Mathematics for physicists

Lecturer: Prof. Ven-Chung Lee

(Dated: December 17, 2005)

Applications of trigonometry: wave and interference

1. Oscillation function of time

$$
\begin{aligned}
& y(t)=A \cdot \cos 2 \pi \nu \cdot t \quad, \quad A: \text { Amplitude } \\
& \text { period }: \tau \rightarrow y(t+\tau)=y(t) \\
& \therefore \nu \cdot \tau=1, \quad \therefore \nu=\frac{1}{\tau} \rightarrow \text { frequency }
\end{aligned}
$$

2. Wave propagates along x-axis with frequency ν and velocity v

$$
\begin{aligned}
& t_{p}=\frac{x}{v} \\
& \therefore y(x, t)=y\left(0, t-t_{p}\right)
\end{aligned}
$$

at $x=0$
$y(0, t)=A \cdot \cos 2 \pi \nu t$
$\therefore y(x, t)=A \cdot \cos \left(2 \pi \nu t-\frac{2 \pi \nu \cdot x}{v}\right) \rightarrow$ wave function of position x and time t
v : velocity of simple harmonic wave
$2 \pi \nu \cdot t-2 \pi \nu \cdot \frac{x}{v}=\phi=2 \pi \nu t-2 \pi \frac{x}{\lambda} \quad \phi:$ phase of the wave function
for a point with constant phase ϕ on the wave

$$
\begin{aligned}
& 2 \pi \nu \cdot t-2 \pi \frac{x}{\lambda}=2 \pi \nu \cdot(t+\Delta t)-2 \pi \cdot \frac{(x+\Delta x)}{\lambda} \\
& \therefore \frac{\Delta x}{\Delta t}=\lambda \cdot \nu=v
\end{aligned}
$$

\rightarrow constant phase velocity or the velocity of the constant phase point on the wave

$$
\text { and } \quad y(x, t)=y(x+\lambda, t)=y(x, t+\tau)
$$

$\therefore \lambda \rightarrow$ wave length

3. Interference of waves

wave sources S_{1} and S_{2} generate wave with:
$y(t)=A \cdot \cos 2 \pi \nu t=A \cdot \cos \omega \cdot t$
$\omega \equiv 2 \pi \nu$ angular frequency
\rightarrow change of phase per unit time

total wave at $P \rightarrow$

$$
\begin{aligned}
y_{\text {total }} & =y_{1}+y_{2} \quad(\text { Principle of superposition }) \\
& =A \cdot \cos \left(\omega t-k \cdot \ell_{1}\right)+A \cdot \cos \left(\omega t-k \cdot \ell_{2}\right) \\
k \equiv & \equiv \text { wave number } \Longrightarrow \text { change of phase per unit length }
\end{aligned}
$$

set

$$
A \cdot \cos \left(\omega t-k \cdot \ell_{1}\right)+A \cdot \cos \left(\omega t-k \cdot \ell_{2}\right)=A_{t} \cos (\omega t-\quad)
$$

\ulcorner Trigonometry:

$$
\cos \phi_{1}+\cos \phi_{2}=A_{t} \cdot \cos \phi_{3}
$$

$$
\begin{aligned}
& \therefore A_{t}=2 A \cdot \cos \left(\frac{\phi_{2}-\phi_{1}}{2}\right), \phi_{3}=\phi_{1}+\frac{1}{2}\left(\phi_{2}-\phi_{1}\right)=\frac{1}{2}\left(\phi_{2}+\phi_{1}\right) \\
& \therefore \cos \phi_{1}+\cos \phi_{2}=2 A \cdot \cos \left(\frac{\phi_{2}-\phi_{1}}{2}\right) \cos \left(\frac{\phi_{2}+\phi_{1}}{2}\right)
\end{aligned}
$$

Similarly,

$$
\sin \phi_{1}+\sin \phi_{2}=2 \cdot \cos \left(\frac{\phi_{2}-\phi_{1}}{2}\right) \sin \left(\frac{\phi_{2}+\phi_{1}}{2}\right)
$$

\llcorner
Finally,

$$
y_{\text {total }}=2 A \cos \left(k \cdot \frac{\ell_{2}-\ell_{1}}{2}\right) \cdot \cos \left(\omega t-k \cdot \frac{\ell_{1}+\ell_{2}}{2}\right)
$$

Time averaged intensity of the wave $\propto\left(\right.$ Amplitude) ${ }^{2}$ or $I=\alpha \cdot A^{2}$
Intensity: energy transferred per unit time by the wave.
\therefore Intensity at $P \rightarrow I_{P}=\alpha \cdot A_{t}^{2}=4 \alpha \cdot A^{2} \cos ^{2}\left(\frac{k \cdot \Delta \ell}{2}\right)=4 I_{0} \cos ^{2}\left(\frac{k \cdot \Delta \ell}{2}\right)$
case 1

$$
\begin{aligned}
& \Delta \ell=\ell_{1}-\ell_{2}=n \cdot \lambda, \quad n=0,1,2, \cdots \quad \xrightarrow[y_{1}]{\substack{y_{\mathrm{t}} \\
-\cdots-\cdots-\cdots}} \\
& \rightarrow k \cdot \Delta \ell=2 n \pi
\end{aligned}
$$

$\therefore I_{P}=4 \cdot I_{0}, \quad I_{0}=\alpha \cdot A^{2}, \quad I_{0}$: Intensity of the single source S_{1} and S_{2} alone.
Constructive interference, y_{1} and y_{2} are in phase.

case 2

$$
\Delta \ell=\left(n+\frac{1}{2}\right) \cdot \lambda, n=0,1,2, \cdots \quad \stackrel{y_{1}}{\stackrel{y_{2}}{\rightleftarrows}}
$$

$$
\begin{aligned}
& k \cdot \Delta \ell=(2 n+1) \pi \\
& I_{P}=0 \quad \text { destructive interference }
\end{aligned}
$$

y_{1} and y_{2} are out of phase
case 3

$$
\begin{array}{ll}
\Delta \ell=\frac{\lambda}{4} \\
k \cdot \Delta \ell=\frac{\pi}{2} \quad I_{P}=2 \cdot I_{0} \quad \underbrace{, \prime_{\mathrm{t}}}_{y_{1}} \prime^{\prime} y^{y_{2}}
\end{array}
$$

