
www.elsevier.com/locate/jss

The Journal of Systems and Software 76 (2005) 237–250
Multi-disk scheduling for time-constrained requests
in RAID-0 devices

Shi-Wu Lo a,1, Tei-Wei Kuo a,1, Kam-Yiu Lam b,*

a Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, ROC
b Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

Received 21 March 2003; received in revised form 23 May 2004; accepted 23 May 2004

Available online 28 July 2004
Abstract

In this paper, we study the scheduling problem of real-time disk requests in multi-disk systems, such as RAID-0. We first propose

a multi-disk scheduling algorithm, called Least-Remaining-Request-Size-First (LRSF), to improve soft real-time performance of I/O

systems. LRSF may be integrated with different real-time/non-real-time single-disk scheduling algorithms, such as SATF and

SSEDV, adopted by the disks in a multi-disk system. We then extend LRSF by considering the serving requests on-the-way

(OTW) to the target request to minimize the starvation problem for requests that need to retrieve a large amount of data. The

pre-fetching issue in RAID-0 is also studied to further improve the I/O performance. The performance of the proposed algorithm

and schemes is investigated and compared with other disk scheduling algorithms through a series of experiments using both ran-

domly generated workload and realistic workload.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Previous research works in disk scheduling are

mainly focused on single-disk scheduling with the objec-

tives to maximize disk throughput and minimize the

movement of read/write heads. For example, LOOK

(Silberschatz et al., 2001) serves disk requests on the

way from one side of a disk to the other side, and then

on the way back. The Shortest-Access-Time-First

(SATF) (HPL-CSP-91-7, 1991) serves the request with
the smallest access time first. Although these disk sched-

uling algorithms can efficiently improve the disk

throughput, they may not be suitable to multi-disk sys-

tems, especially for applications where the requests have
0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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constraints on their completion times. Example applica-

tions are transaction processing in a real-time database
system (Ramamritham, 1993). We must point out that

the number of applications with soft deadline con-

straints increases rapidly in recent years due to popular-

ity of Internet applications and distributed multimedia

and mobile computing systems (Ulusoy, 1998; Reddy

and Wyllie, 1993; Yu et al., 1992). To soft real-time

applications, the most important performance goal is

to minimize the number of missed deadline requests
(Thomas et al., 1996; Ulusoy and Belford, 1993) instead

of maximizing the system throughput.

The studies of scheduling algorithms for real-time

disk requests have been greatly ignored until recent

years. Chen et al. (1991) proposed the Shortest-Seek-

Time-Earliest-Deadline-By-Value (SSEDV) algorithm

in which both deadlines and seek time delays are consid-

ered in scheduling disk requests. Reddy and Wyllie
(1993) explored the contention in a SCSI bus and
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Fig. 1. The driver model.
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proposed to assign priorities to disk requests using a

weighted function of the deadlines of the requests (Red-

dy and Wyllie, 1993). Bruno et al. (1999) proposed a

two-level scheduling mechanism in which each session/

process has a queue sorted by the process deadlines.

The most urgent request in a queue is selected to be
put into the system queue, and then the system serves

requests in the system queue following the principles

proposed in the LOOK algorithm. Abbott and Garcia-

Molina (1990) proposed a SCAN-like deadline-driven

algorithm which first picks up a request with the closest

deadline, and then serves all of the requests residing at

the cylinders between the current cylinder of the read/

write head and the cylinder of the request with the clos-
est deadline. Chang et al. (1998) proposed a deadline-

monotonic SCAN algorithm which can guarantee the

hard deadlines of disk requests if the workload distribu-

tion (such as deadlines, disk addresses, etc) of requests is

known.

Although researchers have proposed excellent algo-

rithms for single-disk scheduling, little work has been

done on multi-disk scheduling, especially for real-time
RAID (which stands for the redundant array of inde-

pendent (/inexpensive) disks). In particular, Weikum

and Zabback (1991) have studied the impacts of strip-

ping size on concurrency and performance of non-real-

time applications in RAID. Chang et al. (1999) has

studied the synchronization of the disks in real-time

RAID scheduling.

The goal of this research is to propose an efficient
multi-disk scheduling algorithm for RAID-0 with the

objective to minimize the number of deadline-missing re-

quests. An RAID-0 is an RAID with block-stripping.

Since disk requests have soft real-time deadlines, a

multi-disk scheduling algorithm should maximize the

I/O performance, e.g., in terms of throughput or re-

sponse time, and at the same time to minimize the num-

ber of deadline-missing requests. In this paper, we first
introduce the system architecture of an RAID-0 for

multi-disk scheduling. Then, we propose a real-time

multi-disk scheduling algorithm called Least-Remain-

ing-Request-Size-First (LRSF), which can integrate with

different real-time/non-real-time single-disk scheduling

algorithms, such as SATF and SSEDV. We extend

LRSF by considering the services of requests on the

way to the target request. Finally, we study the perform-
ance of the proposed algorithms and schemes by a series

of experiments using both randomly generated work-

load and realistic workload.

The rest of this paper is organized as follows: Section

2 introduces the I/O system architecture of an RAID-0

and the multi-disk scheduling in the system. Section 3

uses an example to illustrate the multi-disk scheduling

problem in RAID-0. The proposed real-time multi-disk
scheduling algorithm is presented in Section 4. In Sec-

tion 5, the proposed algorithm is extended by adding
the on-the-way mechanism to further improve the disk

performance. Section 6 reports the performance results

of the proposed algorithm. The conclusions of the paper

are in Section 7.
2. The RAID-0 I/O system

In this section, we shall first present the I/O system

architecture of an RAID-0 from the view points of

drivers and controllers.

2.1. System architecture

2.1.1. The driver model

The operating system provides a standard and uni-

form I/O interface for applications to access I/O devices.

Through the I/O interface, applications can indirectly

invoke vendor-supplied drivers to program the corre-

sponding controllers/adaptors. In Fig. 1, we can see that

the device drivers are usually divided into two levels:

upper-class module and device-specific module. For exam-
ple, the specification of intelligent I/O (I2O) (Specifica-

tion Ver 2.0, 1999) separates the host-side drivers into

the OS-Specific Module (OSM) and the Device Special-

ized Module (DSM). The driver model proposed by

Microsoft consists of Class Drivers and Minidrivers.

Usually the OS venders/organizations provide upper-

class modules for each category of devices to handle

common system tasks. Hardware vendors supply
lower-level device modules which include hardware-

specific codes to perform lower-level operations. Fig. 1

also shows the connection between the host and the

target. The drivers at the host communicate with the

hardware controllers at the target via the system buses

(for example, the PCI bus).

A real-time embedded operating system executing in

a hardware controller (the target) receives I/O requests
from the host via the system bus. It may be a simple

interpreter responsible for connecting the I/O devices

and the host operating system. For this case, I/O opera-

tions are initiated by invoking the appropriate handler

functions of the drivers at the host. In some cases, it
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may be a complex arbitrator of I/O devices and has

capabilities to reduce the load of the host processor.

In the latter implementation, the target embedded sys-

tem is like a small general purposes operating system.

It has its own device drivers to abstract the details in

controlling I/O devices. For example, in an RAID-0,
the system may share the CPU workload by migrating

some of the RAID-related functions to the hardware

controller. The system may provide an inexpensive solu-

tion by integrating some of the RAID functions into an

upper-class module (for example, the filter driver of

Microsoft Windows) to reduce the hardware cost. The

proposed disk scheduling algorithm in the paper is suit-

able to both the implementations.

2.1.2. The hardware controller model

In this section, we will discuss the hardware control-

ler architecture of an RAID-0 by an example product

ACARD AEC 6850, which is an RAID adaptor that

can support up to 75 disks. As shown in Fig. 2, the I/

O system consists of two major components: host and

target. A host can be a PC running a popular operating
system such as Microsoft Windows. The host may have

other I/O adaptors for other I/O devices (e.g., I/O Adap-

ter A and I/O Adaptor B in the figure). The target is an

RAID controller, such as ACARD AEC 6850 in this

example. The interface between the RAID-0 controller
I/O
Adapter A

I/O
Adapter B

PCI Bus

Address
Translate

Unit

S
ec

on
da

ry
 P

C
I B

us

Embedded
Processor
(Intel i960)

 Memory

SCSI
Adapter

SCSI
Adapter

SCSI
Adapter

SCSI
Adapter

SCSI
Adapter

CPU
CPU

CPU

SCSI
DeviceSCSI

DeviceSCSI
Device

H
os

t
T

ar
ge

t

Fig. 2. The hardware model of an RAID.
and the host is a PCI bus. ACARD AEC 6850 has an

embedded processor (such as Intel i960), memory, and

up to 5 SCSI adaptors. All of the components are con-

nected by the secondary PCI bus as shown in the figure.

Each SCSI adaptor can manage up to 15 disks. (Note

that IDE disks may adopt a similar hardware architec-
ture.) The memory space of an adaptor maps to the

memory addresses of the host by the Address Translation

Unit so that the host and the target can communicate by

DMA.

The RAID are designed to provide a high I/O per-

formance by coordinating multiple disks to operate con-

currently. An RAID, such as ACARD AEC 6850,

manages a number of disks with data stripping. In par-
ticular, we are interested in RAID-0, in which data are

stripped in units of blocks. An I/O request consists of

a set of jobs, which may be served by the disks in an

RAID concurrently. (I/O requests will be formally de-

fined in Section 2.3.)

We illustrate the operations in an RAID-0 with four

disks in Fig. 3. There is a message queue for the entire

RAID-0 (named as the RAID Device Queue in the fig-
ure) and a message queue for each disk (named as the

Disk Queue in the figure). Note that all the queues are

inside the RAID. File systems or operating systems

are not aware of the internal implementations. Each of

the queues is a priority queue, and the message/event

priorities are assigned by the real-time embedded oper-

ating system which is responsible for transforming an

I/O request message in the RAID device queue into
job messages. Then, it will insert the job messages into

the corresponding disk queues. A job message contains

all the necessary information for a disk to retrieve the

required data of the job. In general, a thread is associ-

ated with each disk queue. If the thread is ready to proc-

ess its messages, it will invoke the appropriate handler to

select the highest priority job from the queue for

processing.
m m m m

m mm

Raid device queue

Disk 1 queue Disk 2 queue Disk 3 queue Disk 4 queue

m : message
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Fig. 3. The RAID device queue and disk queues in an RAID-0.
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Table 1

I/O job parameters

Job Time to process the job (ms) Request

j1,2 13 r1
j2,1 9 r2
j1,1 12 r3
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2.2. Serving a disk request in an RAID-0 device

Each I/O request ri is modelled by four parameters

ri=(arri, LBAi,si,di), where arri, LBAi, si, and di are the

arrival time, the starting logical block address (LBA),

the size of the requested data in bytes, and the deadline
of the I/O request, respectively. With block stripping, an

RAID-0 controller re-numbers the logical block ad-

dresses of the blocks over its disks. Suppose there are

n disks managed by the RAID-0 controller, and the

block stripe size (or physical block size) is B. A simple ap-

proach for the mapping is to map the jth LBA number

of the ith disk to the n� j
Bþ i� 1

� �
th LBA of the

RAID-0 for 06 j6 maximum LBA number of Diski,
and j should be a multiple of B and 16 i6n. For exam-

ple, in the LBA re-numbering scheme adopted by the

ACARD AEC 6850, the block stripe size is 32 sectors,

and each sector is 512 B.

An I/O request ri=(arri,LBAi, si,di) is divided into

a set of jobs executing in different disks. Thus, an I/O

request ri is re-defined as a tuple (arri,{jdsk1,ord1, . . .,
jdskn,ordn},di), in which each job has a disk number
(dsk1, . . .,dskn) for execution, a scheduling priority

(ord1, . . .,ordn) according to the adopted single-disk

scheduling algorithm 2 of the disk, a size size(jdskk,ordk)

in sectors, and a real LBA number RLBA(jdskk,ordk) as

its starting LBA on its assigned disk. Please note that

a job in the hth disk with zero size means that the strip-

ing algorithm does not map the request to the hth disk.

The completion time of request ri is the maximum of
the completion times of all of its jobs. Therefore, in

order to meet the deadline di of request ri, all the jobs

belonging to ri must be completed no later than di. In

this paper, we shall first propose the concept of re-

quest-based multi-disk scheduling, and then present

the on-the-way and pre-fetching mechanisms to further

improve the performance of an RAID-0.
3. The real-time scheduling problem in multi-disks

Although many efficient real-time and non-real-time

disk scheduling algorithms have been proposed for sin-

gle-disk systems, they may not be suitable to scheduling

of real-time requests in multi-disk systems, such as the

RAID-0. Fig. 4 shows a schedule of two disks in a
multi-disk system using the shortest job first (SJF) algo-

rithm. It is assumed that the jobs arrive at the same time.

To simplify the discussion, we ignore the seek time and

the rotation delay in serving a job. Let Ji,j denote the jth

job in the ith disk. The processing times of the jobs are
2 The proposed scheduling framework is an extension of conven-

tional single-disk scheduling algorithms. Its purpose is to adjust the

scheduling of the disks in an RAID-0 to improve the response times of

the requests in meeting their deadlines.
listed in Table 1. The average response time of the three

jobs is 18.33 ms, e.g., (25+9 +21)/3. The response time

of a request is the maximum response time of its jobs.

Referring to this example, the response times of requests

r1, r2 and r3 are 25, 9 and 21, respectively. As astute

readers may point out, since r3 already has a lengthy re-

sponse time, it makes no sense to schedule j1,1 before j1,2.

After swapping the executions of j1,1 and J1,2, as shown
in Fig. 5, the average response time of the three requests

is shortened and becomes 15.67 ms, e.g., (13+9+25)/3.

This observation underlies the motivation of this re-

search. Swapping the scheduling of the jobs at some

disks may improve the overall system performance in

meeting the deadlines of the requests.

Although it is highly important to maximize the per-

formance of the disks in multi-disk scheduling, the con-
sideration of each request as a logical unit for scheduling

is of paramount important to maximize the performance

of the whole multi-disk system, especially in meeting the

deadlines of the requests. Nevertheless, we must empha-

size that any multi-disk scheduling algorithms which

consider the relationship among the jobs belonging to

the same request over multiple disks should not sacrifice

the performance of each individual disk too much. A
compromise between multi-disk scheduling and single-

disk scheduling must be made.
4. Least Request Size First (LRSF) for an RAID-0

In this section, we will propose a new multi-disk

scheduling algorithm called Least Request Size First
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(LRSF) for job scheduling in an RAID-0 following the

framework introduced in Section 2. LRSF can combine

with different single-disk scheduling algorithms adopted

in the disks of an RAID-0. Disks with/without internal

scheduling, such as SCSI and IDE disks, are the target

drives of our proposed algorithm. When an RAID-0
controller receives a disk request, it will divide the re-

quest into a set of jobs to be served by the disks of the

RAID-0 depending on the distribution of the required

data of the request in the disks. The major scheduling

problem is how to synchronize the scheduling of the

multiple disks for serving the jobs belonging to the same

request so that the deadline of the disk request can be

satisfied, and at the same time the scheduling of the
disks is least affected. It is because each disk has its

own scheduling algorithm to schedule the jobs in its

own disk queue to maximize its performance. The basic

principle of LRSF is to assign a higher priority to the

jobs of the request with the least remaining jobs in disk

scheduling. The purpose is to improve the overall per-

formance of the RAID-0 if the benefit obtained from

raising the priorities of the jobs is significantly higher
than the degradation in the performance of the disks

where the jobs are residing.

The notations and abbreviations used in this paper

are listed in Table 2. Consider an RAID-0 with N disks.

All the jobs in the disk queues are first sorted according

to the single-disk scheduling algorithms adopted in the

disks, such as SSTF and EDF. Job jx,i is the ith job in

the xth disk. Without loss of generality, the scheduling
algorithm adopted in each disk assigns a profit pfx,i to

a job jx,i to indicate the benefit (in terms of system

throughput) in serving the job first. A higher priority

is assigned to a job with a higher profit. For example,

in SSTF, the profit of a job is determined based on the

inverse of the distance between the r/w heads and the

residing cylinder of the job because SSTF assumes that

serving the job with the shortest seek time will give the
greatest benefit to the system.
Table 2

The summary of the abbreviations

Abbreviation Meaning

LBA Logical Block Address––LBA is a value to indi

hide the actual cylinder-head-sector address of

SSTF Shortest Seek Time First––A disk scheduling al

SATF Shortest Access Time First––SATF is similar to

which is the time spent on moving the r/w head

C-LOOK A disk scheduling algorithm which serves the d

to the other side

SSEDV Shortest Seek Time Earliest Deadline by Value–

as the priorities of the jobs

EDF Earliest Deadline First––A scheduling policy wh

RRS Remaining Request Size––The number of rema

jx,i The ith job in the queue of the xth disk

pfx,i The profit obtained from serving jx,i using the a

jx,1 The first job in the queue of the xth disk. jx,1 h
In LRSF, we raise the priorities of the jobs belonging

to the same request with the least remaining size if the

degradation on the disk performance is small. The de-

tails of the procedure is shown in Algorithm 1. As

shown in the algorithm, for each disk queue, we first

identify what the profit of each job in the disk queue
is. Let jx,y be a job in the disk queue of the xth disk,

and jx,1 be the first job in the disk queue. jx,y should

be scheduled before jx,1 if the performance degradation

in the xth disk is small. The amount of degradation

can be approximated by comparing the profit functions

for jx,1 and jx,y. If the ratio of their profits is higher than

a system pre-defined threshold TH, jx,y will be selected

and join a higher priority job set (T1 in the algorithm).
Then, the jobs with the least remaining size in the higher

priority job set will be identified and collected into the

set T2. The remaining size rsx,y of a job jx,y is the number

of remaining jobs of the corresponding request. Obvi-

ously, all the jobs belonging to the same request have

the same remaining request size. Then, we select the

one having the highest profit for processing.

We shall use an example to illustrate the procedures
of LRSF for an RAID-0 in which all the disks adopt

SSTF for job scheduling.

Example 1. (LRSF with SSTF:) It is assumed that the

RAID-0 controller is connected to three HP97560 SCSI
disks with rotation speed of 4002 rpm, and the seek time

is modeled by the following formula (HPL-CSP-91-7,

1991; Ruemmler and Wilkes, 1994)
seek time ¼ 3:24þ 0:4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seek distance
p

ð1Þ

where seek distance is measured in number of cylinders.

The transfer time of a sector, which is equal to 512 B, is

approximated to 0.23 ms (i.e., the time to scan a sector).

Suppose the r/w heads of the three disks are originally

located at cylinder numbers 55, 75, and 65, respectively.
The jobs together with their request numbers, cylinder

numbers, seek distances, profit(seek time) and disk
cate the logical location of data in an RAID-0. It is used to

the data in the disk

gorithm which serves the disk job with the minimum seek time

SSTF but it serves the disk job with the minimum position time

to the target position

isk job on its way. At each run, it sweeps the disk from one side

–An heuristic that uses weighted sum of seek time and deadline

ich gives the highest priority to the job with the closest deadline

ining jobs of a request

dopted single-disk scheduling algorithm

as the greatest profit compared to the other jobs in the same queue
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numbers are listed in Table 3. Fig. 6a shows the disk

queues sorted according to SSTF. The response times

of the jobs are listed in Table 4. The average response

time of the requests is 9.58 ms.

Suppose LRSF is adopted at the RAID-0 controller

to synchronize the scheduling of the disks connected
to the controller. Let the threshold TH be 0.75. Since

job1,1 belonging to r3 has the least remaining size, and

it is the 1st job in the queue, job1,1 is scheduled for serv-

ice in the first disk. In the second disk, since job2,2 has

the least remaining size in the second disk and
pf 2;2
pf 2;1
¼ 4:04 ms

4:04 ms
¼ 1 is larger than the threshold 0.75, job2,2

is scheduled for service in the second disk although

job2,1 is the first job in the second disk queue. In the
third disk, because

pf 3;2
pf 3;1
¼ 3:93 ms

4:22 ms
¼ 0:933 is larger than

the threshold 0.75, job3,2 is scheduled for service in the

third disk. The response times of the jobs using LRSF-
Table 3

Job parameters

Job Request number Cylinder number Se

J1,3 r1 39 16

J3,3 r1 39 26

J2,1 r2 71 4

J3,2 r2 71 6

J1,1 r3 52 3

J1,2 r4 62 7

J2,3 r4 62 12

J3,1 r4 62 3

J2,2 r5 79 4

Job

Job

Job

Job

Job

Job

Job

Job

Job

1.1

1.3

1.2

2.1

2.3

2.2
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(a) SSTF

Fig. 6. SSTF schedules w

Table 4

Response times of the jobs using SSTF

Jobs in disk 1 Response time (ms) Jobs in disk 2 Re

J1,1 3.93 J2,1 4.

J1,2 9.09 J2,2 8.

J1,3 13.60 J2,3 13.

Table 5

Response times of the jobs using LRSF-SSTF

Jobs in disk 1 Response time (ms) Jobs in disk 2 Re

J1,1 3.93 J2,2 4.

J1,3 8.62 J2,1 8.

J1,2 13.77 J2,3 12.
SSTF is listed in Table 5. The disk queues sorted accord-

ing to LRSF-SSTF are shown in Fig. 6b. The average

response time of all the requests is 8.79 ms. It is about

8% better than the average response time, compared

with the case without LRSF.

Algorithm 1. (Least Request Size First (LRSF))

1: input: a sorted job set Jx of diskx which contains nx
jobs jx,1, . . ., jx,nx. Each job jx,y in Jx has a profit pfx,y
and a remaining size rsx,y. TH is a threshold.

2: output: a job from diskx
3:

4: /** The following steps collect the jobs

whichmaynotdegradethediskthroughput

too much into the set T1.Please note that

jx,1 isthejobhavingthehighestprofit. */
ek distance Profit (1/seek time) Disk number

1/4.84 1

1/5.28 3

1/4.04 2

1/4.22 3

1/3.93 1

1/4.30 1

1/4.63 2

1/3.93 3

1/4.04 2

Job

Job

Job

Job

Job

Job

Job

Job

Job

1.1

1.2

1.3

2.1

2.3

2.2

3.1

3.3

3.2

(b) LRSF-SSTF

ith/without LRSF.

sponse time (ms) Jobs in disk 3 Response time (ms)

04 J3,1 3.93

41 J3,2 8.37

30 J3,3 13.88

sponse time (ms) Jobs in disk 3 Response time (ms)

04 J3,2 4.22

41 J3,1 8.66

85 J3,3 13.82
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5: for all job jx;y 2 Jx do

6: if
pf x;y
pf x;1

> TH then

7: T1  T1 [ fjx;yg
8: /** T2 contains the jobs which belong to

the request with the least remaining

size

*/

9: tempSize 0

10: for all job jx;y 2 T2 do

11: if rsx,y> tempSize then

12: T2  fjx;yg
13: tempSize rsx,y
14: if rsx,y= tempSize then
15: T2  T2 [ fjx;yg
16:

17: /** Select a job with the largest profit

from the set T2 */

18: tempProfit �1
19: forall job jx;y 2 T2 do

20: if pfx,y> tempProfit then

21: returnJob jx,y
22: tempProfit pfx,y
23: output returnJob
3 A similar figure appears in HPL-CSP-91-7, 1991.
5. Extensions

In this section, we will present two methods to extend

LRSF by considering the characteristics of an RAID-0.

We shall first propose to apply the on-the-way (OTW)

mechanism (HPL-CSP-91-7, 1991) into LRSF to resolve

the starvation problem of large-size I/O requests in

LRSF. Since LRSF assigns a higher priority to a smal-
ler-size I/O request, the waiting time of the jobs of a

large-size request can be very long. Secondly, we will dis-

cuss how to apply pre-fetching mechanisms to further

improve the performance of a disk in an RAID-0.

5.1. On-the-way scheduling

One of the major reasons for the good performance
of SCAN and LOOK, especially when the workload is

heavy, is because they always serve jobs collectively on

the way to minimize the movement of the disk heads

in searching the required sector of a job. This is also

the main reason why many real-time scheduling algo-

rithms, such as EDF, do not perform well when they

are applied directly in disk scheduling.

In this section, we apply the piggyback concept (re-
ferred to as the on-the-way (OTW) scheme) into LRSF

to further improve the performance of an RAID-0 and,

at the same time, to resolve the starvation problems of

large-size requests. Compared to a seek-time-optimiza-

tion algorithm (e.g. LOOK, SSTF), the OTW mecha-

nism considers not only the seek distance but also the
rotation delay. We use the following example to illus-

trate the concept of ‘‘on-the-way’’ scheduling.

Let the current r/w heads of a disk stay at the 4th sec-

tor of the 975th cylinder as shown in Fig. 7. 3 Since the

rotation speed is constant, we can use the distance in
sectors to denote the length of time to serve a job. Be-

cause the r/w heads accelerate while they are moving

across the cylinders towards their target cylinders, the

movement curves of the r/w heads in the figure are para-

bolic. Since the acceleration of r/w heads is independent

of the cylinder where they are currently residing, the

parabolic curves in Fig. 7 are symmetric. Suppose the

disk scheduler decides that the next job to be served is
the one at the 55th sector of the 1250th cylinder accord-

ing to the adopted scheduling algorithm. As shown in

Fig. 7, while the r/w heads move from the 975th cylinder

to the 1250th cylinder, the r/w heads will travel from the

4th sector to the 40th sector. In order to go to the target

position, the r/w heads need to wait until the disk rotates

from the 40th sector to the 55th sector. The shaded area

shown in Fig. 7 denotes the collection of blocks that can
be served on the way from the current r/w heads position

to the target position without any extra delay. For

example, the r/w heads can serve job jx. We call the

shaded area as the on-the-way region of the current head

position to the target position.

The on-the-way concept provides an important con-

sideration to improve the performance of a disk in an

RAID-0. As the r/w heads move from the current job
to the next job (i.e., from the current head position to
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the target position), the jobs which are within the on-

the-way region may be served regardless of their remain-

ing request sizes and the job priorities assigned by LRSF

and the adopted single-disk scheduling algorithm. Algo-

rithm 2 describes the details of how to apply the OTW

into the scheduling of the disks in RAID-0.

Algorithm 2. (On-The-Way)

1: input: a job set Jx of diskx which contains nx jobs
jx,1, . . ., jx,nx. Each job jx,y in Jx has a cylinder num-

ber cylx,y and a sector number secx,y to denote the

position of its required data in the disk. A target

job jtar in Jx and the r/w heads position (cylr/w,

secr/w) are also given. The sector number and cylin-

der number of jtar are sectar and cyltar, respectively.

2: output: a job which can be served without any addi-

tional movement of the r/w heads.
3:

4: Dseek jcylr/w�cyltarj /** Dseek is the seek dis-

tance between the target job and the

current r/w head position. */

5: tseek SeekTime(Dseek) /** The seek time of

jtar. */

6: Drot secr/w +TimeToRotationDistance(tseek)�sectar
/** The rotation distance from the sector

under the r/w heads (when the r/w head

arrives the target cylinder) to the tar-

get sector (sectar). */

7: tslack RotationDistanceToTime(Drot)/** The rota-

tion delay might be eliminated. */

8: for all jx;y 2 Jx � fjtarg do
9: Dseek 0  jcylr/w�cylx,yj

10: tseek 0  SeekTime(Dseek 0)
11: Drot 0  secr/w + TimeToRotationDistance(tseek 0)�

secx,y
12: ttrans 0  RotationDistanceToTime(size(jx,y))

13: taccess 0  tseek 0 + trot 0 + ttrans 0 /** The access

time of jx,y is taccess0 if we serve jx,y be-

fore jtar */

14: if taccess 06tslack then

15: output jx,y
16: return /** exit */

output fail

The application of the on-the-way mechanism into

LRSF has three important advantages: (1) The on-the-

way mechanism improves the performance of large-size

requests because the jobs of large-size requests may be

served along the way while the disk is serving a job of

a small-size request. (2) The on-the-way mechanism also

improves the performance of real-time single-disk sched-
uling algorithms such as EDF. Note that with the on-the-

way mechanism, EDFmay serve jobs collectively, similar

to LOOK and C-LOOK, without any additional move-
ment of the r/w heads. (3) The on-the-way mechanism

may improve the performance of non-real-time requests

without sacrificing the performance of real-time jobs.

Please be reminded that although the on-the-way

mechanism can partly resolve the starvation problem

of large-size requests, some large-size requests may still
suffer from the starvation problem if their jobs are al-

ways located at the cylinders outside the on-the-way re-

gions of the jobs of small-size requests. The starvation

problem could be serious if LRSF is used with a sin-

gle-disk scheduling algorithm which also has the starva-

tion problem, such as SSTF. A simple but effective way

to resolve the starvation problem in such a situation is to

move the jobs of the larger-size (or starved) requests for-
ward by raising their priorities if they have been waited

for service for a long time, i.e., being larger than a wait-

ing threshold. However, how to raise the priorities of re-

quests is another critical design issue. The performance

of LSRF can be sensitive to the priority adjustment

method.

5.2. Pre-fetching in RAID-0

An RAID-0 may be equipped with a large amount of

memory for pre-fetching or only a small amount of

memory merely sufficient for system operations. This

section is to explore the pre-fetching mechanisms for

both the cases. We must emphasize that pre-fetching

in an RAID-0 offers a different kind of performance

improvement, compared to the pre-fetching in the oper-
ating system. With the knowledge of the RAID-0 config-

uration and the workloads of the disks, different disks

may be initiated in parallel to perform pre-fetching to

reduce the service delay of a disk request. There are

two ways to pre-fetch disk data into the memory: First,

if the disk workload is not very heavy, a smart way of

pre-fetching at the RAID controller is to utilize the disks

that are idle for pre-fetching. For this case, pre-fetching
could be obtained with almost ‘‘free’’ of charge. Of

course, the service of the disk cannot be interrupted

while pre-fetching is performing. Therefore, if a new re-

quest enters the system while the disk is performing a

pre-fetching operation, the disk will not be able to serve

the request until the pre-fetching is completed. In this

situation, the performance of random access will be de-

graded slightly. Secondly, we can use the on-the-way
(OTW) region to serve pre-fetch commands. In this case,

the priority given to a pre-fetching job should be lower

than those of real-time and non-real-time jobs. Large-

size requests and non-real-time requests may compete

for the OTW service.

If an RAID-0 is equipped with a large amount of

memory for pre-fetching operations, the pre-fetching

can be done intuitively: a segment of memory may be
allocated as a buffer region. When a request r requests

to access s bytes starting from the LBA number lba,
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the RAID-0 may issue another request rnext to access s

bytes starting from the LBA number (lba+ s). The dead-

line of rnext can be twice of the deadline of ri. The buffer

region can be managed using a common memory man-

agement schemes, such as the least-recently used

(LRU) or FIFO schemes. When an RAID-0 is only
equipped with a small amount of memory for its system

operations, pre-fetching is still possible. Pre-fetching can

be done by issuing SCSI commands, such as ‘‘PRE-

FETCH’’ (the 0x34 SCSI command), so that the disks

are given hints to try to cache sectors.

With a powerful processor such as ARM, it is possi-

ble to execute a more complicated pre-fetching mecha-

nism inside an RAID-0 device. For example, if a disk
is idle, then it pre-fetches the sectors whose LBA num-

bers are close to the LBA numbers of the existing re-

quests. As a result, in the ideal case, an application

may never need to wait for disk operations to retrieve

data. It may happen that when an application sequen-

tially reads data in the LBA number order, the disks

always finish pre-fetching in time to obtain the data

needed by the application.
4 Maxtor Corp. http://www.maxtor.com/en/products/scsi/

atlas_10k_family/index.htm.
5 ZDNet Corp. http://www.zdnet.com/etestinglabs/stories/bench-

marks/0,8829,2326114,00.html.
6. Performance evaluation

6.1. Performance metrics and data sets

The experiments described in this section are: (1)

to evaluate the performance of the proposed LRSF
multi-disk scheduling algorithm and the on-the-way

(OTW) scheme in scheduling RAID-0 requests and (2)

to evaluate the effectiveness of the pre-fetching mecha-

nism in improving the performance of the proposed

RAID-0 framework when different disk scheduling algo-

rithms are adopted for single-disk scheduling. We have

implemented a simulation model following the RAID-

0 framework introduced in Section 2 of the paper.
Since we are interested in disk scheduling where the

requests have soft real-time deadlines, the primary per-

formance metric used are the miss ratio and the average

response time of the requests. Miss ratio is defined as the

ratio of the requests that miss their deadlines over the

total number of requests generated. The deadline of a re-

quest is calculated as TimeMultiplier· (RWVTimeout-

Base+(RWVTimeout · size/64 K)). The generations of
the requests follow the Poisson distribution. Each re-

quest may request data of a size ranging from 32 to

256 sectors. The block strip size is 32 sectors. In the

experiments, eight Maxtor Atlas 10 disks are simulated

to connected to an RAID-0 controller. The simulation

parameters and their baseline values are summarized

in Table 6.

We have performed two sets of experiments. In the
first set of experiments, we study the effectiveness of

using LSRF and WTO in improving the performance
of an RAID-0 when different single-disk scheduling

algorithms, such as the earliest deadline first algorithm

(EDF), Shortest Access Time First (SATF) (HPL-

CSP-91-7, 1991), FIFO, C-LOOK, and the shortest-

seek-time-earliest-deadline-by-value (SSEDV), are

adopted in the RAID-0 using randomly generated work-
load based on the parameters of a real disk, Maxtor

Atlas 10 K. 4 The chosen single-disk scheduling algo-

rithms cover a range of performance for serving real-

time disk requests. It is known that FIFO and EDF

may not be good to real-time disk requests while SATF

and SSEDV are more efficient. The purpose is to test the

performance improvement from LRSF and OTW when

they are combined with disk scheduling algorithms with
different capabilities. In the second set of experiments,

the workload is defined based on real workload to assess

the improvement in performance from the pre-fetching

mechanism when different single-disk scheduling algo-

rithms are adopted in the RAID-0. Note that disk

scheduling algorithms with pre-fetching should be

evaluated using real workloads to have a meaningful

performance study. Two disk benchmarks are tested.
They are ‘‘Business’’ and ‘‘High-End’’ workloads in

WinBench98. 5 The ‘‘Business’’ workload is for applica-

tions such as databases and graphic playback software

such as Adobe PhotoShop, and the ‘‘High-End’’ work-

load is for applications such as Visual C++.

An important factor on the performance of LRSF is

the threshold value TH which determines under which

situations the priority of a job in a disk queue may be
raised up for processing. From our experiments, we ob-

served that the optimal threshold value TH for LRSF

depends on the disk scheduling algorithm adopted by

the disks in an RAID-0. Table 7 summarizes the profit

function and the threshold value used in LRSF for each

simulated scheduling algorithm. The profit function of a

scheduling algorithm is defined based on its own sched-

uling discipline. The threshold values (TH) for different
disk scheduling algorithms shown in Table 7 are deter-

mined from a series of experiments to optimize the per-

formance of LRSF for the algorithm. It has been found

that the optimal TH for an algorithm depends on the

system workload. For example Fig. 8 shows the miss

ratio when different TH values are used for LRSF in

an RAID-0 using C-LOOK for scheduling the disks.

The impacts of TH on the other tested disk scheduling
algorithms are similar. The five curves in the figure de-

note five different request inter-arrival times from 0.01

to 0.005 s. It can be seen that the miss ratio of C-LOOK

is not very sensitive to the value of TH, and the best

value for TH is around 0.5 in C-LOOK. In general, a

http://www.zdnet.com/etestinglabs/stories/benchmarks/0,8829,2326114,00.html
http://www.zdnet.com/etestinglabs/stories/benchmarks/0,8829,2326114,00.html
http://www.zdnet.com/etestinglabs/stories/benchmarks/0,8829,2326114,00.html
http://www.zdnet.com/etestinglabs/stories/benchmarks/0,8829,2326114,00.html


Table 6

Simulation parameters

Parameters Value Remark

TimeMultiplier 1 � 30

RWVTimeoutBase 0.5 in second

RWVTimeout 0.1 in second

Arrival pattern mean=3–12 Poisson distribution

Block stripe size 32 sectors 1 sector=512 byte

LBA range 0–143,532,240

Request size 32–256 in sector

Number of disks 8

Disk model name Maxtor Atlas 10 K 4 (Bucy and Ganger, 2003)

Simulation length 600,000 The number of issued requests

Table 7

The value function of each algorithm

Algorithm Profit function (pfx,y) Threshold (TH)

SATF the access time of jx,y 0.8

EDF the deadline of jx,y 0.6

SSEDV the weighted sum of the deadline and the seek time of jx,y 0.6

C-LOOK the seek time of jx,y 0.5

FIFO the arrival time of jx,y 0.0

Fig. 8. Values of TH versus miss ratio in C-LOOK.
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highly efficient disk scheduling algorithm, such as
SATF, usually has a larger threshold to prevent LRSF

from carelessly swapping jobs in a disk queue.
6.2. Experiment results

6.2.1. Evaluation on effectiveness of using LSRF

and OTW

Fig. 9a and b show the miss ratio and the average re-

sponse time of requests in FIFO with/without LRSF

and OTW, respectively. The inter-arrival time of re-

quests varies from 8 to 12 ms. When the inter-arrival

time is smaller than <8 ms, the performance of FIFO
is very poor. From the figures, we can see that, in gen-
eral, FIFO/LRSF improves FIFO by around 30–2% in

average response time and by arround 25–4% in miss

radio. OTW improves the performance further by

around 25–1% and 15–2% in miss ratio and average

response time, respectively. Consistent with our expecta-

tion that the improvement is higher when the workload

is heavier, i.e., smaller inter-arrival time. Urgent re-
quests will have a higher probability of missing their

deadlines when the workload is heavy. Raising the pri-

orities of the jobs belonging to an urgent request can im-

prove the system performance.

Fig. 10a and b show the miss ratio and the average

response time of requests in EDF with/without LRSF

and OTW, respectively. EDF with LRSF and OTW

(EDF/LRSF-OTW) and EDF with LRSF (EDF/LRSF)
greatly out-perform EDF in both miss ratio and average

response time when the workload is heavy. For example,

when the inter-arrival time of requests is 0.008 s, the

miss ratio of EDF/LRSF-OTW is only about 25% that

of EDF only. When the inter-arrival time of requests

is large, e.g., 0.01 s, although the improvement is smal-

ler, LRSF and OTW can still improves the average re-

sponse time of EDF significantly. This is consistent
with our expectation since the performance EDF is

highly sensitive towards the workload. If workload is

heavy, a lot of requests will miss their deadlines due to

frequent movement of the r/w heads. With the use of

LRSF and OTW, more requests can meet their deadlines

by raising the priorities of their jobs in the disk queues.

Fig. 11a and b show the miss ratio and the average

response time of requests in C-LOOK with/without
LRSF and OTW, respectively. In general, the improve-

ment from LRSF and OTW, especially OTW, is signifi-
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cant. OTW improves the performance significantly be-

cause OTW considers the optimization in rotation delay
while C-LOOK only considers seek time. C-LOOK with

LRSF and OTW gives the best performance especially

when the workload is heavy comparing to C-LOOK

only and C-LOOK with LRSF. If the workload is

heavy, C-LOOK/LRSF-OTW can improve the average

response time and the miss ratio of C-LOOK by around

25% and 15%, respectively.

Fig. 12a and b show the miss ratio and the average
response time of requests in SATF with/without LRSF

and OTW, respectively. When the inter-arrival time of

requests increases from 3 to 7 ms, the performance dif-

ference among SATF with LRSF and OTW (SATF/

LRSF-OTW), SATF with LRSF (SATF/LRSF), and

SATF only (SATF) decreases gradually. It is because
SATF is a very efficient disk scheduling algorithm, the

improvement from LRSF and OTW is small when the
workload is not heavy. Note that SATF was shown to

be better than many traditional disk scheduling algo-

rithms such as C-LOOK. In general, SATF/LRSF im-

proves SATF by around 10% in average response time

and by around 20% in miss ratio.

Fig. 13a and b show the performance improvement

of LRSF and OTW in SSEDV. SSEDV considers the

reordering of disk jobs according to the weighted sum
of their seek times and deadlines. If the inter-arrival time

is increased, the average response time of SSEDV de-

creases gradually. However, the miss ratio decreases

dramatically when the inter-arrival time is decreased

from 0.008 to 0.009. This phenomenon shows that

SSEDV is a very good real-time disk scheduling
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Fig. 12. Miss ratio and average response time of SATF with/without LRSF and OTW.
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Fig. 13. Miss ratio and average response time of SSEDV with/without LRSF and OTW.

Table 8

The disk utilizations of the proposed algorithms

Algorithms and inter-arrival time FCFS EDF CLOOK SATF SSEDV

0.008 0.008 0.006 0.005 0.008

Disk algorithm only 0.999 0.995 0.172 0.480 0.994

Disk algorithm/LRSF 0.995 0.993 0.907 0.907 0.994

Disk algorithm/LRSF-OTW 0.992 0.992 0.689 0.670 0.753
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algorithm if the system has sufficient disk band-

width. SSEDV/LRSF-OTW still outperforms SSEDV

by around 5% if the workload is light, e.g., inter-arrival

time larger 9 ms, and the improvement is higher when

the workload is heavier, i.e., inter-arrival time=8 ms.

Table 8 shows the disk utilization of different single-

disk scheduling algorithms when LRSF, and LRSF-

OTW are applied in the algorithms. In the table, we
show the results of the algorithms when the workload

is heavy for better comparison. As shown in the table,

having LRSF in the scheduling algorithms (C-LOOK,

SATF, SSEDV) increases the disk utilization. It is be-

cause since the service time of a job is optimized by

the adopted single-disk scheduling algorithm, the use

of LRSF increases the average service time of the jobs

as LRSF may raise the priority of a job waiting in the
disk queue for service, instead of choosing the highest

priority job in the queue. If the disk serves the highest

priority job, the service time should be the smallest.

For example, in SATF, the highest priority job in the
queue should be the one with the shortest access time.

However, some algorithms (EDF, FCFS) do not con-

sider the movement of the r/w heads of a disk. Using

LRSF in these algorithms does not significantly increase

the access time. Comparing LRSF with LRSF-OTW, we

can see that the disk utilization of LRSF-OTW is lower

since the problem of higher service time as a result from

raising the priority of a job in the disk queue is mini-
mized by the OTW scheme.

6.2.2. WinBench98-based results for pre-fetching

While the previous section explores the performance

improvement from LRSF and OTW in an RAID-0 with

different disk scheduling algorithms, the purpose of this

section is to assess the performance improvement from

the pre-fetching mechanism using realistic workloads
when different disk algorithms are used in the RAID-

0. We consider an RAID-0 controller with eight SCSI

disks. We simulate a disk drive having 4 MB internal

caching space for pre-fetching, and the controller has
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no caching space. We must emphasize that if the con-

troller has non-zero caching space, the improvement in

results will be even higher.

Figs. 14 and 15 show the average response time and

miss ratio of different disk scheduling algorithms with/

without pre-fetching with the WinBench98 ‘‘Business’’

and ‘‘High-End’’ workloads, respectively. Consistent

with the results from the first set of experiments, SATF
out-performs other scheduling algorithms in general,

especially in average response time. As shown in the fig-

ures, the pre-fetching mechanism can significantly im-

prove the less-efficient single-disk scheduling algorithms

such as EDF and FIFO, e.g., about 20–30% improve-

ment in response time for EDF and FIFO with both

WinBench98 ‘‘Business’’ and ‘‘High-End’’ workloads.

Even for SATF, the pre-fetching mechanism improves
the response-time (miss-ratio) by around 10%(3%)

in the ‘‘Business’’ workload and by around 20%(3%) in

the ‘‘High-End’’ workload. As astute readers might point

out, the pre-fetching mechanism can be used together

with LRSF and OTW, as shown in the previous section.

Similar improvement will be achieved.
7. Conclusion

With the advent of high-performance applications

and the growing demand for applications with soft
real-time constraints, there is an increasing demand of

I/O systems which must perform in a soft real-time fash-

ion. Multi-disk systems such as RAID-0 are one of the

important choices for the application systems with strin-

gent response-time requirement. In this paper, we study

real-time multi-disk scheduling in RAID-0 to improve

the I/O performance to minimize the number of dead-

line violations and mean response time. We propose a
request-based real-time multi-disk scheduling algo-

rithm calledLeast-Remaining-Request-Size-First (LRSF),

which can be integrated with different real-time/non-

real-time single-disk scheduling algorithm, such as

SATF and C-LOOK. To minimize the starvation prob-

lem to large disk requests, we also have studied how to

incorporate the on-the-way mechanism into LRSF. Pre-

fetching in RAID-0 is also investigated to further im-
prove the I/O system performance. The performance

of the proposed algorithm and mechanisms combined

with different single-disk scheduling algorithms, such

as C-LOOK and EDF, is studied using randomly gener-

ated and realistic workloads.

For the future research, we shall explore various

approximate algorithms for multi-disk and single-disk

scheduling to fit different RAID which might adopt
embedded processors with different computing power.

We shall also explore multi-disk scheduling for other

types of RAID, such as those with mirroring and

parity-based stripping schemes.
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Appendix A. The TH-selection algorithm

Algorithm ‘‘TH-Selection’’ is used to derive the opti-

mal value for TH, given a collection of workloads in a
system. The LRSF algorithm is executed for various

TH values and different workloads with a given step

granularity to search for the best value. Suppose that

the performance metric is the miss ratio. The best value

for TH is picked up that results in the minimum miss

ratio for the given workloads.

Algorithm 3. (TH-Selection)

1: input: A set W of workloads. A number step

(0< step<1) to denote the granularity for the

searching of the best TH.

2: output: A real number TH.

3: TTH 0, minTotalMissRatio 1
4: while TTH<1 do

5: for all workload wi2W do

6: Run the LRSF algorithm with the selected sin-

gle-disk scheduling algorithm, the workload wi

and the given threshold TTH to obtain the

miss ratio missi.

7: totalMissRatio totalMissRatio + missi
8: if totalMissRatio<minTotalMissRatio then

9: minTotalMissRatio totalMissRatio,

TH TTH

10: TTH TTH+ step

output TH
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