Mathematics for physicists

Lecturer: Prof. Ven-Chung Lee

(Dated: October 15, 2005)

Some important equations in physics

Maxwell's equations of electric field \vec{E} and magnetic field $\vec{B}, \vec{E}=\vec{E}(\vec{r}, t), \vec{B}=\vec{B}(\vec{r}, t)$

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon}, \vec{\nabla} \cdot \vec{B}=0 \quad, \quad \vec{\nabla} \cdot \vec{E}=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z} \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \quad \vec{\nabla} \times \vec{B}=\mu\left[\vec{j}+\frac{\partial(\epsilon \vec{E})}{\partial t}\right]
\end{aligned}
$$

$\rho \rightarrow$ charge density,$\quad \vec{j} \rightarrow$ current density
$\epsilon, \mu \rightarrow$ characteristic parameters of the medium

Wave equation

$$
\nabla^{2} \psi=\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

wave function $\psi=\psi(\vec{r}, t) \rightarrow A e^{i(\vec{k} \cdot \vec{r}-\omega t)}$ plane wave function

$$
\begin{aligned}
\nabla^{2} \psi & =\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}, \quad k=\frac{2 \pi}{\lambda}, \omega=2 \kappa \nu, c=\lambda \cdot \nu \\
c & \rightarrow \text { phase velocity of the wave }
\end{aligned}
$$

Schrödinger wave equation

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(\vec{r}) \psi
$$

$i \equiv \sqrt{-1}, \quad \psi=\psi(\vec{r}, t)$ wave function of the matter wave
$V(\vec{r})$ potential energy, $\hbar \rightarrow$ Planck constant, $m \rightarrow$ mass
Newton's equation of motion

$$
\vec{F}=m \vec{a}=m \frac{d^{2} \vec{r}}{d t^{2}}=\frac{d \vec{p}}{d t}=-\vec{\nabla} V(\vec{r})
$$

$$
\begin{aligned}
& \vec{p}=m \vec{v} \text { momentum }, \vec{r}=\vec{r}(t) \text { position vector } \\
& \vec{F} \rightarrow \text { Force }, \vec{\nabla} V(\vec{r})=\hat{\imath} \frac{\partial V}{\partial x}+\hat{\jmath} \frac{\partial V}{\partial y}+\hat{k} \frac{\partial V}{\partial z}
\end{aligned}
$$

for example the gravitation force

$$
\vec{F}(\vec{r})=-\frac{G M m \vec{r}}{r^{3}}, \quad r \equiv|\vec{r}(t)|
$$

and the gravitational potential energy

$$
V(\vec{r})=-\frac{G M m}{r}
$$

What's the meaning of the above mentioned quantities and operations?

$$
\begin{aligned}
\frac{\partial}{\partial t}, \frac{\partial}{\partial x} & \rightarrow \text { partial differential } \\
\vec{\nabla} \cdot \vec{E} & \rightarrow \text { divergence of } \vec{E} \text { vector } \\
\vec{\nabla} \times \vec{E} & \rightarrow \text { Curl of } \vec{E} \text { vector } \\
\overrightarrow{\nabla V} V & \rightarrow \text { gradient of scalar potential energy } \\
\frac{d}{d t} & \rightarrow \text { total differential } \\
i & =\sqrt{-1} \rightarrow \text { imaginary number } \\
e^{\beta x} & \rightarrow \text { exponential function } \\
\vec{E} & =E_{x} \cdot \hat{\imath}+E_{y} \cdot \hat{\jmath}+E_{z} \cdot \hat{k} \rightarrow \text { vector in } 3 \text { dimensional space } \\
\vec{E} & =\vec{E}(\vec{r}, t) \quad \text { Function of multiple variables } \vec{r} \text { and } t
\end{aligned}
$$

Contents of the course:

Number, especially the imaginary number and complex number $z=a+i b$
Algebra, for example the Binominal theorem: $(a+b)^{n}=\sum_{m=0}^{n} \frac{n!}{m!(n-m)!} a^{n-m} b^{m}$
Functions, Logarithms $g(t)=\alpha \cdot \ln \beta t$, exponentials $f(t)=\alpha \cdot e^{\beta t}$
Trigonometry, especially the Euler formula $e^{i \theta}=\cos \theta+i \sin \theta$ and the phasor $z=|z| e^{i \theta}$
Differential and Integral Calculus.
Vector Analysis.

