
Energy-Efficient Cache Architecture for Multimedia Applications

Chia-Lin Yang, Chien-hao Lee, Hung-Wei Tseng

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

{yangc, r91017, r92022}@csie.ntu.edu.tw

Abstract
Power consumption is an important design issue of current em-
bedded systems. It has been shown that the instruction cache
accounts for a significant portion of the power dissipation of
the whole chip. Data caches also consume a significant portion
of total processor power for multimedia applications because
they are data intensive. In this paper, we propose two mecha-
nisms to reduce dynamic power consumption for both instruc-
tion and data caches. The HotSpot cache adds a small cache
between the CPU and L1 instruction. It identifies frequently
accessed instructions dynamically and stores them in the L0
cache. The software-controlled cache architecture improves
the energy efficiency of the data cache by allocating data types
in an application to different cache regions. On each access,
only the allocated cache regions need to be activated. We find
that on the average, the HotSpot cache and software-controlled
cache can achieve 52% and 40% energy reduction on instruc-
tion and data caches, respectively. Both schemes incur little
performance degradation.

1 HotSpot Cache

CPU

L1 Cache

L0 Cache

CPU

L1 Cache

Block Buffer

L0 Cache

Dynamic Steering
Mechanism

(a) (b)

Figure 1: (a) Filter cache (b) HotSpot cache

Cache partitioning is commonly used to reduce the dynamic
energy dissipation of caches since a smaller cache has a lower
load capacitance. Block buffering [3] proposes to buffer the
last accessed cache line. If the data in the same cache line is
accessed on the next request, only the buffer needs to be ac-
cessed. A two-phase cache access scheme can be used to avoid
performance degradation [4]. The Filter cache [2] adds a big-
ger buffer (i.e., the L0 cache) to cache recently accessed cache
blocks as shown in Figure 1(a). On each access, the L0 cache

is first accessed. The L1 cache is only accessed when an L0
miss occurs. This approach can achieve more energy reduc-
tion compared with the block buffering mechanism, however,
it could cause significant performance degradation if an appli-
cation’s working set cannot be captured in the small L0 cache.
Studies show that the performance degradation could be more
than 20%. In this paper, we propose a novel instruction cache
architecture, the HotSpot cache as shown in Figure 1(b). Un-
like the Filter cache where the L0 and L1 cache are accessed
sequentially, a dynamic steering mechanism is employed to di-
rect a request to either the L0 or the L1 cache. The L1 cache is
augmented with a block buffer. The design goal is to achieve
energy savings comparable to the Filter cache with negligible
performance degradation.

CPU

Exe
Counter

Hot-Block
Flag

1

0+

-

Mode Controller

Target
Addr

Branch
Tag

L0

L1

Branch Target Buffer

Monitor
Counter

Overflow

Start

profiling

Block Buffer

Prev -Hot
Flag

Valid
Bit

Figure 2: Block diagram of HotSpot cache

The HotSpot Cache identifies hot basic blocks in each pro-
gram phase instead of the entire program lifetime. Bellas et
al. [1] propose a static approach, L-Cache, that selects basic
blocks to be mapped to the L0 cache based on profile infor-
mation from the entire program execution. This approach may
underutilize the L0 cache in program phases where identified
hot basic blocks are not active. Therefore, we design a run-
time mechanism that dynamically detects phase change and se-
lects active hot basic blocks early in each program phase. To
make such a hardware-based technique useful for low energy,
we build the detection mechanism around the Branch Target
Buffer. The block diagram of the proposed scheme is illustrated
in Figure 2. The simulation results show that for applications
with multiple phases, the HotSpot cache can achieve up to 2x
higher L0 cache utilization than the L-Cache. Without the cost
of performance degradation, the HotSpot cache achieves equal
or more energy savings than the Filter cache for all applica-
tions tested in the paper. The energy reduction provided by the
HotSpot cache is 52% on the average.

1
0-7803-9329-5/05/$20.00 ©2005 IEEE

2 Software-Controlled Cache
For an embedded system dedicated to a specific application, the
cache architecture can be tuned to meet the need of that partic-
ular application. For an integrated multimedia system, a shared
cache architecture among devices is often utilized to reduce
hardware cost. Therefore, the conventional energy optimiza-
tion technique which explores the design space in searching for
the optimal energy-efficient cache architecture for a particular
application can no longer be applied. The cache architecture
can be only chosen to achieve energy optimization in an aver-
age sense.

Instead of tailoring the cache architecture to meet an appli-
cation’s need, in this paper, we propose a software-controlled
cache mechanism that allows embedded software to manage
the on-chip cache explicitly to improve the energy efficiency
of the shared cache on an application-specific basis. The pro-
posed mechanism allows a program to control data allocation
on the cache in the granularity of data types in an application.
Most multimedia applications contain several major data types
that contribute to most of the memory accesses. The MPEG-2
software decoder, for an example, contains 6 data types which
account for 80% of memory accesses according to our exper-
iments. The proposed software-control cache architecture is a
hardware/software cooperative scheme. The mapping between
data types and cache regions is determined statically based on
a programmer’s knowledge on the application’s behavior and
profiling information. We derive the allocation methodology
based on the optimization goal that achieves energy savings
without sacrificing performance. The allocation information is
then conveyed to the hardware through instruction annotations.
The proposed software-controlled cache architecture only re-
quires minimal hardware support, which is attractive to a low-
power processor design.

Figure 3: Software-controlled cache

The proposed software-controlled cache is designed based
on an ARM-like cache architecture which contains a rela-
tively small, directed-mapped cache (mini-cache) and a set-
associative L1 cache on chip. Each way of the L1 cache is
treated as a separate region. Each data type is either allo-
cated to the mini-cache, ways of the L1 cache (way-partition)
or bypasses the on-chip caches as shown in Figure 3. Bypass-
ing memory references that have little reuse has been used to
improve the L1 cache performance because it results in less
cache pollution [5]. The cache bypassing technique can also

be adopted for energy optimization. Most multimedia applica-
tions have a significant amount of output data that are written
and never read by the processor. Bypassing these write-only
data can reduce energy consumed in the memory subsystem
for two reasons. First, it reduces off-chip accesses as a re-
sult of less cache pollution. Second, it reduces accesses to the
L1 cache without increasing accesses to the lower level of the
memory hierarchy since written data is never accessed again by
the processor.1 The results show that the software-controlled
cache reduces energy consumption of an ARM-like cache by
40% without performance degradation.

3 Conclusion
In this paper, we propose two approaches to reduce cache
power consumption: the HotSpot cache and software-
controlled cache. The HotSpot cache is an architectural ap-
proach to dynamically select basic blocks for placement in the
L0 cache. We design a mechanism that can successfully iden-
tify frequently accessed basic blocks in each program phase at
runtime. Only basic blocks declared as hot blocks are stored in
the L0 cache. The L1 cache is augmented with a block buffer
for exploiting spatial locality within a cache line for energy
savings. The simulation results show that the proposed mech-
anism can achieve more energy savings than the Filter cache.
The energy consumption of the instruction cache is reduced by
52% with negligible performance degradation. The software-
controlled cache allocates data types in an application to dif-
ferent cache regions. A data type is either mapped to the mini-
cache, ways of the L1 cache or bypass on-chip caches. The op-
timization goal is to achieve energy reduction without perfor-
mance degradation. We test the effectiveness of the software-
controlled cache on the MPEG-2 software decoder. The results
show that the software-controlled cache reduces 40% of energy
on an ARM-like cache architecture without sacrificing perfor-
mance.

References
[1] N. E. Bellas, I. N. Hajj, C. D. Polychronopoulos, and

G. Stamoulis. Architectural and compiler techniques
for energy reduction in high-performance microproces-
sors. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 8(3), June 2000.

[2] J. Kin, M. Gupta, and W. H. Mangione-Simith. The filter
cache: An energy efficient memory structure. In Pro-
ceedings of 30th Annual International Symposium on Mi-
croarchitecture, December 1997.

[3] C.-L. Su and A. Despain. Cache design tradeoffs for
power and performance optimization: A case study. In
Proceedings of International Symposium on Low Power
Design, April 1995.

[4] M. B. Kamble and K. Ghose. Analytical energy dissipa-
tion models for low power caches. In Proc. of the Interna-
tional Symposium on Low Power Electronics and Design,
1997.

[5] Teresa L. Johnson and Daniel A. Connors and Matthew
C. Merten and Wen-mei W. Hwu Run-Time Cache By-
passing”, journal = ”IEEE Transactions on Computers
In IEEE Transactions on Computers, 48(12),December,
1999.

1We assume a write-buffer between the L1 cache and the next level of the
memory hierarchy to merge writes to the same cache blocks.

2

