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Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-
extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fou-
rier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical
transform. These finite transforms are more flexible than the fi-FT and can model much more generalized
optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to ana-
lyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-
sized one-stage or multiple-stage optical systems. © 2005 Optical Society of America
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1. INTRODUCTION
The Fourier transform (FT) is defined as

FT: F~v! 5 ~2p!21/2E
2`

`

exp~2jvx !f~x !dx,

x,v P ~2`, `!. (1)

Notice that, in both the space and the frequency domains,
the intervals are (2`, `). However, owing to the finite
size of the implementing components, the infinite interval
is always impossible. In practice, we perform the finite
Fourier transform (fi-FT) instead of the FT:

fi-FT: F̃~v! 5 ~2p!21/2E
2T

T

exp~2jvx !f~x !dx. (2)

The space interval is x P @2T, T#, and the frequency in-
terval is v P @2V, V#. Since the intervals are finite, af-
ter the fi-FT is done, some energy is lost. For the original
FT, the energy-preservation property is satisfied:

E
2`

`

uF~v!u2dv 5 E
2`

`

u f~x !u2dx. (3)

However, for the fi-FT, the energy ratio of F̃(v) to f(x) is
smaller than 1:

0 , energy preservation ratio 5

E
2V

V

uF̃~v!u2dv

E
2T

T

u f~x !u2dx

, 1.

(4)

Then one may ask under what condition the energy ratio
is maximal. In 1961 Slepian and Pollak1 and Landau
and Pollack2,3 found that these problems could be ana-
lyzed by prolate spheroidal wave functions (PSWFs).

PSWFs are the continuous functions that satisfy
1084-7529/2005/030460-15$15.00 ©
E
2T

T

KF,V~ x̃, x !cn,T,V~x !dx 5 ln,T,Vcn,T,V~ x̃ !,

KF,V~ x̃, x ! 5
sin@V~ x̃ 2 x !#

p~ x̃ 2 x !
.

(5)

Infinite functions can satisfy Eq. (5). We can sort them
according to the values of ln,T,V’s:

1 . l0,T,V . l1,T,V . l2,T,V . ¯ . 0

~all of ln,T,V real!. (6)

We write T and V in the subscripts because PSWFs and
their eigenvalues are dependent on T and V. In the case
in which the roles of T and V are not emphasized, we will
simplify the notations as cn(x) and ln .

PSWFs are orthogonal in the intervals of both x
P @2T, T# and x P (2`, `):

E
2T

T

cm~x !cn~x !dx 5 lndm,n ,

E
2`

`

cm~x !cn~x !dx 5 dm,n . (7)

When T 3 V → `, they are similar to Hermite–
Gaussian functions:

cn~x ! ' Cn exp~2x2/2!Hn~x !, T 3 V → `,

Hn~x !: Hermite polynomials. (8)

The asymptotic approximation of PSWFs was discussed
in Ref. 4.

To compute PSWFs numerically, we can set x 5 kD and
x̃ 5 hD. Then Eq. (5) becomes
2005 Optical Society of America
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RF,V@k, h# 5 KF,V~kD, hD! 3 D

5
sin@VD~k 2 h !#

p~k 2 h !

~m, n 5 2N0 , 2N0 1 1 ,..., N0!, (9)

where D 5 2TN21 and N 5 2N0 1 1. Then we define
the tridiagonal matrix T as5

T@ p, p 2 1# 5 T@ p 2 1, p# 5 bp , T@ p, p# 5 ap ,

T@ p, q# 5 0 otherwise, (10)

bp 5 2~ p 2 1 !~N 2 p 1 1 !,

ap 5 @N 1 1 2 2p#2 cos~VD!,

p,q 5 1, 2, 3,..., N. (11)

Since RF,V commutes with T (i.e., RF,VT 5 TRF,V) and T
has no repeated eigenvalues, the eigenvectors of T are
also the eigenvectors of RF,V . It is known that the eigen-
vectors of a tridiagonal matrix are easier to solve.6 Thus
we can use the tridiagonal matrix T to solve the eigenvec-
tor of RF,V and hence the spherical prolate function effi-
ciently. We describe the numerical computation process
for PSWFs as follows.

1. First, we calculate the determinants of the leading
principal submatrices of T 2 mI (denoted by pr(m),
r 5 1, 2,..., N) (from p. 300 of Ref. 6):

pr~m! 5 ~ar 2 m!pr21~m! 2 br
2pr22~m!

@ p1~m! 5 a1 2 m and defining p0~m! 5 1#. (12)

2. Then we use the bisection method together with the
Sturm sequence property (see pp. 300–306 of Ref. 6) to
solve the eigenvalues m0 , m1 , m2 ,..., mN21 of T from the
equality pN(mn) 5 0. Notice that the eigenvalues of T
are not the solutions of ln’s in Eq. (5).

3. Then the eigenvectors of T can be solved from (see
p. 316 of Ref. 6):

vn@1# 5 1, vn@r# 5 ~21 !r21pr21~mn!~b2b3 ...br!
21.
(13)

Since R and D have the same eigenvectors, vn’s are also
the eigenvectors of R in Eq. (9).

4. The eigenvalues ln’s of the integral equation in Eq.
(5) are close to the eigenvalues of R:

ln ' tn , (14)

where Rvn 5 tnvn, R is defined in Eq. (9), and vn is de-
rived in Eqs. (13).

5. Since R is obtained from sampling the integral
equation in Eq. (5), its eigenvectors vn’s approximate the
solutions of cn(x) (i.e., the PSWF) in Eq. (5):

cn$@k 2 221~N 1 1 !#D% ' Anvn@k#,

An 5 ln
1/2H(

n
vn

2@n#DJ 21/2

. (15)

We choose the normalized constant An as above to satisfy
Eqs. (7).
PSWFs are helpful for calculating the power-preserva-
tion ratio [see expression (4)] of the fi-FT. Since
$cn(x)un P Z1% forms a complete eigenfunction set, any
function f(x) can be expanded as a linear combination of
c0(x), c1(x), c2(x), c3(x),...:

f~x ! 5 (
n50

`

ancn~x !, x P @2T, T#. (16)

Then in expression (4),

E
2V

V

uF̃~v!u2dv 5 E
2V

V

F̃~v!F̃* ~v!dv

5
1

2p
E

2V

V E
2T

T

exp~2jvx !f~x !dx

3 E
2T

T

exp~ jv x̃ !f* ~ x̃ !dxdv

5
1

2p
E

2T

T E
2T

T H E
2V

V

exp@ jv~ x̃

2 x !#dvJ f~x !f* ~ x̃ !dxdx̃

5 E
2T

T E
2T

T

KF,V~x, x̃ !f~x !f* ~ x̃ !dxdx̃

5 E
2T

T F (
n50

`

anE
2T

T

KF,V~x, x̃ !cn~x !dxG
3 (

m50

`

am* cm~ x̃ !dx̃

5 E
2T

T

(
n50

`

lnancn~ x̃ ! (
m50

`

am* cm~ x̃ !dx̃

5 (
n50

`

(
m50

`

lnanam* E
2T

T

cn~ x̃ !cm~ x̃ !dx̃

5 (
n50

`

(
m50

`

lnanam* lndm,n 5 (
n50

`

uanu2ln
2,

(17)

where KF,V(x, x̃) is defined in Eq. (5) and we have ap-
plied Eqs. (5), (7), and (16). Similarly,

E
2T

T

u f~x !u2dx 5 E
2T

T

f~x !f* ~x !dv

5 E
2T

T

(
n50

`

ancn~x ! (
m50

`

am* cm~x !dx

5 (
n50

`

(
m50

`

anam* E
2T

T

cn~x !cm~x !dx

5 (
n50

`

(
m50

`

anam* lndm,n 5 (
n50

`

uanu2ln

(18)
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[applying Eq. (7)]. Thus the energy ratio of F̃(v) to f(t)
is1

energy-preservation ratio 5

E
2V

V

uF̃~v!u2dv

E
2T

T

u f~x !u2dx

5

(
n50

`

uanu2ln
2

(
n50

`

uanu2ln

. (19)

Since l0 . ln , if n Þ 0, to make the energy ratio maxi-
mal, f(x) should be a multiple of c0(x):

f~x ! 5 a0c0~x !. (20)

In addition to analyzing the energy-preservation problem
of the fi-FT, PSWFs are also useful for finite-sized optical
system analysis, laser, extrapolation, and finite-extension
filter design.1–4,7,8

In this paper we generalize the theory of PSWFs and
discuss how to use it to deal with the problems associated
with the finite-extension fractional Fourier transform (fi-
FRFT), the finite-extension linear canonical transform (fi-
LCT), and the offset finite-extension linear canonical
transform (offset fi-LCT). These finite transforms are
more generalized than the fi-FT. Many finite-sized opti-
cal systems that cannot be represented by the fi-FT can be
modeled by the fi-FRFT, the fi-LCT, or the offset fi-LCT.
After the generalized prolate spheroidal functions
(GPSWFs) corresponding to these finite transforms are
derived, we can use them to analyze the properties of the
more generalized finite-sized optical system.

In Section 2 we derive the GPSWFs corresponding to
the fi-FRFT, the fi-LCT, and the offset fi-LCT. We con-
sider not only the case where the interval is centered at
zero but also the case where the center departs from zero.
In Section 3 we derive some important properties of
GPSWFs. In Section 4 we illustrate how to use GPSWFs
to analyze the energy-preservation ratio, the self-imaging
phenomenon, and the resonance phenomenon of the
finite-sized optical system. We also consider the case in
which the optical system is a cascade of several finite-
sized optical systems, i.e., the multiple-stage case.

2. GENERALIZED PROLATE SPHEROIDAL
FUNCTIONS FOR FINITE-EXTENSION
FRFTs, LCTs, AND OFFSET LCTs
A. Definitions of Fi-FRFT, Fi-LCT, and Offset Fi-LCT
The fractional Fourier transform (FRFT) is defined as9,10
Ga~u ! 5 OF
a@ g~x !# 5 S 1 2 j cot a

2p
D 1/2

3 E
2`

`

expS j

2
u2 cot a 2 jux csc a

1
j

2
x2 cot a D g~x !dx. (21)

It is a generalization of the FT. When a 5 p/2, it be-
comes the FT. When a 5 2p/2, it becomes the inverse
FT. The linear canonical transform (LCT) is a further
generalization of FRFTs. It is defined as11,12

G ~a,b,c,d !~u ! 5 OF
~a,b,c,d !@ g~x !# 5 S 1

j2pb D 1/2

3 E
2`

`

expS j

2

d

b
u2 2 j

u

b
x 1

j

2

a

b
x2D

3 g~x !dx. (22)

The FRFT is a special case of the LCT, where
$a, b, c, d% 5 $cos a, sin a, 2sin a, cos a%,

OF
a @ g~x !# 5 @exp~ ja!#1/2OF

~cos a,sin a,2sin a,cos a!@ g~x !#.
(23)

The Fresnel transform11 is a special case of the LCT
(where $a, b, c, d% 5 $1, zl/2p, 0, 1%). The FRFT and
the LCT are more flexible than the original FT. They are
useful for filter design, communication, space-variant pat-
tern recognition, phase retrieval, encryption, optical sys-
tem analysis,12–14 spherical mirror-pair-system
analysis,15 etc.

The LCT can be further generalized into the offset lin-
ear canonical transform (offset LCT).11,16,17 It has two
extra parameters, t and r, which represents the space and
frequency offsets:

OF
~a,b,c,d,t,r!@ g~x !#

5 ~ j2pb !21/2 exp~ jru !E
2`

`

expF j

2

d

b
~u 2 t!2

2 j
u 2 t

b
x 1

j

2

a

b
x2Gg~x !dx. (24)

The offset LCT can analyze the optical system that con-
sists of the lens, the misaligned component, or the compo-
nent whose width is the form of exp@ j(h2x

2 1 h1x 1 h0)#.
Notice that, in Eqs. (21), (22), and (24), the space inter-

vals are x P (2`, `). However, the infinite interval is
not practical. For example, we usually use an optical
system to implement the FRFT, the LCT, and the offset
LCT. An infinite space interval means the sizes of the
optical components are infinite. It is obviously impos-
sible. It is more practical to use the fi-FRFT, the fi-LCT,
and the offset fi-LCT to replace the FRFT, the LCT, and
the offset LCT with infinite intervals.
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1. fi-FRFT:

G̃a~u ! 5 OF̃
a
@ g~x !#

5 S 1 2 j cot a

2p
D 1/2

3 E
T1

T2

expS j

2
u2 cot a 2 jux csc a

1
j

2
x2 cot a D g~x !dx,

x P @T1 , T2#, u P @V1 , V2#. (25)

In addition, Khare and George used the original PSWF to-
gether with the fractionalizations of eigenvalues to define
the fi-FRFT.18 That is,

G̃a~u ! 5 E
T1/2V21/2

T1/2V21/2

K̂a~u, x !g~T1/2V21/2x !dx, (26)

where

K̂a~u, x ! 5 (
n50

`

i2b~TV21ln!2bfn~T1/2V21/2u !

3 fn~T1/2V21/2x !, b 5 2ap21.

In this paper, for the consideration of optics analysis, we
use Eq. (25) as the definition of the fi-FRFT.

2. fi-LCT:

G̃ ~a,b,c,d !~u !

5 OF̃
~a,b,c,d !

@ g~x !#

5 S 1

j2pb D 1/2

3 E
T1

T2

expS j

2

d

b
u2 2 j

u

b
x 1

j

2

a

b
x2D g~x !dx,

ad 2 bc 5 1, x P @T1 , T2#, u P @V1 , V2#.
(27)

offset fi-LCT:

G̃ ~a,b,c,d,t,r!~u ! 5 OF̃
~a,b,c,d,t,r!

@ g~x !#

5
exp~ jru !

~ j2pb !1/2
E

T1

T2

expF jd

2b
~u 2 t!2

2 j
u 2 t

b
x 1

ja

2b
x2Gg~x !dx,

ad 2 bc 5 1, x P @T1 , T2#, u P @V1 , V2#. (28)

B. Generalized Prolate Spheroidal Functions
for Fi-FRFTs and Fi-LCTs
Here we derive the function set that can analyze the
energy-preservation property of the fi-FRFT and the fi-
LCT. Here we consider the case where the intervals are
centered at zero, i.e., in Eqs. (25) and (27),
@T1 , T2# 5 @2T, T#, @V1 , V2# 5 @2V, V#.
(29)

Since the fi-FRFT is a special case of the fi-LCT, in the fol-
lowing, we just discuss the case of the fi-LCT. The
energy-preservation ratio of the fi-LCT can be calculated
from

R~energy-pres. ratio! 5

E
2V

V

uG̃ ~a,b,c,d !~u !u2du

E
2T

T

u g~x !u2dx

.

(30)

From Eq. (27),

E
2V

V

uG̃ ~a,b,c,d !~u !u2du

5 E
2V

V

G̃ ~a,b,c,d !~u !G̃ ~a,b,c,d !
* ~u !du

5
1

2pubu E2V

V E
2T

T E
2T

T

expS j

2

d

b
u2 2 j

u

b
x 1

j

2

a

b
x2D

3 expS 2
j

2

d

b
u2 1 j

u

b
x̃ 2

j

2

a

b
x̃2D g~x !g* ~ x̃ !dxdx̃du

5
1

2pubu E2T

T E
2T

T H E
2V

V

expF j
u

b
~ x̃ 2 x !GduJ

3 expF j

2

a

b
~x2 2 x̃2!Gg~x !g* ~ x̃ !dxdx̃ (31a)

5 E
2T

T E
2T

T sin@V~ x̃ 2 x !ubu21#

p~ x̃ 2 x !

3 expF j

2

a

b
~x2 2 x̃2!Gg~x !g* ~ x̃ !dxdx̃. (31b)

Then we try to find the energy eigenfunction that satisfies
the following homogeneous integral equation:

hn,T,Vfn,T,V~ x̃ ! 5 E
2T

T

K ~a,b,c,d !,V~ x̃, x !fn,T,V~x !dx,

(32)

where

K ~a,b,c,d !,V~ x̃, x ! 5
sin@V~ x̃ 2 x !ubu21#

p~ x̃ 2 x !

3 expF j

2

a

b
~x2 2 x̃2!G ,

x, x̃ P @2T, T#.

Then we compare it with the integral kernel of the origi-
nal PSWFs in Eq. (5). Since

K ~a,b,c,d !,V~ x̃, x !

5 ubu21KF,V~ ubu21x̃, ubu21x !expF ja

2b
~x2 2 x̃2!G , (33)
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if cn,Tubu21,V(x) is the PSWF of the original fi-FT, which
satisfies

ln,Tubu21,Vcn,Tubu21,V~ x̃ !

5 E
2Tubu21

Tubu21

KF,V~ x̃, x !cn,Tubu21,V~x !dx, (34)

then the solution of Eq. (32), i.e., the GPSWFs for the fi-
LCT and the corresponding eigenvalues are

fn,T,V~x ! 5 ubu21/2 expS 2
j

2

a

b
x2Dcn,Tubu21,V~ ubu21x !,

hn,T,V 5 ln,Tubu21,V , (35)

since

E
2T

T

K ~a,b,c,d !,V~ x̃, x !fn,T,V~x !dx

5 ubu23/2 exp@2jax̃2~2b !21#

3 E
2T

T

KF,V~ ubu21x̃, ubu21x !cn,Tubu21,V~ ubu21x !dx

5 ubu21/2 exp@2jax̃2~2b !21#

3 E
2Tubu21

Tubu21

KF,V~ ubu21x̃, x1!cn,Tubu21,V~x1!dx1

5 ln,Tubu21,Vubu21/2 expS 2
j

2

a

b
x̃2Dcn,Tubu21,V~ ubu21x̃ !

5 hn,T,Vfn,T,V~ x̃ !. (36)

As in the case of original PSWFs, all the eigenvalues
hn,T,V’s are real, positive, and smaller than 1. We can
sort fn,T,V(x) and hn,T,V such that hm,T,V . hn,T,V if m
. n:

1 . h0,T,V . h1,T,V . h2,T,V . h3,T,V . ¯ . 0.
(37)

To compute GPSWFs numerically, we can first use the
process in expressions (12)–(15) to calculate original
PSWFs. Then we apply Eq. (35) to compute the GPSWF
for the fi-LCT from the original PSWFs.

GPSWFs are orthogonal in the intervals of both x
P @2T, T# and x P (2`, `):

E
2T

T

fn,T,V~x !fm,T,V* ~x !dx

5 ubu21E
2T

T

cn,Tubu21,V~ ubu21x !cm,Tubu21,V
* ~ ubu21x !dx

5 E
2Tubu21

Tubu21

cn,Tubu21,V~x1!cm,Tubu21,V
* ~x1!dx1

5 ln,Tubu21,Vdm,n 5 hn,T,Vdm,n , (38a)
E
2`

`

fn,T,V~x !fm,T,V* ~x !dx

5 ubu21E
2`

`

cn,Tubu21,V~ ubu21x !cm,Tubu21,V
* ~ ubu21x !dx

5 E
2`

`

cn,Tubu21,V~x1!cm,Tubu21,V
* ~x1!dx1 5 dm,n . (38b)

Moreover, since the original PSWFs
$ c0(x), c1(x), c2(x), c3(x)...% are complete, so
$f0(x), f1(x), f2(x), f3(x)...% is also complete. Since
$fn(x)un P Z1% forms an orthogonal and complete func-
tion set, any function can be expressed as a linear combi-
nation of f0(x), f1(x), f2(x), f3(x)...:

g~x ! 5 (
n50

`

snfn~x !, x P @2T, T#,

sn 5 hn
21E

2T

T

g~x !fn* ~x !dx. (39)

Thus

E
2T

T

u g~x !u2dx 5 (
n50

`

(
m50

`

snsm* E
2T

T

fn~x !fm* ~x !dx

5 (
n50

`

u snu2hn . (40)

Moreover, from Eq. (31),

E
2V

V

uG̃ ~a,b,c,d !~u !u2du

5 E
2T

T E
2T

T

K ~a,b,c,d !,V~ x̃, x !g~x !g* ~ x̃ !dxdx̃

5 E
2T

T F E
2T

T

K ~a,b,c,d !,V~ x̃, x !(
n50

`

snfn~x !dxG
3 (

m50

`

sm* fm* ~ x̃ !dx̃

5 E
2T

T

(
n50

`

snhnfn~ x̃ ! (
m50

`

sm* fm* ~ x̃ !dx̃

5 (
n50

`

(
m50

`

snsm* hnE
2T

T

fn~ x̃ !fm* ~ x̃ !dx̃

5 (
n50

`

u snu2hn
2; (41)

therefore the energy-preservation ratio R for the fi-LCT is

R 5

E
2V

V

uG̃ ~a,b,c,d !~u !u2du

E
2T

T

u g~x !u2dx

5

(
n50

`

u snu2hn
2

(
n50

`

u snu2hn

. (42)

Thus we can use GPSWFs to analyze the energy-
preservation property of the fi-LCT. Notice that the
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maximal and the minimal values of the energy-
preservation ratio are

Max~R ! 5 h0 ' 1, g~x ! 5 s0f0~x !,

min~R ! 5 hn ' 0, g~x ! 5 snfn~x !, n → `.
(43)

From Eq. (35) it can be seen that, although the LCT has
four parameters $a, b, c, d%, only two of them (a and b)
affect the form of GPSWFs. We illustrate this in prop-
erty 3 of Section 3.

In the above, we discuss the case of the fi-LCT. For the
case of the fi-FRFT, we can apply the fact that the fi-FRFT
is a special case of the fi-LCT, where $a, b, c, d%
5 $cos a, sin a, 2sin a, cos a% [see Eq. (23)]. Thus the
GPSWFs for the fi-FRFT are

fn,T,V~x ! 5 ucsc au1/2

3 expS 2
j

2
x2 cot a Dcn,Tucsc au,V~ ucsc aux !,

hn,T,V 5 ln,Tucsc au,V , (44)

where cn,Tucsc au,V(x) is the original PSWF that satisfies

ln,Tucsc au,Vcn,Tucsc au,V~ x̃ !

5 E
2Tucsc au

Tucsc au sin@V~ x̃ 2 x !#

p~ x̃ 2 x !
cn,Tucsc au,V~x !dx. (45)

The GPSWFs of the fi-FRFT are orthogonal and complete.
After the fi-FRFT is done, the power-preservation ratio
can be calculated from

R 5

E
2V

V

uG̃a~u !u2du

E
2T

T

u g~x !u2dx

5

(
n50

`

u snu2hn
2

(
n50

`

u snu2hn

,

sn 5 hn
21E

2T

T

g~x !fn* ~x !dx. (46)

C. Generalized Prolate Spheroidal Functions for Offset
Fi-LCTs
In this subsection we further generalize the result in Sub-
section 2.B into the case of the finite-sized offset fi-LCT.
Here we consider only the case where the intervals are
centered at zero, i.e., x P @2T, T# and v P @2V, V#.
Following a process similar to that in Eqs. (30) and (31),
we find that the GPSWFs for the offset fi-LCT should sat-
isfy the following homogeneous integral equation:

hn,T,Vfn,T,V~ x̃ ! 5 E
2T

T

K ~a,b,c,d,t,r!,V~ x̃, x !fn,T,V~x !dx,

(47)

where
K ~a,b,c,d,t,r!,V~ x̃, x !

5
sin@V~ x̃ 2 x !ubu21#

p~ x̃ 2 x !

3 expH jF t

b
~x 2 x̃ ! 1

a

2b
~x2 2 x̃2!G J ,

x, x̃ P @2T, T#.

Comparing Eq. (47) with Eq. (32), we obtain

K ~a,b,c,d,t,r!,V~ x̃, x ! 5 expF jt

b
~x 2 x̃ !GK ~a,b,c,d !,V~ x̃, x !.

(48)

Thus it is easy to show that

fn,T,V~x ! 5 exp~2jtx/b !fn,T,V
~fi-LCT!~x !, (49)

where fn,T,V
(fi-LCT)(x) is the GPSWF of the fi-LCT [see Eq.

(35)]. Thus the GPSWFs for the offset fi-LCT and the
corresponding eigenvalue are

fn,T,V~x ! 5 ubu21/2 expF2jS a

2b
x2 1

t

b
x D G

3 cn,Tubu21,V~ ubu21x !,

hn,T,V 5 ln,Tubu21,V , (50)

where cn,Tubu21,V(x) and ln,Tubu21,V are the original PSWF
and the corresponding eigenvalue that satisfy Eq. (34).
Notice that the GPSWFs for the offset fi-LCT are just the
modulation of that of the fi-LCT. The offset fi-LCT has
six parameters; however, only three of them (a, b, and t)
affect the form of GPSWFs. The GPSWFs of the offset
fi-LCT also satisfy the orthogonal properties in Eq. (38).
They form a complete orthogonal functions set in the in-
terval of x P @2T, T#. We can also use the way used in
Eq. (42) to analyze the energy-preservation ratio of the
offset fi-LCT.

D. Cases of Nonsymmetric Intervals
In Subsections 2.B and 2.C we discussed how to use
GPSWFs to analyze the energy-preservation ratio for the
fi-FRFT, the fi-LCT, and the offset fi-LCT. We limited the
space interval and the frequency interval to be symmetric
about zero (i.e., x P @2T, T# and u P @2V, V#). How-
ever, in practice, it is very often that the intervals are not
symmetric. In this subsection we discuss the cases in
which the space and frequency intervals are not centered
at zero.

Notice that the nonsymmetrical intervals case is
equivalent to the symmetric one together with the shifts
in the time and the frequency domains. Thus assume
that Ĝ(u) is the offset fi-LCT of g(x) whose intervals are
not centered at zero:

Ĝ~u ! 5 E
T1

T2

G~a,b,c,d,t,r!~u, x !g~x !dx, (51)

where
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G~a,b,c,d,t,r!~u, x !

5
exp~ jru !

~ j2pb !1/2
expF jd

2b
~u 2 t!2 2 j

u 2 t

b
x 1

ja

2b
x2G ,

x P @T1 , T2#, u P @V1 , V2#, T1 Þ 2T2 ,

V1 Þ 2V2 . (52)

We can shift g(x) and Ĝ(u) and convert the intervals into
symmetrical ones:

h~x ! 5 g~x 1 T0! for h~x !, x P @2T3 , T3#,

Ĥ~u ! 5 Ĝ~u 1 V0! for Ĥ~u !, u P @2V3 , V3#,
(53)

where

T0 5 221~T1 1 T2!, V0 5 221~V1 1 V2!,

T3 5 221~T2 2 T1!, V3 5 221~V2 2 V1!.
(54)

Then, from Eqs. (51) and (53), we can show that the rela-
tion between h(x) and Ĥ(u) is

Ĥ~u ! 5 E
2T3

T3

G~a,b,c,d,t,r!~u 1 V0 , x 1 T0!h~x !dx.

(55)

From Eq. (51), after some calculation, we can prove that

G~a,b,c,d,t,r!~u 1 V0 , x 1 T0!

5 exp~ jw!G~a,b,c,d,t1 ,r1!~u, x !, (56)

where w is some constant phase and

t1 5 t 1 aT0 2 V0 ,

r1 5 r 1 b21~ad 2 1 !T0 5 r 1 cT0 . (57)

Thus Eq. (55) can be rewritten as

Ĥ~u ! 5 exp~ jw!E
2T3

T3

G~a,b,c,d,t1 ,r1!~u, x !h~x !dx,

x P @2T3 , T3#, u P @2V3 , V3#. (58)

That is, the relation between h(x) and Ĥ(u) can be ex-
pressed as the offset fi-LCT with parameters
$a, b, c, d, t1 , r1%, and the intervals of the offset fi-LCT
are centered at zero. From Eq. (50) in Subsection 2.C, we
know that the GPSWFs corresponding to the offset fi-LCT
in Eq. (58) are

fn,T3 ,V3
~x ! 5 ubu21/2 expF2jS a

2b
x2 1

t 1 aT0 2 V0

b
x D G

3 cn,T3ubu21,V3
~ ubu21x !. (59)

Since g(x) 5 h(x 2 T0), we can conclude that the
GPSWFs for the offset fi-LCT whose intervals are not cen-
tered at zero and the corresponding eigenvalue are (we re-
moved the constant phase term for simplification)
fn,T1 ,T2 ,V1 ,V2
~x ! 5 fn,T3 ,V3

~x 2 T0!

5 ubu21/2 expS 2
ja

2b
x2 1 j

V0 2 t

b
x D

3 cn,T3ubu21,V3S x 2 T0

ubu D , (60)

hn,T1 ,T2 ,V1 ,V2
5 ln,T3ubu21,V3

, (61)

where T0 5 221(T1 1 T2), V0 5 221(V1 1 V2), T3
5 221(T2 2 T1), V3 5 221(V2 2 V1), and
cn,T3ubu21,V3

(x) is the original PSWF, which satisfies Eq.
(5) (T and V are set to T3ubu21 and V3), and ln,T3ubu21,V3

is
its corresponding eigenvalue.

The GPSWFs in Eq. (60) are complete and orthogonal:

E
T1

T2

fn~x !fm* ~x !dx 5 hndm,n ,

E
2`

`

fn~x !fm* ~x !dx 5 dm,n . (62)

The energy-preservation ratio for the offset fi-LCT can be
calculated from

R 5

E
V1

V2

uG̃ ~a,b,c,d !~u !u2du

E
T1

T2

u g~x !u2dx

5

(
n50

`

u snu2hn
2

(
n50

`

u snu2hn

,

sn 5

E
T1

T2

g~x !fn* ~x !dx

hn
. (63)

3. PROPERTIES
In Section 2 we described that the GPSWFs for the fi-
FEFT, the fi-LCT, and the offset fi-LCT are complete and
orthogonal. In this section we introduce other important
properties of the GPSWFs.

1. Symmetry property

fn,T1 ,T2 ,V1 ,V2
~T0 1 x ! 5 ~21 !nfn,T1 ,T2 ,V1 ,V2

~T0 2 x !,

T0 5 221~T1 1 T2!. (64)

2. Space–frequency bandwidth product property
It is known that, for the original PSWF, if the product

of the space interval and the frequency interval is fixed,
when we change the space interval, PSWFs are intrinsi-
cally unchanged except for scaling:

cn,sT,Vs 21~x ! 5 s 21/2cn,T,V~ s 21x !. (65)

This space–frequency bandwidth product property can
also be applied to GPSWFs with some modifications.

The GPSWFs for the offset fi-LCT with intervals x
P @T1 , T2# and v P @V1 , V2# are shown in Eq. (60).
Assume that now the intervals are changed into
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x P @T4 , T5# 5 @T0 2 sT3 , T0 1 sT3#,

v P @V4 , V5# 5 @V0 2 s 21V3 , V0 1 s 21V3#,
(66)

where T0 5 221(T1 1 T2), V0 5 221(V1 1 V2), T3
5 221(T2 2 T1), and V3 5 221(V2 2 V1). Then, from

Eq. (60),

fn,T4 ,T5 ,V4 ,V5
~x ! 5 ubu21/2 expS 2

ja

2b
x2 1 j

V0 2 t

b
x D

3 cn,sT3ubu21,V3s 21S x 2 T0

ubu D ,

@applying Eq. ~65!#

5 u sbu21/2 expS 2
ja

2b
x2 1 j

V0 2 t

b
x D

3 cn,T3ubu21,V3S x 2 T0

subu D , (67)

ufn,T4 ,T5 ,V4 ,V5
~x 1 T0!u

5 Us 21/2fn,T1 ,T2 ,V1 ,V2S x 1 T0

s
DU.

(68)

That is, if the product of the space and frequency inter-
vals is fixed, when we change the space interval, the am-
plitudes of GPSWFs are almost unchanged except for
some scaling.

From Eq. (60), the amplitude of fn,T1 ,T2 ,V1 ,V2
(x) is de-

termined by cn,T3ubu21,V3
(x), which is the original PSWF.

Moreover, when the difference of scaling is ignored,
cn,T3ubu21,V3

(x) is determined by the product of T3ubu21

and V3 . Thus only the following product really affects
the amplitude of GPSWFs:

P 5 T3V3ubu21 5 ~T2 2 T1!~V2 2 V1!~4ubu!21.
(69)

3. Effects of the parameters
Although the general form of the offset fi-LCT [see Eq.

(28)] with nonsymmetric intervals has ten parameters
$a, b, c, d, t, r, T1 , T2 , V1 , V2%, notice that, from Eq.
(60) and property 2,

(a) Only the product P in Eq. (69) really affects the am-
plitude.

(b) The parameter b affects the scale.
(c) The ratio of ab21 affects the chirp term.
(d) T0 5 221(T1 1 T2) affects the amount of space

shift.
(e) V0 5 221(V1 1 V2) and t affect the modulation.
(f) The ratio of T1 2 T2 to V1 2 V2 affects the scaling.

It can be realized from Eqs. (66)–(68).
(g) The parameters c, d, and r, in fact, have no effect.

The parameter c has no effect, since it is dependent on a,
b, and d (ad 2 bc 5 1). The parameters d and r have
no effect because they are related to only the phase term
in the frequency domain. They will be canceled during
the process of deriving the integral kernel of GPSWFs.
For example, for the case of the fi-LCT, the parameter d is
canceled in Eq. (31a).

4. Quasi-eigenfunction property
The fi-FT of original PSWFs are the eigenfunctions of

the fi-FT when T 5 V:

j2nln,T,T
1/2 cn,T,T~v! 5 ~2p!21/2E

2T

T

exp~2jvx !cn,T,T~x !dx.

(70)

If T Þ V, then

j2n~ln,T,VTV21!1/2cn,T,V~TV21v!

5 ~2p!21/2E
2T

T

exp~2jvx !cn,T,V~x !dx. (71)

We can use Eqs. (70) and (71) to derive the transformed
result of the fi-LCT for GPSWFs. From Eq. (28),

OF̃
~a,b,c,d,t,r!

@fn,T1 ,T2 ,V1 ,V2
~x !#

5
exp~ jru !

~ j2pb !1/2
E

T1

T2

expF jd

2b
~u 2 t!2 2 j

u 2 t

b
x

1
ja

2b
x2Gfn,T1 ,T2 ,V1 ,V2

~x !dx.

We then apply Eq. (60) and obtain

OF̃
~a,b,c,d,t,r!

@fn,T1 ,T2 ,V1 ,V2
~x !#

5
exp~ jru !

~ j2pbubu!1/2
E

T1

T2

expF jd

2b
~u 2 t!2

2 j
u 2 V0

b
xGcn,T3 /ubu,V3S x 2 T0

ubu D dx

5
exp@ jru 2 jb21~u 2 V0!T0#

@ j2p sgn~b !#1/2

3 expF jd

2b
~u 2 t!2G E

2T3ubu21

T3ubu21

expF2j
u 2 V0

sgn~b !
x1G

3 cn,T3ubu21,V3
~x1!dx1

5 j2n21/2S ln,T3ubu21,V3
T3

bV3
D 1/2

expF j
V0 2 u

b
T0 1 jru

1
jd

2b
~u 2 t!2Gcn,T3ubu21,V3FT3~u 2 V0!

bV3
G

5 j ~2n21/2!sgn~b !S ln,T3ubu21,V3
T3

ubuV3
D 1/2

expF j
V0 2 u

b
T0

1 jru 1
jd

2b
~u 2 t!2Gcn,T3ubu21,V3FT3~u 2 V0!

ubuV3
G .

(72)
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Here we use the fact that cn,T,V(x) 5 (21)ncn,T,V(2x).
Then, substituting Eq. (60) into Eq. (72), we obtain

OF̃
~a,b,c,d,t,r!

@fn,T1 ,T2 ,V1 ,V2
~x !#

5 mnk1
21/2 exp~ jk3u2 1 jk4u !fn,T1 ,T2 ,V1 ,V2

3 S u 2 k2

k1
D , (73)

where

k1 5 V3T3
21, k2 5 V0 2 V3T0T3

21,

k3 5
d

2b
1

aT3
2

2bV3
2

, k4 5 r 2
d

b
t 2

T0

b

2
T3

bV3
FV0S aT3

V3
1 1 D 2 t 2 aT0G ,

mn 5 j ~2n21/2!sgn~b !hn,T1 ,T2 ,V1 ,V2

1/2

3 expH j

b Fd

2
t 2 1 V0T0 1

a

2

k2
2

k1
2

1
k2

k1
~V0 2 t!G J , (74)

T0 5 221(T1 1 T2), V0 5 221(V1 1 V2), T3 5 221(T2
2 T1), and V3 5 221(V2 2 V1). GPSWFs are not usu-
ally the eigenfunctions of the offset fi-LCT. However,
from Eq. (73), we can see that, when we do the offset fi-
LCT for GPSWFs, the input and the output are just dif-
ferent in scaling, time shifting, chirp multiplication, and
modulation.

In discussing the self-imaging phenomenon (see Sub-
section 4.C), all the above four terms can be ignored.
Thus GPSWFs can be viewed as the quasi eigenfunctions
of the offset fi-LCT and its special cases (including the fi-
FRFT and the fi-LCT).

Specifically, when

T1 5 V1 , T2 5 V2 ~ i.e., T0 5 V0 , T3 5 V3!,

d 5 2a, r 5 b21@~d 2 1 !t 1 2T0#, (75)

then, in Eqs. (73) and (74), k1 5 1 and k2 5 k3 5 k4
5 0. In this case, GPSWFs are the eigenfunctions of the
offset fi-LCT.

4. FINITE-SIZED EXTENSION OPTICAL
SYSTEM ANALYSIS
A. One-Stage Case
The most common application of GPSWFs is analysis of
the status of energy preservation of the optical system.
It has been discussed that the FRFT, the LCT, and the off-
set LCT are useful for optical system analysis.9–17 How-
ever, the space interval and the frequency interval of
these operations are infinite. In contrast, the size of the
optical system is actually finite. Using them to analyze
the optical system may cause some errors. It is more
practical to use the fi-FRFT, the fi-LCT, and the offset fi-
LCT to analyze the optical system. Since the size of the
optical system is always finite, after propagation through
the system, some of the energy of light may be lost. Us-
ing GPSWFs, we can estimate the ratio of the energy that
can be preserved. We can also find the condition under
which the dispersed energy is minimal.

We give an example in Fig. 1. There are two media
and one free space. Assume that the two media are of fi-
nite size and their thickness functions are of the qua-
dratic form:

Medium 1. Thickness: h0 1 h1x 1 h2y 1 h3x2

1 h4y2,

extension: x P @2B1 , B1#,

y P @2P1 , P1#,

Medium 2. Thickness: s0 1 s1u 1 s2v 1 s3u2

1 s4v2,

extension: u P @2B2 , B2#,

v P @2P2 , P2#,

Free space. Length: z. (76)

The parameters of thickness and extension for a medium
are illustrated in Fig. 2. The effect of the medium with
thickness function px2 1 qx 1 r is equivalent to the off-
set LCT with parameters $a, b, c, d, t, r%
5 $1, 0, 2k(n 2 1)p, 1, 0, k(n 2 1)q%, where k 5 2p/l
and n is the refractive index of the medium. The effect of
the free space with length z is equivalent to the offset
LCT with parameters $a, b, c, d, t, r%
5 $1, z/k, 0, 1, 0, 0% (i.e., the Fresnel transform). If we
use gi(x, y) and go(u, v) to represent the light distribu-
tions at the input and the output, respectively, then, from
the additivity property of the offset LCT,16,17 we find that
the whole system can be expressed as a special case of the
offset fi-LCT:

go~u, v ! 5 exp~ je!OFy

~a1 ,b1 ,c1 ,d1 ,t1 ,r1!
$OFx

~a,b,c,d,t,r!

3 @ gi~x, y !#%, (77)

where OFx
and OFy

mean the one-dimensional offset fi-
LCT along the x axis and y axis, respectively; x
P @2B, B1#; y P @2P1 , P1#; u P @2B2 , B2#; v
P @2P2 ; P2#; and

Fa b

c dG 5 F 1 1 2z~n 2 1 !h3 z/k

2k~n 2 1 !~h3 1 s3! 1 z 1 1 2z~n 2 1 !s3
G ,

S t
r D 5 F z~n 2 1 !h1

k~n 2 1 !~h1 1 s1! 1 k G , (78a)
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Fa1 b1

c1 d1
G

5 F 1 1 2z~n 2 1 !h4 z/k

2k~n 2 1 !~h4 1 s4! 1 z1 1 1 2z~n 2 1 !s4
G ,

S t1

r1
D 5 F z~n 2 1 !h2

k~n 2 1 !~h2 1 s2! 1 k1
G ,

§ 5 4zk~n 2 1 !2h3s3 , §1 5 4zk~n 2 1 !2h4s4 ,

k 5 2kz~n 2 1 !2h1s3 , k1 5 2kz~n 2 1 !2h2s4 ,

k 5 2p/l, l, wavelength;

n, refractive index of the two media. (78b)

Then we can apply the result in Subsection 2.C. From
Eq. (50), we can conclude that the GPSWF for the optical
system in Fig. 1 is

fm~x !fn~ y !, (79)

where

fm~x ! 5 S k

z D 1/2

expH 2jkF1 1 2z~n 2 1 !h3

2z
x2

1 ~n 2 1 !h1xG J cm,kB1 /z,B2S k

z
x D ,

fn~ y ! 5 S k

z D 1/2

expH 2jkF1 1 2z~n 2 1 !h4

2z
x2

1 ~n 2 1 !h2xG J cn,kP1 /z,P2S k

z
y D , (80)

and cn,kB1z21,B2
(x) is the original PSWF that satisfies

E
2kB1z21

kB1z21 sin@B2~ x̃ 2 x !#

p~ x̃ 2 x !
cn,kB1z21,B2

~x !dx

5 lncn,kB1z21,B2
~ x̃ !. (81)

Fig. 1. Finite-sized optical system consisting of two media and
one free space.

Fig. 2. Thickness and the extension of a medium.
Then we can use the following equation to calculate the
energy-preservation ratio:

R 5

E
2P2

P2 E
2B2

B2

u go~x, y !u2dxdy

E
2P1

P1 E
2B1

B1

u gi~x, y !u2dxdy

5

(
n50

`

(
m50

`

u sm,nu2lm
2 ln

2

(
n50

`

(
m50

`

u sm,nu2lmln

,

sm,n 5 lm
21ln

21E
2P1

P1 E
2B1

B1

gi~x, y !fm* ~x !fn* ~ y !dxdy.

(82)

In Fig. 3 we do a numerical simulation to show the
energy-preservation conditions for GPSWFs in the optical
system as in Fig. 1. The parameters are

Medium 1. Thickness: 22.5~x2 1 y2! 1 1022~x 1 y !

1 8 3 1023;

extension: x, y P @20.036 m, 0.036 m#,

Medium 2. Thickness: 23.5~x2 1 y2! 1 1.2

3 1022~x 1 y ! 1 7 3 1023;

extension: x, y P @20.03 m, 0.03 m#,

z 5 1.8 m, l 5 5 3 1024,

n 5 1.5. (83)

Then the GPSWFs corresponding to the optical system
can be obtained from expressions (79) and (80). We can
use the process in expressions (12)–(15) to compute cm(x)

Fig. 3. Two special orders of the generalized prolate spheroidal
functions of the optical system in Fig. 1. (a) f0(x)f0( y), (b) out-
put corresponding to f0(x)f0( y), (c) f5(x)f5( y), (d) output cor-
responding to f5(x)f5( y).
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and cn(x) numerically. Then, after multiplication of the
quadratic exponential function, the GPSWFs. In Figs.
3(a) and 3(c), we plot two special orders of the GPSWFs,
respectively:

f0~x !f0~ y !, f5~x !f5~ y !, (84)

Then we use the Huygens–Fresnel principle,19 which can
model an optical system more precisely than the offset fi-
LCT, to calculate the outputs of the optical system when
we use Figs. 3(a) and 3(c) as the inputs. The output re-
sults are plotted in Figs. 3(b) and 3(d), respectively. No-
tice that, except for the differences of intensity and scal-
ing, the intensities of the outputs are almost the same as
those of the inputs. It matches property 4 derived in Sec-
tion 3.

Then we can use Eq. (82) to estimate the power-
preservation ratio. Since

l0 5 1 2 5.16 3 1026, l5 5 0.2111, (85)

therefore, from Eq. (82), the power-preservation ratio
should be

for f0~x !f0~ y !: R 5 ~1 2 5.16 3 1026!2

5 1 2 1.0312 3 1025,

for f5~x !f5~ y !: R 5 0.21112 5 0.0446. (86)

We can compare them with the numerical simulation re-
sults in Fig. 3. We find that the energy ratio of Fig. 3(b)
to Fig. 3(a) is 1 2 1.0370 3 1025 and the energy ratio of
Fig. 3(d) to Fig. 3(c) is 0.0442. Both of them are very
close to the estimated power-preservation ratios.

B. Multiple-Stage Case
In Subsection 4.A we illustrated that we can use GPSWFs
to analyze the optical system whose input and output
ends are of finite size. However, sometime it may happen
that some middle optical components between the input
and the output ends are finite sized (usually, except for
free spaces, other optical components are of finite size).
In this case, it is improper to express the whole system by
only one finite transform. We should treat the region be-
tween two finite-sized components as a stage, as in Fig. 4,
and express each of the stages by the fi-FRFT, the fi-LCT,
or the offset fi-LCT. For each stage, we can find the
GPSWFs that can be used for analyzing the energy-
preservation ratio of this stage. Then there is a problem:
What is the power eigenfunction of the whole system?
We can use the following way to find it.

Assume that there are Q stages and that, for the qth
stage, the GPSWFs are fq,n(x) (n 5 0,1,2,...) and the cor-
responding eigenvalue is hq,n . If we use gq21(x) and
gq(x) to denote the light distribution at the input and the
output of the qth stage and use @Tq,1 , Tq,2# to denote the
interval of the qth stage, then gq21(x) can be expanded as

gq21~x ! 5 (
n50

`

sq,nfq,n~x !,

sq,n 5 hq,n
21 E

Tq21,1

Tq21,2

gq21~x !fq,n* ~x !dx. (87)
From property 4 in Section 3, we know that fq,n(x) is the
quasi eigenfunction of the corresponding finite transform.
That is, if the qth stage can be represented by the opera-
tion OFq

(it can be the fi-FRFT, the fi-LCT, or the offset
fi-LCT multiplied by some constant phase), then

OFq
@ fq,n~x !# 5 mq,nzq,n~u !. (88)

For example, from Eq. (73), if the qth stage can be repre-
sented by the fi-LCT with parameters $a, b, c, d% multi-
plied by a constant phase w and x P @T1 , T2#, u
P @V1 , V2#, then, in Eq. (88),

fq,n~x ! 5 fn,T1 ,T2 ,V1 ,V2
~x !,

zq,n~u ! 5 mnk1
21/2~k1!21/2 exp~ jk3u2

1 jk4u !fn,T1 ,T2 ,V1 ,V2
@k1

21~u 2 k2!#,

mq,n 5 exp~ jw!mn , (89)

and k1 , k2 , k3 , k4 , and mn are defined in Eqs. (74).
Then gq(u), which is the output of the qth stage, can be
expressed as

gq~u ! 5 OFq
@ gq21~x !# 5 (

n50

`

sq,nmq,nzq,n~u !. (90)

The summation in Eq. (90) is a sum of infinite number of
terms. However, owing to the facts that umq,nu 5 hq,n

1/2

and that hq,n is very small when n is large, we can change
it into the sums of finite terms. We can choose a thresh-
old e (near to 0) and find Nq such that

hq,n , e when n . Nq . (91)

Then Eq. (90) can be approximated by

gq~u ! ' ĝq~u ! 5 (
n50

Nq

sq,nmq,nzq,n~u !. (92)

Moreover, since the terms fq,n(t) have a much smaller ef-
fect on gq(t) when n . Nq , we rewrite Eq. (87) as

ĝq21~x ! 5 (
n50

Nq

sq,nfq,n~x !,

sq,n 5 hq,n
21 E

Tq21,1

Tq21,2

gq21~x !fq,n* ~x !dx. (93)

Since for each stage the number of effective GPSWFs
are finite (i.e., Nq’s are finite), we can represent the whole
system by matrix operations. First, expressions (92) and
(93) can be rewritten as

ĝq21~x ! 5 pqFq, ĝq~x ! 5 pqLqZq, (94)

where

Fig. 4. Finite-sized optical system consisting of multiple stages.
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pq 5 @ sq,0 , sq,1 , sq,2 ,..., sq,Nq
#,

Fq 5 @ fq,0~x !, fq,1~x !, fq,2~x !,..., fq,Nq
~x !#T,

Zq 5 @zq,0~x !, zq,1~x !, zq,2~x !,..., zq,Nq
~x !#T,

Lq 5 F mq,0 0 ¯ 0 0

0 mq,1 ¯ 0 0

] ] � ] ]

0 0 ¯ mq,Nq 2 1 0

0 0 ¯ 0 mq,Nq

G ; (95)

mq,n is defined in Eq. (88). Moreover, the relation be-
tween Zq and Fq11 can be expressed by an (Nq 1 1)
3 (Nq11 1 1) matrix Rq:

Zq 5 RqFq11 , (96)

where

Rq 5 F rq,0,0 rq,0,1 ¯ rq,0,Nq11

rq,1,0 rq,1,1 ¯ rq,1,Nq11

] ] � ]

rq,Nq,0 rq,Nq,1 ¯ rq,Nq ,Nq11

G ,

rq,m,n 5 hq11,n
21 E

Tq,1

Tq,2

zq,m~x !fq11,n* ~x !dx. (97)

Substituting it into Eqs. (94), we obtain

ĝq~x ! 5 pqLqZq 5 pqLqRqFq11 . (98)

Then, since ĝq(x) 5 pq11Fq11 ,

pq11 5 pqLqRq, pQ 5 p1L1R1L2R2¯LQ21RQ21 .

(99)

Thus, for the multiple-stage optical system in Fig. 4, the
relation between the input g0(x) and the output gQ(x)
can be expressed as

input: g0~x ! 5 (
n50

`

s1,nf1,n~x !,

output: gQ~x ! ' (
n50

NQ

bnzQ,n~x !,

p1 5 @ sq,0 , sq,1 , sq,2 ,..., sq,N1
#,

po 5 @b0 , b1 , b2 ,..., bNQ
#,

po 5 p1A,

A 5 L1R1L2R2¯LQ21RQ21LQ.

(100)

So the energy-preservation ratio can be calculated from
R 5

E
TQ,1

TQ,2

u gQ~u !u2du

E
T0,1

T0,2

u g0~x !u2dx

'

(
n50

TQ

umnu2hQ,n

(
n50

`

u s1,nu2h1,n

5 C

(
n50

TQ

umnu2hQ,n

(
n50

T1

u s1,nu2h1,n

5 C
pouLQu2po

H

p1uL1u2p1
H

5 C
p1AuLQu2AHp1

H

p1uL1u2p1
H

5 C
pDuL1u21AuLQu2AHuL1u21pD

H

pDpD
H

,

(101)

where

C 5 (
n50

T1

u s1,nu2h1,nS (
n50

`

u s1,nu2h1,nD 21

,

s1,n 5 h1,n
21E

T0,1

T0,2

g0~x !f1,n* ~x !dx,

pD 5 p1uL1u. (102)

We can use the method of eigenvector decomposition to
simplify expression (101). Assume that

B 5 uL1u21AuLQu2AHuL1u21, fnB 5 knfn. (103)

Notice that B is an (N1 1 1) 3 (N1 1 1) matrix and
fn (n 5 0 ; N1) is an eigenvector of B. The size of fn is
1 3 (N1 1 1). Owing to the fact that B is the product of
a matrix and its Hermitian form (i.e., B 5 ÃÃH, where
Ã 5 uL1u21AuLQu), the eigenvalues kn’s are real and posi-
tive. Moreover, since BH 5 B, the eigenvectors fn’s are
orthogonal (i.e., fmfn

H 5 0 if m Þ n). We can sort fn ac-
cording to kn ,

1 . k0 . k1 . k2 . ¯ . kN1
. 0, (104)

and normalize fn such that fnf n
H 5 1. Then pD can be ex-

panded as

pD 5 (
n50

N1

anfn, an 5 pDfn
H 5 p1uL1ufn

H, (105)

and expression (101) can be rewritten as

R 5 C
pDBpD

H

pDpD
H

5 C

(
n50

N1

(
m50

N1

anam* fnBf m
H

(
n50

N1

(
m50

N1

anam* fnfm
H

5 C

(
n50

N1

(
m50

N1

anam* knfnf m
H

(
n50

N1

(
m50

N1

anam* fnf m
H

5 C

(
n50

N1

uanu2kn

(
n50

N1

uanu2

,

(106)
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where C is defined in Eqs. (102). We can use Eq. (106) to
calculate the power-preservation ratio of the multiple-
stage optical system in Fig. 4. Specially, when

pD 5 a0f0, i.e., p1 5 a0f0uL1u21, (107)

the power-preservation ratio R is maximal. In this case,

R 5 Ck0 . (108)

C. Analyzing Self-Imaging Phenomena
Not only can we use GPSWFs to analyze the power-
preservation ratio of the finite-sized optical system, but
we can also use it to analyze the self-imaging phenom-
enon. If the effect of the finite size of optical components
is ignored, we can use the eigenfunctions of the FT, the
FRFT, the LCT, and the offset LCT to analyze the self-
imaging phenomenon of the optical system.17 However,
to analyze the self-imaging phenomenon of the finite-
sized optical component more precisely, it is proper to use
GPSWFs instead of the eigenfunctions of the original non-
finite transforms.

To show how GPSWFs cause self-imaging phenomena
for finite-sized optical systems, we can apply property 4 in
Section 3. From Eq. (73), we know that, although
GPSWFs may not be the eigenfunction of the offset fi-
LCT, it can be viewed as the quasi eigenfunction of the
offset fi-LCT. In fact, Eq. (73) can be rewritten as

OF̃
~a,b,c,d,t,r!

@ fn~x !# 5 mnzn~u !,

zn~u ! 5 ~k1!21/2 exp~ jk3u2

1 jk4u !fnS u 2 k2

k1
D . (109)

Notice that zn(x) and fn(x) differ only in phase, scaling,
and shifting. Assume that an optical system can be rep-
resented by the offset fi-LCT with parameters
$a, b, c, d, t, r%:

Optical system: fo~x ! 5 exp~ jw!OF̃
~a,b,c,d,t,r!

@ fi~x !#,

fi~x !: input, fo~x !: output. (110)

If the distribution of the input light is the GPSWF multi-
plied by some constant, i.e., fi(x) 5 Cfn(x), then

fo~x ! 5 exp~ jw!Cmnzn~x !. (111)

In optics, we only observe the intensity of light. The in-
tensity of fo(x) is

u fo~x !u 5 uCmnzn~x !u 5 ~k1
21hn!1/2UCfnS x 2 k2

k1
DU

5 ~k1
21hn!1/2UfiS x 2 k2

k1
DU. (112)

Thus the output intensity is the scaling and space shifting
of that of fi(x) multiplied by some constant. The input
light distribution u fi(x)u appears again at the output, and
the self-imaging phenomenon was formed.

Therefore, although the GPSWF fn(x) is not the eigen-
function of the offset fi-LCT, it can cause the self-imaging
phenomenon for the optical system that can be modeled
by the offset fi-LCT.
In addition to GPSWFs, the linear combination of
GPSWFs with almost the same values of mn can also
cause the self-imaging phenomenon. Strictly speaking,
the eigenvalues of the GPSWFs are different from one an-
other (i.e., mn Þ mm if n Þ m). However, if the product
of T and V is not too small, there are several GPSWFs
whose values of umnu 5 hn

1/2 are close to 1:

1 . umnu . 1 2 D;

0 < n < Ñ, D very small.
(113)

In other words, in Eqs. (74), umnu ' 1 when n < Ñ and

mn ' mm ' j2~n11/2!sgn~b ! exp~ ju!, m,n < Ñ,

m 2 n 5 4M, where M is an integer,

u 5 b21@221dt 2 1 V0T0 1 221ak1
22k2

2

1 k1
21k2~V0 2 t!#. (114)

Therefore, for the finite-sized optical system in Eq. (110),
if the input light distribution is the linear combination of
the GPSWFs as follows,

fi~x ! 5 (
s50

Ns

asfr14s~x !, r 5 0, 1, 2, or 3,

r 1 4Ns < Ñ , r 1 4~Ns 1 1 !, (115)

then

fo~u ! 5 exp~ jw!OF̃
~a,b,c,d,t,r!F(

s50

Ns

asfr14s~x !G
5 exp~ jw!(

s50

Ns

asmr14szr14s~x !

' exp@ j~ w 1 u!#j2~n11/2!sgn~b !(
s50

Ns

aszr14s~u !

5 k1
21/2U(

s50

Ns

asfr14s@k1
21~u 2 k2!#U ,

u fo~u !u ' k1
21/2UfiS u 2 k2

k1
DU, (116)

where k1 and k2 are defined in Eqs. (74).
Thus the intensity of the output is close to the scaling

and space shifting of the intensity of the input light, and
the linear combination of the GPSWFs as in Eq. (115) is
also able to cause the self-imaging phenomenon with a
little distortion.

D. Resonance Phenomenon
It has been known that we can use the eigenfunctions of
the LCT and the offset LCT to analyze the resonance phe-
nomenon for the spherical-mirror-pair system in Fig. 5.17

However, in practice, the size of the mirror-pair system is
finite. To obtain more precise results, it is proper to use
GPSWFs instead of the eigenfunctions of the LCT and the
offset LCT to analyze resonance phenomena.
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Assume that the extensions of the two spherical mir-
rors in Fig. 5 are

mirror A: x, y P @2B1 , B1#;

mirror B: x, y P @2B2 , B2#. (117)

If the light distribution emitted from mirror A is fi,0(x, y)
and the light accepted by mirror B is fo,0(x, y), then the
relation between fi,0(x, y) and fo,0(x, y) can be expressed
by the offset fi-LCT:

fo,0~x, y ! 5 exp~ jw1!O
F̃y

~a1 ,b1 ,c1 ,d1 , t̃1 , r̃1!
$O

F̃x

~a1 ,b1 ,c1 ,d1 ,t1 ,r1!

3 @ fi,0~x, y !#%, (118)

where OF̃x
and OF̃y

means the one-dimensional offset fi-
LCTs along the x axis and y axis, respectively, w1 is some
constant phase, and

Fa1 b1

c1 d1
G 5 F 1 2 R1

21D 2 D/k

k~R1
21 1 R2

21 2 R1
21R2

21D ! 1 2 R2
21DG ,

k 5 2p/l, t1 5 t̃1 5 0,

r1 5 2kx0 /R2 , r̃1 5 2ky0 /R2 , (119)

D is the distance between the two mirrors, and R1 and R2
are the radii of mirrors A and B. After the light reaches
mirror B, it is reflected and propagates back to mirror A.
Assume that the reflective light accepted by mirror A is
fi,1(x, y). The relation between fi,1(x, y) and fo,0(x, y) is

fi,1~x, y ! 5 exp~ jw2!O
F̃y

~a2 ,b2 ,c2 ,d2 , t̃2 , r̃2!
$O

F̃x

~a2 ,b2 ,c2 ,d2 ,t2 ,r2!

3 @ fo,0~x, y !#%, (120)

where w2 is some constant phase and

Fa2 b2

c2 d2
G 5 F 1 2 R2

21D 2 D/k

k~R1
21 1 R2

21 2 R1
21R2

21D ! 1 2 R1
21DG ,

S t2

r2
D 5 F x0DR2

21

kx0R2
21~R1

21D 2 1 !G ,
S t̃2

r̃2
D 5 F y0DR2

21

ky0R2
21~R1

21D 2 1 !G . (121)

In the case where

fi,1~x, y ! 5 rfi,0~x, y !, r is some constant,
(122)

the resonance phenomenon forms. Then we discuss un-
der what condition Eq. (122) is satisfied. In fact, this
problem is similar to the multiple-stage problem dis-

Fig. 5. Spherical-mirror-pair system.
cussed in Subsection 4.B. The propagation from mirror A
to mirror B can be treated as stage 1, and the propagation
from mirror B back to mirror A can be treated as stage 2.
If the input is fi,0(x, y), we can use the method as in ex-
pressions (100) to determine the output fi,1(x, y). Notice
that in this case Q 5 2. It can be shown that Eq. (122) is
satisfied if

fi,0~x, y ! 5 F (
n50

N1

s1,nf1,n~x !GF (
n50

N1

s1,n8 f1,n~ y !G ,

(123)

where em 5 @ sm,0 , sm,1 , sm,2 ,..., sm,N1
#T and em8

5 @ sm,08 , sm,18 , sm,28 ,..., sm,N1
8 #T are the eigenvectors of

D 5 L1R1L2R2H,

H 5 F h0,0 h0,1 ¯ h0,N211

h1,0 h1,1 ¯ h1,N211

] ] � ]

hN2,0 hN2,1 ¯ hN2 ,N211

G ,

hm,n 5 h1,n
21E

2B1

B1

z2,m~x !f1,n* ~x !dx, (124)

and Lq, Rq, fq,n(x), and zq,n(x) were defined in Subsec-
tion 4.B. In this case, the resonance phenomenon occurs.

5. CONCLUSIONS
In the literature the PSWFs for the fi-FT were derived.
In this paper we extend the previous studies and derived
the GPSWFs for the fi-FRFT (a generalization of the fi-
FT), the fi-LCT (a further generalization of the fi-LCT),
and the offset fi-LCT (the fi-LCT with two extra offset pa-
rameters). In addition, in the literature, PSWFs were of-
ten used for analyzing the case where the extension is
centered at zero. In this paper, with the results in Sub-
section 2.D, we can analyze the case where the interval is
not symmetric about zero.

Since the GPSWFs corresponding to the fi-FRFT, the fi-
LCT, and the offset fi-LCT are derived, and many optical
systems can be represented by these three finite opera-
tions, some theory about finite-sized optical system analy-
sis can be developed. We can use the GPSWFs to analyze
the energy-preservation ratio, the self-imaging phenom-
enon, and the resonance phenomenon of the finite-sized
optical system.
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