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Abstract

This study presents a novel mathematical model for analysis of non-axisymmetrical solute transport in a radially convergent flow
field with scale-dependent dispersion. A two-dimensional, scale-dependent advection—dispersion equation in cylindrical coordinates
is derived based on assuming that the longitudinal and transverse dispersivities increase linearly with the distance of the solute
transported from its injected source. The Laplace transform finite difference technique is applied to solve the two-dimensional,
scale-dependent advection—dispersion equation with variable-dependent coefficients. Concentration contours for different times,
breakthrough curves of average concentration over concentric circles with a fixed radial distance, and breakthrough curves of con-
centration at a fixed observation point obtained using the scale-dependent dispersivity model are compared with those from the con-
stant dispersivity model. The salient features of scale-dependent dispersion are illustrated during the non-axisymmetrical transport
from the injection well into extraction well in a convergent flow field. Numerical tests show that the scale-dependent dispersivity
model predicts smaller spreading than the constant-dispersivity model near the source. The results also show that the constant dis-
persivity model can produce breakthrough curves of averaged concentration over concentric circles with the same shape as those
from the proposed scale-dependent dispersivity model at observation point near the extraction well. Far from the extracting well,
the two models predict concentration contours with significantly different shapes. The breakthrough curves at observation point
near the injection well from constant dispersivity model always produce lesser overall transverse dispersion than those from
scale-dependent dispersivity model. Erroneous dimensionless transverse/longitudinal dispersivity ratio may result from parametric
techniques which assume a constant dispersivity if the dispersion process is characterized by a distance-dependent dispersivity rela-
tionship. A curve-fitting method with an example is proposed to evaluate longitudinal and transverse scale-proportional factors of a
field with scale-dependent dispersion.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The migration of dissolved contaminant plume in a
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advection—dispersion equation with constant dispersiv-
ity. However, both field and laboratory experiments
indicate that dispersivity generally increases with solute
transport distance. The increase of dispersivity with tra-
vel distance results from the heterogeneous nature of
porous media. The spatial variability of dispersivity is
generally assumed as scale-dependent dispersion [1,3,5,
6,8,10,13-15,18,19]. Researchers have applied numerical
solutions [8,11,14] and analytical solutions [10,13,18,19]
to investigate scale-dependent dispersive transport in a
uniform flow field. Few researchers have developed solu-
tions to two-dimensional advection—dispersion equation
with scale-dependent dispersion in a uniform flow field.
Hunt [6] developed one-, two- and three-dimensional
analytical solution for a scale-dependent dispersion
equation. Alternatively, Aral and Liao [1] developed
analytical solutions for two-dimensional advection—dis-
persion equation with a time-dependent dispersion
coeflicient.

The advection—dispersion equation in cylindrical
coordinates refers to the problem of analyzing the dis-
persive transport of a contaminant in the radial flow
field generated by extraction or injection well that fully
penetrates a homogeneous confined aquifer. Current
contaminant transport models in a radial flow field are
also based on advection—dispersion equation with con-
stant dispersivity. Relatively a few studies have devel-
oped solutions to advection—dispersion equations in
cylindrical coordinates to investigate how scale-depen-
dent dispersion affects solute transport in a radial flow
field. Kocabas and Islam [9] developed solution to radial
advection—dispersion equation assuming spatially veloc-
ity and scale dependence of dispersivity for a radially
divergent flow field. Chen et al. [3] presented a semi-ana-
lytical solution for describing the transport of dissolved
substance in a radially convergent flow field with line-
arly scale-dependent dispersion. Their solution was ap-
plied to a set of reported field data to examine its
applicability. The application results reveal that the sol-
ute transport process at the test site obeys the linearly
scale-dependent dispersion model.

To our knowledge, no research works focus on the
development of the solution to two-dimensional, scale
dependent advection—dispersion equation in cylindrical
coordinates for describing non-axisymmertrical solute
transport in a convergent flow field. Solutions to
two-dimensional, scale-dependent advection—dispersion
equation in cylindrical coordinates help predicting
breakthrough curves at observation points. If function
relationship between the distance and dispersivity obeys
the scale-dependent dispersion assumption, field concen-
tration breakthrough curves can be fitted against the
type curve from the developed model to obtain trans-
verse scale-related transport parameter. In light of the
above development, this study presents a two-dimen-
sional mathematical model to investigate the effect of

scale-dependent dispersion on non-axisymmetrical sol-
ute transport in a radially convergent flow field. Addi-
tionally, a graphical method with an example, which
applied a curve-fitting procedure involving type curves
at the extraction well and at one observation point, is
proposed to determine the scale-dependent longitudinal
and transverse dispersivity for a tracer test.

2. Governing equation

To investigate non-axisymmetrical solute transport in
a radially convergent flow field with scale-dependent
dispersion, the problem of a convergent tracer test is
considered herein. Fig. 1 presents the conceptual config-
uration. The governing equations and boundary condi-
tions are derived and described below.

The radially convergent flow field is generated by a
vertically oriented extraction well of radius ry, located
at r =0, and fluid pumped at a constant volume rate
of Q from a statistically homogeneous and isotropic
aquifer of infinite horizontal extent. Assuming that the
tracer injection has no influence on the flow field, there-
fore the mean pore velocity V caused by extraction is de-
scribed by

" (1)

r

where 4 = %, and b and ¢ represent the aquifer thick-
ness and effective porosity.
The two-dimensional, non-axisymmetrical solute tran-

sport in a radial flow field can be described by the
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Fig. 1. Schematic diagram of radically convergent tracer test: (a) side
view and (b) plane view.
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advection—dispersion equation in cylindrical coordinates
as

oC 10 aoC oC 10 oC
R =7 (’"DLE) VTR (DT@) @)
where C is the concentration, Dy and Dt denote longi-
tudinal and transverse dispersion coefficients, respec-
tively, and R is retardation factor.

The longitudinal and transverse dispersion coeffi-
cients, Dy and Dr, in Eq. (2) are generally considered

to be a linear function of the mean pore velocity and
molecular diffusion can be neglected as follows:

D]_ = aL|V\ (33)
DT = CZT|V‘ (3b)

where a; and at are longitudinal and transverse disper-
sivities, respectively. For the constant longitudinal and
transverse dispersivities, ap, =ar . and ar = ar,., Egs.
(2) and (3) reduce to the classical, two-dimensional
advection—dispersion equation in cylindrical coordinates
2]

0C arAPC AIC apddC A

o 6r2+r6r o 00? “)

Results from field and laboratory experiments sug-
gested that both longitudinal and transverse dispersivi-
ties may be scale-dependent, i.e., ¢; and at increase
with travel distance from the contaminant source. It is
assumed that any growth with travel distance of the dis-
persion process is a direct consequence of the heteroge-
neous nature of the porous medium [18]. In this paper,
the growth of longitudinal dispersivity, a; s as a linear
function of travel distance from the injection well lo-
cated at r = r is employed herein and can be adequately
described using equations of the form [14]

avrs =ay(r) =ec(rL —r) (5a)

The relationship between the scale-dependent disper-
sivities in longitudinal and transverse directions may be
assumed to be constant as that in constant dispersivity
model (CDM) [1,7,8]. Several researchers including
Hunt [6,7], Pang and Hunt [13], and Jayawardena and
Lui [8], Yates [19] extended the relationships to describe
the scale dependent transverse dispersivity in the devel-
opment of analytical solutions or numerical solutions
of solute transport through groundwater system. In this
study, a linear empirical relationship was adopted to de-
scribe the scale-dependent traverse dispersivity. The
transverse dispersivity ar s can be adequately described
in the following form:

ars = ar(r) = Xser(rL —r) = ex(r, — 1) (5b)

where e; and et are longitudinal and transverse disper-
sivity/distance ratios (i.e., scale-proportional factors),
respectively, which characterize the scale-dependent

dispersion process. X =2 =) gnd x, =% are
aLs  av(r) aLc

dimensionless dispersivity ratios for SDM and CDM,
respectively. Notice that a; and at are both zero at
the tracer injection well r = ri and reach the maximum
at the extraction well r = rp..

Substituting Egs. (1), (3a), (3b), (5a) and (5b) into Eq.
(2) yields the following equation:

QC_1D( o aecy aec
ot ror reLin rr@r r or
1 © A oC
+2 50 (( -7 @) (6)

Rewriting Eq. (6) in more clearly visible form as

oC e 4 0’C  A(1 —e) OC

R— = — — _ _

ot r (e =r) o*r + r or
erd(r, —r) 0°C

+ r3 602 (7)

The advective transport term of Eq. (7) becomes nega-
tive when ey > 1, therefore would cause an apparent
negative advective transport. It seems improbable that
effect of the upstream dispersion is so strong and greater
than that of advective transport during the growth of
dispersion with the solute displacement distance. Based
on the impracticability of negative advective transport
and considering available field evidence, the ep should
be restricted to the range 0 <ep <1.

The aquifer’s initial tracer concentration is assumed
to be zero before starting the test:

C(r,0,t=0)=0 (8)

The boundary, which is used to describe solute trans-
port at the interface between the extraction well and
aquifer while neglecting the finite volume in the well
bore is as

oC(r,0,t)
or

Because the concentration is symmetrical across
0 =0 and 6 = n, only upper half domain is considered
for mathematical simplicity. The boundary condition
including solute transport at the injection well boundary
can be formulated as [20]

Ci(t —0< 0] <
C(r,@,t):{ I() s H s

0 0<|0l<m—9

where Cy(7) is the concentration generated in the injec-
tion well and transported downstream the narrow and
short (a few well diameters) discharge zone by advec-
tion. This small zone with advection-dominated flow
has an aperture angle of 26 (Fig. 2). The aperture angle
of this narrow zone at the distance r* ~ry — [ (I < ry)
from the center of extraction is

=0 atr=r, 9)

(10)

25 = 2N (11)

rL
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Fig. 2. Plane view of the injection well boundary condition (after
Zlotnik and Logan [20]).

where r; represents the injection well radius, « is a factor
that defines the distortion of distance between the two
most separated streaming line entering (or leaving) the
injection well (this parameter can also depend on skin
effect for an injection well, see Zlotnik and Logan [20];
Eq. (3)).

The effluent concentration from the injection well in
an ambient horizontal flow is yet to be determined.
The effluent concentration from the well with initial dis-
solved tracer mass, M|, satisfies a mass balance equation
for the tracer in borehole:

— 20r1b|V (r1)|C1(£) = iy d(;lt(t) (12)
M,

Ci(t=0)=—-=C 13

l(t ) TU"lth 0 ( )

where £y is the mixing length of injection well [20, Eq.
(6)].

After integration, the known effluent concentration
Ci(?) can be substituted into boundary condition (10).

The physics of the problem stipulates that C is a sin-
gle-valued function in r and 6 coordinates. In addition,
C is continuous and symmetrical function across 6 =0
and 0 = . Thus, boundary conditions in the transverse
directions are as follows:

oC(r,0,1)
a0 (14)
oC(r,m,t)
—a0 (15)

Dimensionless variables are defined in a manner sim-
ilar to that used by Chen et al. [3]. Following Moench
[12] and substituting the definition given in Table 1 into
Eq. (7), the dimensionless transport equation is pre-
sented in the following form:

Table 1
Dimensionless parameters used in this study

Dimensionless quantity

Time or
D=—>——
P abg(r7 —r2)
-

Expression

Distance D =—
L
. . Ty
Extraction well radius FaD = —
L
. e
Transverse scale-proportional factor X = =
e
. . by
Extraction well mixing factor fy = 5~
hy(ri —13)
C .. rirLh
Injection well mixing factor I UL

TR —12)

2
2I’DR oC
(1 =rip) %
Consequently, the initial and boundary conditions
(9)—(15) become

(16)

C(rp, 0,0) = 0 (17)
oC(rp, 0,t
8o, 6, 1n) grD )0 at o = rup (18)
Ci(tp) n—o0<|0<m
0 = 19
C(rDv 7tD) {0 O<|0|<TE—5 ( )
dC(t
— C](lD) = dl( D) (20)
p
CI(ID = 0) = Co (21)
ac(rD707tD) _ _
SR 0 at0=0 (22)
aC(VD7912‘D)
_— = 2
- 0 atf—n (23)

This study adopts the Laplace transform finite differ-
ence, LTFD, technique to solve the initial-boundary
value problem specified by Egs. (16)—(23). Appendix A
provides a detailed derivation of LTFD method.

3. Results and discussion
3.1. Model verification

The one-dimensional Laplace transform analytical
solution derived by Chen et al. [3] for simulating the axi-
symmetrical solute transport behavior in a convergent
flow field with scale-dependent dispersion was used to
verify the accuracy of the developed LTFD model. Table
2 summaries the simulation conditions and transport
parameters in the model verification. Notably, the LTFD
model determines the solution analytically in the 6 coor-
dinate and numerically in the r coordinate. An uniform
grid mesh was used to discretize the radial distance in
the LTFD model. Generally, numerical procedures
based on the finite difference methods performed well
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Table 2
Descriptive simulation conditions and transport parameters in the
model verification

Parameter Tracer test
Pumping rate (Q), m* min~" 2

Aquifer thickness (4), m 10
Effective porosity (¢), dimensionless 0.2
Radius of extraction well (ry,), m 0.1
Extraction well mixing length (%), m 10

Radius of injection well (r1), m 0.1
Injection well mixing length (4;), m 10
Distance to the injection well (1), m 5

Injected mass (M), kg 10

Longitudinal dispersivity (ar), m 1.25,0.25,0.0125
Peclet number (Pe), dimensionless 1,10,60
Transverse dispersivity (ar), m 0.25,0.05,0.0125
Dimensionless dispersivity ratio 0.2

(X; or X,), dimensionless

for dispersion-dominated transport (large longitudinal
scale-proportional factor), but suffered from excessive
artificial oscillation and numerical dispersion when was
applied to a advection-dominated transport (small longi-
tudinal scale-proportional factor). The problem of artifi-
cial oscillation can be solved by upstream weighting
technique. Upstream weighting technique, however,
tends to aggravate the numerical dispersion problem.
This study uses upstream weighting technique to prevent
the artificial oscillation, and employs an extra fine grid
mesh to eliminate numerical dispersion.

The grid number (Ng,iq) is the total number of grid
that is employed to discretize the radial distance using
LTFD for simulation of the axisymmetrical solute trans-
port in a convergent flow field. The use of suitable Ngig
which required to eliminate numerical dispersion was
investigated. Fig. 3 displays breakthrough curves at
extraction well for longitudinal scale-proportional fac-
tor value of e; =1, 0.2 and 0.05, and compares them
to numerical solution developed by Chen et al. [3] for
various grid numbers. Two solutions agree closely for
a large longitudinal scale-proportional factor of e =
1. The LTFD model with a coarse mesh (Ngiq = 100)
yields noticeable numerical dispersion for ep =0.2.
The numerical dispersion becomes significant for e; =
0.05. The LTFD solutions of the fine grid mesh
(Ngria = 500) agree well with analytical solution for
er = 0.2, yet the error resulted from the numerical dis-
persion is noticeable for ¢ =0.05. By employing the
extra fine grid mesh (Ngig = 5000), the LTFD solution
agrees closely with the analytical solution for ep =
0.05. Increasing the grid numbers reduces and eventually
eliminates the numerical dispersion error.

3.2. Analysis of non-axisymmetrical scale-dependent
dispersion transport

Following validation with analytical solution, the
developed model was applied to illustrate non-axisym-

0 50 100 150
0.16 ' ' ' ' ' 0.16
Chen et al. [3]
T o LTFD solution, N,,;,=100 [~
e LTFD solution, N,,;,=500
+ LTFD solution, N,,,,=5000
0.12— —0.12
E
)
=, 0.08— — 0.08
)
0.04— — 0.04
0 i T T T T | T 0

0 50 100 150 200
t [min]

Fig. 3. Comparison of the developed Laplace transform finite-differ-
ence (LTFD) method with different grid numbers and Chen’s et al. [3]
solution for e, =1,0.2 and 0.05.

metrical transport in a convergent flow field with
scale-dependent dispersion. The input parameters are
the same as those in the model verification in the Section
3.1. Fig. 4 compares the concentration contour obtained
from the scale-dependent dispersivity model (SDM) de-
scribed herein, where e = 1 and the constant dispersiv-
ity model (CDM) that has a constant longitudinal
dispersivity value of ap .= 1.25m for times equal to
30, 60 and 90 min. The constant longitudinal dispersiv-
ity value of a; . = 1.25 m used in CDM is based on that
the correlation (%« = 4) approximated by Chen et al.

daLc

[3] who fitted the breakthrough curves at extraction well
obtained from CDM against the breakthrough curves
from SDM. The value of dimensionless dispersivities
ratio (X, = s = erln=r) < or X, =) is 0.2 in both

avs ~ er(rL—r) aLe

SDM and CDM. The solid and dashed lines in Fig. 4
represent the concentration contours from CDM and
from SDM, respectively. Fig. 4 reveals that a greater
spreading of contaminant plume near the injection well
predicted by CDM than that obtained using SDM. As
the time increases, the development of spreading of con-
taminant plumes by CDM becomes progressively
increasing than that by SDM. However, the two-dimen-
sional concentration contour is the combinational effect
of longitudinal and transverse dispersivities which does
not clearly differentiate the individual effect of the longi-
tudinal and transverse scale-dependent dispersions on
the non-axisymmetrical solute transport in a radially
convergent flow filed.

To further examine the individual influence of longi-
tudinal or transverse dispersion on solute transport, the
effect of transverse dispersion is excluded first. Because
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Fig. 4. Comparison of concentration contours between the scale-dependent dispersivity model (solid line) and the constant dispersivity model
(dashed line) in a hypothetical tracer test. (a) ¢ = 30; (b) =60 and (c) ¢ = 90 min.

transverse scale-dependent dispersion is excluded, the
breakthrough curves of average concentration at a fixed
radial distance are constructed. The average concentra-
tion, C, is calculated by averaging the solute concentra-
tion from transverse angle 6=0 to 0=2m over
concentric circles with a fixed radial distance,
C(r,1) =5 027[ C(r,0,t)d0. The average concentration
implies that the influence of transverse dispersion is ex-
cluded and only effect of longitudinal dispersion is taken
into account.

Fig. 5 displays breakthrough curves of averaging con-
centration over concentric circles with different radial

distance values (r =0.5, 1, 2 and 3 m) from SDM for
er, =1 and compares with those from CDM for with
constant longitudinal dispersivity value of @ . = 1.25 m.
The breakthrough curves obtained from SDM closely
match with those using CDM for r =0.5 and 1 m, but
exhibit significant deviations from those obtained from
CDM for r=2 and 3 m. The deviations increase with
increasing radial distance. This result is consistent with
longitudinal scale-dependent dispersion assumption.
Owing to the constant longitudinal dispersivity value
used in CDM are derived from breakthrough curves
at extraction well (with longer travel distance from



J.-S. Chen et al. | Advances in Water Resources 29 (2006) 887-898 893

0 50 100 150
0.08 L ' L ' L 0.08
i SDM (e, =1) L
— — CDM(q;=1.25)
0.06 = L 0.06
N
E
%0 0.04 — — 0.04
QO
0.02 — — 0.02
0 T I T I T 0
0 50 100 150
(a) t [min]
0 50 100 150
0.08 L I L I L 0.08
SDM (e, =1)
T — — DM (=125 [
0.06— — 0.06
z
é" 0.04— — 0.04
[}
0.02— — 0.02
0 0
0 50 100 150
(C) t [min]

0 50 100 150
0.08 ' ! ' ! 0.08
SDM (e =1)
1 —  — CDM(a;=125)
0.06 — — 0.06
)
Eﬂ 0.04 — L 0.04
o
0.02 — — 0.02
0 0
0 . 150
(b) t [min]
0 50 100 150
0.08 ' L ' L 0.08
N SDM (e, =1)
—— —— CDM (¢, =1.25)
0.06— — 0.06
%
Eﬂ 0.04— — 0.04
o
0.02— L 0.02
0 0
0 50 100 150
(d) t [min]

Fig. 5. Comparison of breakthrough curves of average concentration on a concentric circle between the scale-dependent disperivity model (SDM)
and the constant dispersivity model (CDM) in a hypothetical tracer test. (a) r =7r; (b) r=1r.; (¢) r=2r, and (d) r =3r.. The average
concentrations are calculated by averaging the solute concentration from transverse angle 0 =0 to 0 = . C(r,t) = 2‘—7[ 02 " C(r,0,t)do0.

injection point), the SDM has a much smaller dispersiv-
ity and, therefore, lesser dispersion for larger value of r
(with shorter travel distance from injection point) than
the CDM, which uses a constant longitudinal dispersiv-
ity for the simulation if the dispersion process is charac-
terized with distance-dependent model. Therefore for
observation distance at large radial distance (or small
travel distance), the CDM model overestimates longitu-
dinal dispersion for the solute transport with scale-
dependent dispersion. The comparisons of averaging
concentration from SDM and CDM have the same
trend for e;. = 0.2 and 0.05 (not shown here).

To more clearly illustrate how the transverse scale-
dependent dispersion affects the solute transport in a
convergent flow field, Fig. 6 compares the breakthrough
curves at the observation point (r = 1,0 =) at ep. =1,
0.2 and 0.05. The dispersive front of breakthrough indi-
cates that the CDM yields a higher transverse dispersiv-
ity. Additionally, Fig. 7 compares transverse profile at
r=1 for time equal to 30 [min] from SDM and CDM
at e =1, the transverse concentration profiles of
CDM and SDM are both symmetrical around 0 ==
and the maximum concentrations are at § ==m. The
CDM produces a higher maximum concentration and
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Fig. 6. Comparison of dimensional breakthrough curves at observation point r = 1/5r;, 6 = = from the scale-dependent dispersivity model (SDM)
and the constant dispersivity model (CDM) for dimensionless transverse/longitudinal dispersivity ratios X; and X, with (a) e, = 1; (b) e, =0.2 and

(c) e, =0.05.

have lesser overall transverse dispersion. The total mass
of solute in the concentric circle of r = 1 is the same both
from SDM and CDM because the same breakthrough
curves of averaging concentration was used in Fig. 5.
This implies CDM model underestimates dimension-
less transverse/longitudinal dispersivity ratio for scale-
dependent transverse dispersion. To provide further
evidence of this phenomenon, the input dimensionless
transverse/longitudinal dispersivity ratio used in SDM
was reduced and breakthrough curves obtained with
SDM were fitted against the breakthrough curves for

CDM. The comparison in Fig. 6 reveals that the break-
through curves obtained with CDM are shaped roughly
the same as that those obtained with SDM for rising
limbs when the input dimensionless transverse/longitu-
dinal dispersivity ratios in SDM are reduced to 0.067,
0.7 and 0.8 for e =1, 0.2 and 0.05. However, a sig-
nificant discrepancy occurs at the spreading tailing
of breakthrough curves between SDM and CDM
at eg =1 and 0.2, the spreading tailing of break-
through curves between SDM and CDM agree well at
ey = 0.05.
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Fig. 7. Comparison of transverse concentration profile at observation

r= %r,_. and 7= 30 min from the scale-dependent dispersivity model

(SDM) and the constant dispersivity model (CDM) for dimensionless
transverse/longitudinal dispersivity ratios X, and X.

From the above comparisons on breakthrough curves
and the spatial profile of concentration, erroneous
dimensionless transverse/longitudinal dispersivity ratio
may be estimated from CDM if the dispersion process
is characterized by scale-dependent dispersion.

3.3. Determination of longitudinal and transverse
dispersivityldistance ratios

Data from the tracer test are commonly analyzed by
matching with theoretical breakthrough curves to deter-
mine the transport parameters. Chen et al. [2] pointed
out that the longitudinal and transverse dispersivities
can be simultaneously determined from breakthrough
curves at the extraction well and an observation well
in a field tracer test with constant dispersivities/distance
relationship. In a similar manner the longitudinal and
transverse scale-proportional factors can be estimated.

Analysis procedures of the proposed method are out-
lined as follows:

1. Estimation of the longitudinal scale-proportional
factor.

(a) The type curves at the extraction well obtained
from the SDM are plotted logarithmically for
various longitudinal scale-proportional factors.

(b) The experimental concentrations measured at the
extraction well are normalized relative to the
peak concentration and are plotted in semi-loga-
rithmically against the real time.

(c) The experimental data are matched against
the type curves from the developed SDM and

the longitudinal

obtained.

tor.
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scale-proportional factor is

. Estimation of the transverse scale-proportional fac-

(a) The breakthrough curve of experimental concen-
tration observed at other observation well is plot-
ted against real time.

(b) The theoretical breakthrough curves for different
dimensionless dispersivity ratio at this observa-
tion well are generated from the developed
SDM for longitudinal scale-proportional factor
estimated from step 1.
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Fig. 8. Hypothetical concentration data at: (a) extraction well and (b)
observation well for a convergent tracer test.
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Fig. 9. Hypothetical concentration data superimposed on the type
curves at extraction well from (a) the scale-dependent dispersivity
model (SDM) and (b) the constant dispersivity model (CDM).

(c) The experimental breakthrough curve is matched
against the theoretical breakthrough curves and
the dimensionless transverse/longitudinal disper-
sivity ratio is obtained.
(d) The transverse dispersivity/distance ratio is calcu-

lated from

et = e X

(24)

Next, a hypothetical example is presented to illustrate
the evaluation of longitudinal and transverse dispersivi-
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Fig. 10. Hypothetical concentration data superimposed on the theo-
retical breakthrough curves at observation well from (a) the scale-
dependent dispersivity model (SDM) and (b) the constant dispersivity
model (CDM).

ties/distance ratios according to proposed method for
tracer test in a radially convergent flow field with
scale-dependent dispersion.

Consider a hypothetical tracer test, the distance be-
tween the extraction well and the injection well is 5 m.
The concentrations are measured at the extraction well
and a observation well located at r=1m, 0=m.
Fig. 8a and b presented the hypothetical concentration
data at the extraction well and observation well. The
hypothetical concentration data are fitted against the
type curve obtained from SDM and CDM according
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to the method proposed in this study and Chen et al. [2]
respectively. Fig. 9a and b present the matches of field
data with type curve at the extraction well using SDM
and CDM. The longitudinal dispersivity/distance ratio
is estimated to be 0.32 using SDM. The determined
value of Peclet number is 12.5 and the constant longitu-
dinal dispersivity value of 0.4 m from curve-fitting using
CDM. The yielded longitudinal dispersivity/distance
ratio using SDM or longitudinal dispersivity using
CDM are then served as the input parameters to gener-
ated the theoretical breakthrough curves at observation
well for different dimensionless dispersivity ratios using
SDM and CDM. As concentration data are satisfactory
matched with the generated theoretical breakthrough
curves, the dimensionless dispersivity ratios can be ob-
tained as shown in Fig. 10a and b. The estimated dimen-
sionless dispersivity ratios are 0.175 and 0.55 using
SDM and CDM, respectively.

Theoretically, one extraction well and an observation
well are enough to determine longitudinal and trans-
verse dispersivity/distance ratios. If concentration data
are available at several intermediate wells, they can be
used to crosscheck the obtained parameters or to appar-
ently validate the dispersivity/distance relationship.

4. Conclusion

This work has presented a mathematical model for
analysis of non-axisymmetrical solute transport in a
radially convergent flow field with scale-dependent dis-
persion. The proposed model assumes that both the lon-
gitudinal and transverse dispersivities are the linear
functions of solute travel distance from the injected
source. The Laplace transform finite difference tech-
nique is applied to solve the two-dimensional scale-
dependent advection—dispersion equation in cylindrical
coordinates. Comparisons between breakthrough curves
from the constant dispersivity model and the scale-
dependent dispersivity model show the constant disper-
sivity model can produce the same curves of averaging
concentration only at observation distance near the
extraction well as well as those from the scale-dependent
dispersivity model because that the dispersivity used in
the constant dispersivity model are obtained by fitting
breakthrough curves from the constant dispersivity
model against that from the scale-dependent dispersivity
model at extraction. Additionally, dimensionless longi-
tudinal/transverse dispersivity ratio from the inverse ap-
proach uses the constant dispersivity model may
produce parameters that are significantly different from
that using the scale-dependent dispersivity model. A
curve-fitting method involving curves is proposed to
determine the longitudinal/transverse dispersivity ratios.
The proposed model provides a means for obtaining
longitudinal and transverse scale-proportional factors

by applying it to a field case if the test site obeys the lin-
early scale-dependent assumption.

Appendix A

The LTFD solution of the governing Eq. (16), subject
to initial and boundary conditions (17)—(23) is derived.

First, by performing the Laplace transform of Egs.
(16) and (17) and its associated boundary conditions
(18)—(23) with respect to 7p yields

0’G 0G er(l —rp) O*G
1 —rp) et (1 —ep) e+ - B2
all =) tl-st ™2 o
27’DR
=Dt Al
(i A
9G(rp, 0,5) _ 0 atrp=rup (A.2)
GrD
— Ci(s) m—o<|ll<m
G(rp,0,s) = A3
(0, 0,) {0 0<0<m—d (A-3)
— Gi(s) = lsGi(s) — Co (A4)
aG(rDa 9’ S)
_—-—- = = A.
= 0 atf=0 (A.5)
0G(rp,0,s) B
=0 atf=mn (A.6)

where s denotes the Laplace transform parameters and
G represents the Laplace transform of C, as defined by

G(rp, 0,5) = /  Clrp, 0, 1p)e ™ dipy (A7)
0

G](S) = /Ooo Cvl(l‘]))eistD dlD (AS)

Taking the finite Fourier cosine transform with re-
spect to 6 of Egs. (A.1)—(A.6) yields:

daw dw
eL(l — rD)ﬁ+ (1 - eL)E
eT(l _VD) 2 2VDR :|
[ 2 (1 —rp) A9
M:O at rp = ryp (Al())
d}"D
G](S)é }’l:O
_ . A1l
W(VD,I’l,S) G](S) [M} n= 1,2,3 ( )

and

C
GI (S) _ HCo
tys + 1
where n denotes the finite Fourier cosine transform
parameter and W represents the finite Fourier cosine
transform of G, as defined by

W(rp,n,s) = /0ﬂ G(rp, 0,s) cos(nd)do (A.12)
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Such a transform is advantageous in that the inver-
sion is directly given by the following formula [16]:

1 2 &
G(rp,0,s) = - W(rp,0,s) + - g W (rp,n,s) cos(nf)
n=I

(A.13)

A finite difference method is applied by discretizing
the radial distance of the transformed ordinary differen-
tial equation (A.9). The advection term is approximated
by the upwind difference formulae. Substituting the dif-
ference formulae into the transformed partial differential
equation yields an algebraic equation as follows:

Wi —2Wi+ Wi, Wi — W,
1~ (). =o)L =
eL[ (’”D),] (ArD)z ( eL) Arp
1- . 2 R
_Jell =U)] | 2R (L, (A
(rp); (1 —rip)

The finite difference equation in the Laplace domain
is rearranged as follows:

A] Wi+l +A2Wi +A3W,‘,] :A4 (AIS)
_e[l—(mp)] (I1—e)
A = 3
(Arp) Arp
o 72@]_[1 — (I"D)i] 1-— eL
Ay, = 3 —
(AI"D) ArD
er[l —(mp)] , , 2(rp)R
- G 2
(rD)i (1 - er)
A= e[l — ("ZD);]
(AVD)
A4 - O

Written in matrix notation, the finite difference sys-
tem of simultaneous Eq. (A.15) becomes

[Q][w] = [D] (A.16)

where [Q] denotes the coefficient matrix; [ W] represents
the vector of the unknown transformed concentration,
and [D]is the known right-hand side vector. The system
of algebraic equations represented by Eq. (A.16), can be
solved using direct Gaussian elimination or other solvers
(e.g., iterative types) to yield a Laplace transformed con-
centration at the node points. Additionally, a FOR-
TRAN subroutine DLSACB is readily available [17].
The solutions in original domain C(rp, 6, fp) are the La-
place and finite Fourier cosine inversion of W(rp,n,s).
For convenience, the finite Fourier cosine transform is
performed first. Also, the Laplace inverse of W(rp,n,s)
must be determined numerically. A FORTRAN subrou-

tine DINLAP/INLAP [17] based on the De Hoog et al.
[4] algorithm, is employed to perform the Laplace
inversion.
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