

Pergamon

0031-9422(95)00358-4

UNCOMMON DITERPENES WITH THE SKELETON OF SIX-FIVE-SIX FUSED-RINGS FROM TAIWANIA CRYPTOMERIOIDES

WANG-HONG LIN, JIM-MIN FANG and YU-SHIA CHENG*

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China

(Received in revised form 21 March 1995)

Key Word Index-Taiwania cryptomerioides, taxodiaceae; leaves; diterpenes.

Abstract—Four diterpenoid aldehydes and one norditerpenoid ketone having the uncommon skeleton of six-five-six fused-rings were isolated from the leaves of *Taiwania cryptomerioides*.

INTRODUCTION

Taiwania cryptomerioides Hayata, is an endemic evergreen species with thick linear-triangular leaves and elongate ovoid cones. The chemical constituents of this plant have been investigated extensively [1-5]. Varied sesquiterpenes, lignans and bisflavones have been found in the essential oil of the leaves and wood. We report herein the isolation of four diterpenes 1-4 and a norditerpene 5, which have the uncommon skeleton of fused 6-5-6 rings, in addition to known diterpenes.

RESULTS AND DISCUSSION

Four known abietane-type diterpenes, ferruginol (6) [6, 7], 6,7-dehydroferruginol (7) [6], 7 β -hydroxy-royleanone (8) [8], 7 α -hydroxyroyleanone (9) [8] and a secoabietane dialdehyde (10) [9], were identified by comparison of their physical and spectral data (mp, [α], mass, IR, ¹H and ¹³C NMR) with those in the literature.

Compound 1, namely taiwaniaquinone A, was isolated as orange crystals, mp 201–203° (decomposed). Its structure was determined by spectral methods. The exact mass $[M]^+$ at m/z 330.1825 indicated the molecular formula $C_{20}H_{26}O_4$. The IR absorptions at 1659 and 1639 cm⁻¹, and the UV absorptions at 432 (ε 579), 284 (ε 6400) and 207 nm (ε 12 600) were attributable to the quinone moiety. The ¹³C signals of the quinone moiety occurred at δ 124.6, 149.2, 151.2, 152.8, 181.0 and 185.3 (Table 1). The proton resonance (Table 2) at δ 9.84 (d, J = 4 Hz) and the carbon signal at δ 200.2 were attributable to an aldehyde group. The skeleton of 6–5–6 fused-rings were established by means of the C–H COSY and the HMBC experiment. Irradiation of Me-10 (at δ 1.14) caused 10% nOe of H-7 (at δ 3.76). The stereochemistry of 1 was thus confirmed.

* Solution in CDCl₃. † Solution in acetone- d_6 .

TI : 1 C : 1

‡ The signal of methylenedioxy group in 4 appeared at δ 100.8.

§ The signal of methoxyl group in 5 appeared at δ 62.1.

H-5 and H-7 were *trans* oriented and had a large coupling constant 11.5 Hz. Compound 1, $[\alpha]_{D}^{25} - 220.6^{\circ}$, showed a positive Cotton effect with the maximum at 309 nm ([θ], 22 600). Compound 1 was assigned to have the (5S, 7R, 10S)-configuration by analogy to those abietanes found in the plants of the Taxodiaceae family [4, 5]. The uncommon 6–5–6 rings skeleton was presumably formed (biogenetically) from the pinacol rearrangement of abietane-6, 7-diol as depicted in A (Scheme 1).

Table 1. ¹³C NMR spectral data of 1-5 (δ value in ppm)

С	1*	2†	3†	4* ·‡	5*·§
1	34.4	35.8	37.6	35.6	30.3
2	19.3	20.2	20.4	19.7	17.5
3	41.1	44.1	44.2	41.7	36.5
4	33.6	35.1	35.2	34.0	34.3
5	61.5	62.1	69.6	61.5	65.1
6	200.2	203.7	201.5	205.0	
7	54.4	88.4	90.2	54.5	211.1
8	149.2	148.8	147.4	113.4	118.3
9	152.8	155.1	154.3	132.3	142.7
10	48.7	50.2	47.3	46.3	42.7
11	181.0	182.8	182.6	135.2	138.4
12	151.2	154.3	153.5	146.8	152.2
13	124.6	125.0	125.6	116.7	126.1
14	185.3	186.1	187.0	146.0	151.1
15	24.2	24.9	24.9	25.1	25.9
16	19.8	20.4	20.5	21.0	20.6
17	19.8	20.4	20.5	21.1	20.6
18	35.0	34.8	33.8	34.4	24.4
19	21.8	23.7	24.6	22.0	33.0
20	20.1	22.8	23.9	22.4	28.8

Table 2. ¹H NMR spectral data of 1–5 (δ value in ppm; J value in Hz)

Н	1*	2†	3†	4* ‡	5* §
5	2.13 (d, J = 11.5)	2.04 (s)	2.26 (s)	2.16 (d, J = 11)	2.10 (s)
6	9.84 $(d, J = 4)$	9.82 (s)	10.08 (s)	9.47 $(d, J = 5)$	(-/
7	3.76 (dd, J = 11.5, 4)		.,	3.77 (dd, J = 11, 5)	
15	3.12 (sept, J = 7)	3.12 (sept, J = 7)	3.14 (sept, J = 7)	3.16 (sept, J = 7)	3.25 (sept, J = 7)
16	1.17 (d, J = 7)	1.16 (d, J = 7)	1.18 (d, J = 7)	1.26 (d, J = 7)	1.36 (d, J = 7)
17	1.18 (d, J = 7)	1.16 (d, J = 7)	1.17 (d, J = 7)	1.26 (d, J = 7)	1.36(d, J = 7)
18	0.79 (s)	0.78(s)	1.11 (s)	0.89 (s)	0.86 (s)
19	1.05 (s)	1.20(s)	1.04 (s)	1.06 (s)	1.24 (s)
20	1.14 (s)	1.49 (s)	1.35 (s)	1.10 (s)	1.42 (s)

* Solution in CDCl₃.

 \dagger Solution in acetone- d_6 .

[‡] The signals of methylenedioxy group in 4 appeared at 5.82 (d, J = 1) and 5.87 (d, J = 1). § The signal of methoxyl group in 5 appeared at δ 3.78 (s).

The structures of two 7-hydroxylated derivatives 2 (namely taiwaniaquinone B) and 3 (namely taiwaniaquinone C) were determined by similar procedures. Their pertinent ¹³C and ¹H signals are listed in Tables 1 and 2. The formyl group in 3 oriented on the β -face as the proton signal at δ 10.08 showed 10% nOe upon irradiation of Me-10 (at δ 1.35). Compound 2 showed a positive Cotton effect with maximum $[\theta]_{304}$ 21 100, whereas the epimer 3 showed a negative Cotton effect with minimum $[\theta]_{316} - 6100$.

The molecular formula $C_{21}H_{28}O_4$ for 4, which we have named taiwaniaquinol A, was deduced from its parent peak at m/z 344.1979. Compound 4 was colourless and crystalline, mp 158–160 °C. It showed intense IR absorptions at 3335 and 1686 cm⁻¹ for the hydroxyl and carbonyl groups. The ¹H NMR spectrum exhibited characteristic signals at δ 5.87 and 5.82 for the methylenedioxy group. The corresponding carbon signal appeared at δ 100.8. The structure of taiwaniaquinol A (4) was finally determined by means of the H–H COSY, C–H COSY and HMBC experiments. The nOe effect (13%) of H-7, observed by irradiation of Me-10 (at δ 1.10), was in agreement with the assigned stereochemistry. The large coupling constant 11 Hz between H-5 and H-7 conformed to their *trans*-relationship.

The NMR analysis revealed that compound 5 ($C_{20}H_{28}O_4$) is a norditerpene containing a methoxyl group (δ_H 3.78 and δ_C 62.1). The conjugated ketone showed IR absorption at 1638 cm⁻¹ and a carbon signal at δ 211.1. Compound 5, named taiwaniaquinol B, has a *cis*-ring junction as revealed by a nOe experiment, i.e. an 18% enhancement of H-5 (at δ 2.10) resulting from irradiation of Me-10 (at δ 1.42).

In summary, compounds 1-4 represent a new class of diterpenes, and 5 is a novel norditerpene. This is the first report of compounds having the uncommon 6-5-6 rings in nature.

EXPERIMENTAL

General and plant material. The dried leaves (1.75 kg) of T. cryptomerioides were exhaustively extracted with $Me_2CO(71 \times 3)$. The combined extracts were concd to ca 0.81, and taken up with CHCl₃ (0.81 \times 3). The CHCl₃soluble portion was concd (55g) and subjected to silica gel CC. The portion obtained from elution with EtOAc in hexane (5-20%) was further purified by HPLC (Hibar Lichrosorb Si 60, 7 or 10 μ m, 25 × 1 cm) with elution by EtOAc-hexane (1:10) to give compounds 1 (40 mg), 2 (20 mg), 3 (20 mg), 4 (25 mg), 5 (10 mg), 6 (30 mg), 7 (6 mg), 8 (251 mg), 9 (55 mg), 10 (15 mg). Merck Silica sheets were used for analyt. gel 60F TLC (EtOAc-hexane, 1:9).

Taiwaniaquinone A (1). Orange crystals from EtOAchexane (1:9). Mp 201–203 °C (decomposed). $[\alpha]_{D^5}^{25}$ – 220.6° (CHCl₃; c 1.3). TLC (EtOAc-hexane, 1:9) R_f 0.5. IR ν_{max}^{KBr} cm⁻¹. 3331, 1706, 1659, 1639. UV λ_{max}^{MeOH} nm (ε): 432 (579), 284 (6400), 207 (12 600). EIMS (70 eV) m/z (rel. int.): 330 [M]⁺ (2), 302 (100), 287 (22), 233 (68), 220 (35), 121 (5), 109 (8). HRMS for C₂₀H₂₆O₄ requires: 330.1832. Found: 330.1825. CD (MeOH) [θ]₃₀₉ + 22600, [θ]₂₇₇ – 1900, [θ]₂₆₇ – 1100, [θ]₂₄₉ – 4400, [θ]₂₃₇ – 3600.

Taiwaniaquinone B (2). Orange crystals from EtOAchexane (1:9). Mp 183–185 °C (decomposed). $[\alpha]_{D}^{31} - 83^{\circ}$ (CHCl₃; c 0.27). TLC (EtOAc-hexane, 1:9) R_{f} 0.43. IR ν_{max}^{KBr} cm⁻¹: 3498, 3376, 1720, 1662, 1664. UV λ_{max}^{MeOH} nm (ϵ): 427 (619), 277 (6000), 204 (8900). EIMS (70 eV) m/z(rel. int.): 317 [M - CHO]⁺ (56), 299 (4), 209 (100), 187 (5), 115 (10), 109 (68), HRMS for C₂₀H₂₆O₅-CHO requires: 317.1754. Found: 317.1749. CD (MeOH) [θ]₃₅₃ + 1800, [θ]₃₀₄ + 21 100, [θ]₂₅₇ - 9800.

Taiwaniaquinone C (3). Orange crystals from EtOAchexane (1:9). Mp 210–212 °C (decomposed). $[\alpha]_{31}^{31}$ – 266 (CHCl₃; c 0.27). TLC (EtOAc-hexane, 1:9) R_f 0.45. IR ν_{max}^{KBr} cm⁻¹: 3497, 3358, 1718, 1648, 1623. UV λ_{max}^{MeOH} nm (ε): 426 (631), 270 (8300), 220sh (22000), 202 (123800). EIMS (70 eV) m/z (rel. int.): 317 [M – CHO]⁺ (52), 299 (4), 233 (5), 209 (100), 205 (8), 115 (9), 109 (68). HRMS for C₂₀H₂₆O₅-CHO requires: 317.1754. Found: 317.1749. CD (MeOH) [θ]₃₉₉ + 2600, [θ]₃₅₂ + 6200, [θ]₃₁₆ – 6100, [θ]₂₈₀ + 17 700, [θ]₂₄₈ + 4000, [θ]₂₂₈ + 12 000.

Taiwaniaquinol A (4). Crystals from EtOAc-hexane (1:9). Mp 158–160 °C. $[\alpha]_{21}^{31}$ + 88.2° (CHCl₃; c 0.64). TLC (EtOAc-hexane, 1:9) R_f 0.48. IR ν_{max}^{KBr} cm⁻¹. 3335, 1686. UV $\lambda_{max}^{\text{MeOH}}$ nm (ε): 293 (4300), 206 (34 200). EIMS (70 eV) m/z (rel. int.): 344 (82), 315 (100), 273 (3), 259 (10), 245 (25), 231 (10), 203 (4). HRMS for C₂₁H₂₈O₄ requires: 344.1988. Found: 344.1979. CD (MeOH) $[\theta]_{352}$ + 200, $[\theta]_{308}$ + 16 800, $[\theta]_{280}$ - 6400, $[\theta]_{260}$ - 2500, $[\theta]_{251}$ - 2800, $[\theta]_{226}$ + 2000, $[\theta]_{210}$ - 1000. *Taiwaniaquinol B* (5). Crystals from EtOAc-hexane (1:9). Mp 142-144 °C. $[\alpha]_{31}^{31} - 37.7^{\circ}$ (CHCl₃; c 0.27). TLC (EtOAc-hexane, 1:9) R_f 0.63. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3297, 1638. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 350 (4900), 276 (10 000), 238 (14 000), 207 (18 700). EIMS (70 eV) m/z (rel. int.): 332 (100), 317 (38), 263 (8), 249 (45), 233 (10), 219 (6), 149 (3). HRMS for C₂₀H₂₈O₄ requires: 332.1988. Found: 332.1986.

Ferruginol (6). Oil solid. $[\alpha]_D^{20} + 37^\circ$ (CHCl₃; c 1.2) (lit. [6] $[\alpha]_D^{16} + 40.6^\circ$).

6,7-Dehydroferruginol (7). Oil. $[\alpha]_D^{24} - 59^\circ$ (CHCl₃; c 0.5) (lit. [6] $[\alpha]_D - 60^\circ$).

7β-Hydroxyroyleanone (8). Yellow solid. Mp 210–212°C (lit. [10, 11] 212–214°). $[\alpha]_{D}^{20}$ + 330° (CHCl₃; c 1.3) {lit. [10, 11] $[\alpha]_{D}$ + 340° (CHCl₃)}.

 7α -Hydroxyroyleanone (9). Yellow solid. Mp 175–176°C (lit. [12] 173–175°). $[\alpha]_{D}^{22} - 135°$ (CHCl₃; c 1.6) [lit. [12] $[\alpha]_{D} + 132°$ (CHCl₃)].

12-Hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial (10). Solid. Mp 189–191 °C (lit. [9] 191–192 °). $[\alpha]_D^{30} + 20$ ° (MeOH; c 0.7) {(lit. [9] $[\alpha]_D^{25} + 22^\circ$ (MeOH; c 1.2)}.

Acknowledgement—We thank the National Science Council for financial support.

REFERENCES

- Fang, J.-M. and Cheng, Y.-S. (1992) J. Chin. Chem. Soc. (Taipei) 39, 647.
- Kamil, M., Ilyas, M., Rahman, W., Hasaka, N., Okigawa, M. and Kawano, N. (1981) J. Chem. Soc., Perkin Trans. 1. 553.
- Kuo, Y.-H., Chen, W.-C. and Lin, Y.-T. (1987) Chem. Express 2, 105.
- 4. Su, W.-C., Fang, J.-M. and Cheng, Y.-S. (1993) Phytochemistry 34, 779.
- 5. Su, W.-C., Fang, J.-M. and Cheng, Y.-S. (1994) *Phytochemistry* **35**, 1279.
- 6. Bredenberg, J. B. (1957) Acta Chem. Scand. 11, 932.
- 7. Lin, Y.-T., Kuo, Y.-H. and Chang, B.-H. (1975) J. Chin. Chem. Soc. 22, 331.
- Hensch, M., Ruedi, P. and Eugster, C. H. (1975) Helv. Chim. Acta 58, 1921.
- Fang, J.-M., Jan, S.-T. and Cheng, Y.-S. (1986) J. Chem. Res. (S) 350.
- Kupchan, S. M., Karim, A. and Marcks, C. (1969) J. Org. Chem. 34, 3912.
- Kupchan, S. M., Karim, A. and Marcks, C. (1968) J. Am. Chem. Soc. 90, 5923.
- Edwards, O. E., Feniak, G. and Los, M. (1962) Can. J. Chem. 40, 1542.