Synthesis and Structure Determination of Cryptomanhydride, an Uncommon Natural Terpenic Anhydride

Wen-Chiung Su, Jim-Min Fang, and Yu-Shia Cheng*
Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China

Abstract

A novel terpenic anhydride, namely cryptomanhydride, was isolated from the leaves of Cryptomeria japonica; its absolute configuration was determined by a partial synthesis from hinokiol.

The Japanese cedar, Cryptomeria japonica D. Don., is a widely distributed conifer called 'sugi' in Japanese. ${ }^{1}$ From the ethyl acetate-soluble part of the acetone extract of the leaves, we isolated a novel terpenic anhydride 1 , namely cryptomanhydride. ${ }^{2}$ This compound has a unique skeleton incorporating an abietane diterpene and a p-cymene monoterpene. This is the first report of such uncommon terpenic anhydride in nature. ${ }^{3}$

$$
\begin{aligned}
& \text { Oil, }[\alpha]_{D^{30}}^{30}+370^{\circ}(\mathrm{MeOH} ; c 0.4) \\
& \text { TLC }\left(\mathrm{Merck} \text { silica gel } 60 \mathrm{~F}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \text { hexane }=1: 2\right) R_{f} 0.37 \\
& \text { UV }(\mathrm{MeOH}): \\
& 255 \mathrm{~nm}(\varepsilon 8500), 236 \mathrm{~nm}(\varepsilon 7000), \\
& 219 \mathrm{~nm}(\varepsilon 15200), 217 \mathrm{~nm}(\varepsilon 15000) \\
& \mathrm{CD}(\mathrm{MeOH}): \\
& \quad[\theta]_{266}+61900,[\theta]_{236}+38300, \\
& \\
& {[\theta]_{23}+32300,[\theta]_{203}+22000}
\end{aligned}
$$

HRMS for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{3}$ requires 448.2979 ; found 448.2977

The structure of 1 was determined by analysis of its spectral properties. The parent peak appearing at m / z 448.298 indicated the molecular formula $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{3}$. The anhydride moiety was inferred from the IR absorptions at 1775 and $1733 \mathrm{~cm}^{-1}$ as well as from the ${ }^{13} \mathrm{C}$ signals at $\delta 161.6$ (C-11) and 162.0 (C-12). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances (Table 1) were assigned by assistance of the $\mathrm{C}-\mathrm{H}$ COSY and HMBC spectra. Four aromatic protons on the para-disubstituted phenyl ring occurred at $87.04(d, J=8 \mathrm{~Hz})$ and $7.15(d, J=8 \mathrm{~Hz})$. The olefinic proton ($\mathrm{H}-14$) occurring at a low field $\delta 6.16$ (s) was attributable to the conjugated system. The cymenyl group is on equatorial position as the axial $\mathrm{H}-7$ at $\delta 2.60$ exhibited a large coupling constant $J_{6 \beta, 7}=$ 13 Hz .

Compound 1 exhibited a positive Cotton effect in the CD spectrum. Its absolute configuration was determined by a partial synthesis from hinokiol (3), a constituent of known configuration isolated from the same plant C. japonica. The phenol moiety of hinokiol was selectively methylated (Scheme I). The product 4

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of $1\left(\mathrm{CDCl}_{3}\right.$ solution, δ value in ppm, J values in Hz)*

\mathbf{C}		\mathbf{H}		\mathbf{C}	\mathbf{H}
1	36.4	$1.23(d d d, J 3.5,12,12.5)$	14	133.1	$6.16(s)$
		$1.83(d d d, J 3,5,12.5)$	15	32.2	$2.82($ sept, J7)
2	18.6	$1.50(m), 1.64(m)$	16	20.6	$1.07(d, J 7)$
3	41.5	$1.20(m)$	17	22.1	$1.09(d, J 7)$
		$1.46(d d d, J 3,4.5,12.5)$	18	33.4	$0.89(s)$
4	33.2		19	21.4	$0.81(s)$
5	46.1	$1.19(d d, J 4,12)$	20	20.2	$1.33(s)$
6	21.7	$1.58(d d d, J 2.5,4,12)$	21	40.3	$2.44(d d, J 9,13)$
		$1.60(d d d, J 12,12,13)$			$2.67(d d, J 3.5,13)$
7	41.5	$2.60(d d d d, J 2.5,3.5,9,13)$	22	136.9	
8	138.2		23,27	129.1	$7.04(d, J 8)$
9	142.9		24,26	126.6	$7.15(d, J 8)$
10	39.3		25	147.1	
11	161.6		28	33.7	$2.83($ sept,J7)
12	162.0		29,30	24.0	$1.22(d, J 7)$
13	141.9				

* The assignments of ${ }^{1} \mathrm{H}(\mathbf{3 0 0} \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75 \mathrm{MHz})$ signals were confirmed by the $\mathrm{H}-\mathrm{H}$ COSY, C-H COSY, HMBC and J-resolved spectra as well as by the nOe experiments.
was treated with PBr_{3} to give the corresponding bromides 5 (two 3 -epimers), which were subsequently reduced with $\mathrm{Bu}_{3} \mathrm{SnH}^{2} / \mathrm{Et}_{3} \mathrm{~B}$ to afford ferruginol methyl ether (6). The ($5 S, 10 S$)-configuration of ferruginol methyl ether has been determined. ${ }^{4}$ The optical rotation of $6,[\alpha]^{20}{ }_{\mathrm{D}}+37.5^{\circ}\left(\mathrm{CHCl}_{3} ; c 3.3\right)$, was in agreement with the reported value, $[\alpha]_{\mathrm{D}}+35.9^{\circ}\left(\mathrm{CHCl}_{3}\right)$.

Direct introduction of cymenyl group at C-7 of compound 6 by means of metalation-alkylation may be complicated by side-products derived from ortho-metalations. Wittig reaction of ketone 7 with the phosphorus ylide, prepared from 7 -bromocymene, $\mathrm{Ph}_{3} \mathrm{P}$ and BuLi, failed. Cymenyl substituent was successfully introduced by a three-step sequence: (i) oxidation of 6 with pyridinium chlorochromate, giving ketone 7 (sugiol methyl ether, 95%) along with a small amount of enone $\mathbf{8}$; (ii) addition of the Grignard reagent prepared from 7 bromocymene onto ketone 7 , giving 9 as a single product ($90 \%)^{5}$; and (iii) catalytic hydrogenation of 9 in the presence of hydrochloric acid, giving 11 (two 7 -epimers). Alternatively, 9 was dehydrated to give alkene 10 , which underwent hydrogenation to yield 11. By analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum, compound 11 consisted of two 7 -epimers (3:2) inseparable by HPLC.

According to the reported method, ${ }^{6}$ the isomeric mixture of 11 was treated with m-chloroperbenzoic acid (3 equiv) in darkness for 5 days to give cryptomanhydride 1 (15%) having ($5 S, 7 R, 10 S$)-configuration and the $7 S$-epimer $\mathbf{2}^{7}(10 \%)$ along with recovery of $\mathbf{1 1 (3 0 \%)}$.

Acknowledgment: We are grateful to the National Science Council for financial support (Grant NSC83-0208-M002-95)

Scheme I

Reagents and conditions: (i) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{Me}_{2} \mathrm{CO}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$, reflux, $16 \mathrm{~h} ; 95 \%$. (ii) $\mathrm{PBr}_{3}, \mathrm{Et}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 16 \mathrm{~h}$; then $5 \% \mathrm{NaHCO}_{3} ; 96 \%$. (iii) $\mathrm{Et}_{3} \mathrm{~B}$, benzene, $\mathrm{Bu}_{3} \mathrm{SnH}, 20^{\circ} \mathrm{C}, 6 \mathrm{~h}$; then $\mathrm{Et}_{3} \mathrm{~N} ; 96 \%$. (iv) PCC, benzene, reflux, 16 h ; 95%. (v) Mg , THF, $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; then $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O} ; 90 \%$. (vi) $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}$, benzene, reflux, 16 h ; 100%. (vii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}, 20^{\circ} \mathrm{C}, 16 \mathrm{~h} ; 100 \%$. (viii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}, 10 \% \mathrm{HCl}, 20^{\circ} \mathrm{C}, 16 \mathrm{~h}$; 95%. (ix) MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2{ }^{\circ} \mathrm{C}$, 5 days; 1 (15%), 2 (10%).

REFERENCES AND NOTES

1. Gan, W. S. (1958) Manual of Medicinal Plants in Taiwan. Nat. Res. Inst. Chin. Med.: Taipei, 1958, Vol. 1, 54-55. A voucher specimen is deposited in our laboratory. We previously isolated a series of sesquiterpenes, diterpenes (abietane-, kaurane- and labdane-types) and triterpenes from this plant, see Su , W.-C.; Fang, J.-M.; Cheng, Y.-S. Phytochemistry 1993, 34, 779; ibid. 1994, 35, 1279; ibid. 1994, 37, 1109.
2. The system name of 1 is ($6 R, 7 \mathrm{aS}, 11 \mathrm{aS}$)-4-isopropyl-6-(4-isopropylphenyl)methyl-6,7,7a, $8,9,10,11,11 \mathrm{a}-$ octahydro-8,8,11a-trimethylnaphth[1,2-c]oxepin-1,3-dione. We use the numbering of abietanes for 1 in this manuscript.
3. Three norabietane anhydrides have been found in the Chinese drug Danshen, Salvia multiorrhiza. see Chang, H. M.; Choang, T. F.; Chui, K. Y.; Hon, P. M.; Lee, C. M.; Mak, T. C. W.; Wong, H. N. C. J. Chem. Res. (S) 1990, 114.
4. Matsumoto, T.; Usui, S. Bull. Chem. Soc. Jpn. 1979, 52, 212.
5. Compound $9\left(\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{2}\right),[\alpha]_{\mathrm{D}}^{20}-31.5^{\circ}\left(\mathrm{CHCl}_{3}\right.$; c 3.3), was homogenous in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The 7 -hydroxyl group of 9 was considered to be on the axial position as evidenced by (i) irradiation of $\mathrm{H}-21$ causing a 7% NOE of $\mathrm{H}-14$; (ii) an intense fragment $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$at $m / z 430$ occurring in the mass spectrum of 9 without appearance of the parent peak.
6. Bendall, J. G.; Cambie, R. C.; Grimsdale, A. G.; Rutledge, P. S.; Woodgate, P. D. Aust. J. Chem. 1992, 45, 1063.
7. Compound 2: Oil, $[\alpha]^{15}{ }_{\mathrm{D}}+110^{\circ}\left(\mathrm{CDCl}_{3}\right.$; c 0.3$)$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.=1: 2\right) R_{f} 0.32$. IR $v^{\text {neat }}{ }_{\text {max }}$
 $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 0.80(s, \mathrm{H}-18), 0.82(s, H-19), 1.00(d, J=7 \mathrm{~Hz}, \mathrm{H}-16), 1.02(d, J=7 \mathrm{~Hz}, \mathrm{H}-$ 17), $1.11(s, \mathrm{H}-20), 1.22(d, J=7 \mathrm{~Hz}, \mathrm{H}-29,30), 2.64(m, \mathrm{H}-7), 2.72(d d, J=7,13.5 \mathrm{~Hz}, \mathrm{H}-21), 2.82$ (sept, $J=7 \mathrm{~Hz}, \mathrm{H}-28), 2.87($ sept, $J=7 \mathrm{~Hz}, \mathrm{H}-15), 2.90(d d, J=6,13.5 \mathrm{~Hz}, \mathrm{H}-21), 6.34(s, \mathrm{H}-14)$, $7.06(d, J=8 \mathrm{~Hz}, \mathrm{H}-23,27), 7.15(d, J=8 \mathrm{~Hz}, \mathrm{H}-24,26) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 18.5(\mathrm{C}-2)$, 21.0 (C-20), 21.2 (C-16, 17), 21.6 (C-19), 24.0 (C-29, 30), 25.6 (C-6), 32.4 (C-15), 32.8 (C-18), 33.3 (C-4), 33.7 (C-28), 36.9 (C-1), 38.2 (C-10), 40.4 (C-7), 40.7 (C-21), 41.5 (C-3), 49.7 (C-5), 126.7 (C24, 26), 128.9 (C-23, 27), 130.7 (C-14), 136.3 (C-8), 136.8 (C-22), 141.7 (C-13), 143.4 (C-9), 147.2 (C-25), 161.4 (C-11), 162.3 (C-12). EIMS (70eV) m/z (rel. int.) $448[\mathrm{M}]^{+}$(5), 315 (25), 271 (10), 243 (4), 133 (100), 117 (18), 105 (17). HRMS for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{3}$ requires 448.2979 ; found 448.2975 .
