)=1$. He also traced the algorithm for the graph in Fig. 2 of [2] in a different ordering to get an inconsistent value. He then gave a linear-time algorithm for the problem.

We clarify two things. First, Yan and Chang's algorithm is correct except for a typo: the J should be J^{*} in line 18 of Algorithm PPN. This is because it applies Theorem 3 for the graph G^{\prime}, the composition
of $G_{1}, G_{2}, \ldots, G_{t-1}$. With this typo revised, the example above is then not a counterexample.

Second, the method in [1], although correct, is much more complicated. Many involved concepts and cases are introduced. It is not clear how the algorithm can be implemented in linear time.

References

[1] P.-K. Wong, Optimal path cover problem on block graphs, Theoret. Comput. Sci. 225 (1999) 163-169.
[2] J.-H. Yan, G.J. Chang, The path-partition problem in block graphs, Inform. Process. Lett. 52 (1994) 317-322.

[^0]
[^0]: ${ }^{4}$ SSII of original article: 0020-0190(94)00158-8.
 E-mail address: (G.J. Chang).
 ${ }^{1}$ Supported in part by the National Science Council under grant NSC89-2115-M009-037.

