
Real-Time Syst (2006) 34:155–172

DOI 10.1007/s11241-006-8198-4

Approximation algorithms for scheduling real-time jobs
with multiple feasible intervals

Jian-Jia Chen · Jun Wu · Chi-Sheng Shih

Published online: 31 July 2006
C© Springer Science + Business Media, LLC 2006

Abstract Time-critical jobs in many real-time applications have multiple feasible inter-

vals. Such a job is constrained to execute from start to completion in one of its feasible

intervals. A job fails if the job remains incomplete at the end of the last feasible interval.

Earlier works developed an optimal off-line algorithm to schedule all the jobs in a given

job set and on-line heuristics to schedule the jobs in a best effort manner. This paper is

concerned with how to find a schedule in which the number of jobs completed in one of

their feasible intervals is maximized. We show that the maximization problem is NP-hard

for both non-preemptible and preemptible jobs. This paper develops two approximation al-

gorithms for non-preemptible and preemptible jobs. When jobs are non-preemptible, Al-

gorithm Least Earliest Completion Time First (LECF) is shown to have a 2-approximation

factor; when jobs are preemptible, Algorithm Least Execution Time First (LEF) is proved be-

ing a 3-approximation algorithm. We show that our analysis for the two algorithms are tight.

We also evaluate our algorithms by extensive simulations. Simulation results show that Al-

gorithms LECF and LEF not only guarantee the approximation factors but also outperform

other multiple feasible interval scheduling algorithms in average.

1. Introduction

In some real-time applications, a job may have more than one feasible interval. Such a job

is constrained to execute in its feasible intervals. Specifically, a job is said to complete in

time if the job starts its execution in one of its feasible intervals and completes by the end of

the interval. If the job remains incomplete at the end of the interval, the partial work done

J.-J. Chen (�) . C.-S. Shih
Department of Computer Science and Information Engineering, Graduate Institute of Networking and
Multimedia, National Taiwan University, Taipei, Taiwan, ROC
e-mail: {r90079, cshih}@csie.ntu.edu.tw

J. Wu
Department of Information Technology, National Pingtung Institute of Commerce, Taiwan, ROC
e-mail: junwu@mail.ckitc.edu.tw

Springer

156 Real-Time Syst (2006) 34:155–172

by the job is lost. The scheduler then schedules the job to execute from the start in a later

feasible interval if such an interval exists. The job fails if it remains incomplete at the end of

its latest feasible interval.

An example of such an application is real-time packet delivery for mobile devices in ad

hoc networks. In network of this type, packets are routed and delivered by ad hoc devices.

The radio signals of the devices may not always cover all the regions reachable by mobile

sources and destinations. A destination in a region that is not covered by any routing device

is disconnected from the network. In other words, there may be no feasible route from a

source to a destination at some times. Routing devices are often resource poor and unable to

buffer the packets. Consequently, packets sent in intervals when there is no feasible route are

likely to be lost. A good strategy is for the source to constrain its packet transmission in time

intervals during which there are feasible routes to the destination. These time intervals are

called feasible intervals in the previous paragraph. We confine our attention here to networks

where the movement of the devices are predictable. Hence, the starts and ends of all feasible

intervals can be determined with sufficient accuracy at the times when packets are buffered

for transmission and routes to the destination are discovered. According to our model, the

transmission of each real-time packet is a job with a deadline, which is a time instance by

which the job must complete (i.e., the packet reaches the destination). The transmission

job has multiple feasible intervals in general and must start and complete within one of its

feasible intervals.

The optional jobs in the error-cumulative imprecise computation model studied in

Cheong (1992), Liu et al. (1991), Shih et al. (1991), Shih and Liu (1995) are also exam-

ples of jobs with multiple feasible intervals. According to the imprecise computation model,

a job consists of two parts: mandatory part and optional part. The mandatory part must

complete by its deadline, and the optional part can be skipped if there are not enough re-

sources. Skipping the optional part introduces error into the result produced by the job. In

some real-time applications (e.g., radar tracking) the error of a periodic task is the cumu-

lated error produced by incomplete optional parts of jobs in the task. The error-cumulative

model introduces a threshold for the cumulative error of each task. When the cumulative er-

ror becomes greater than the threshold, the task fails. (In a tracking system, the system may

lose track of the target if the cumulative error becomes greater than the given threshold.) To

ensure that the error is under the threshold, the optional part of a job in one of N periods

must be executed to completion by the end of its period, where N is derived from the error

threshold of the task. The other optional jobs in the N periods can be discarded entirely.

We can view the optional parts of the jobs in N periods as a job with N feasible intervals,

which are the time intervals left after the mandatory parts of the jobs complete. As long as

the job with N feasible intervals completes in time, the error of the periodic task is under

the allowed threshold.

Shih et al. (2003) showed that it is NP-complete to determine if there exists a schedule

for a set of jobs such that all the jobs meet their timing constraints. They developed opti-

mal and sub-optimal algorithms for off-line scheduling and a family of heuristics for on-line

scheduling. However, the goals of the algorithms are to complete all multiple feasible inter-

val jobs in the job set. In this paper, we consider the systems in which it is acceptable not to

complete all the multiple feasible interval jobs in the job set in time. Examples of such sys-

tems are the skip-over model (Koren and Shasha, 1995), reward-based model (Aydin et al.,

1999), (error-cumulative) imprecise computation model (Liu et al., 1991; Shih et al., 1991;

Shih and Liu, 1995), and (m,k)-rm guarantee model (Quan and Hu, 2000; Hamdaoui and

Ramanathan, 1995). This paper is concerned with how to find a schedule which maximizes

the number of jobs completed in one of their feasible intervals. When jobs are preemptible

Springer

Real-Time Syst (2006) 34:155–172 157

and each job has only one feasible interval, the optimization problem was studied in Baptiste

(1999), Lawler (1990). In this paper, we develop two algorithms providing worst-case guar-

antees. Algorithm Least Earliest Completion Time First (LECF) schedules non-preemptible

multiple feasible interval jobs. Theoretical analysis shows that Algorithm LECF is with a

2-approximation factor, in which the number of multiple feasible interval jobs completed in

time in the derived schedule is at least one half of that in any non-preemptive schedule. (We

will define the approximation factor later.) On the other hand, Algorithm Least Execution

Time First (LEF) is designed for the case that jobs are preemptible. The approximation fac-

tor for Algorithm LEF is shown being 3. We also show the tightness of our analysis on the

performance guarantees by providing a set of input instances. In addition, we evaluate our

algorithms by extensive simulations. Simulation results show that Algorithms LECF and LEF

not only guarantee the approximation factors but also outperform other existing algorithms.

The rest of this paper is organized as follows: Section 2 describes the formal model

and defines the scheduling problems for jobs with multiple feasible intervals. Section 3

presents a 2-approximation algorithm for non-preemptible multiple feasible interval jobs. In

succession, Section 4 gives a 3-approximation algorithm for preemptible multiple feasible

interval jobs. Section 5 presents the evaluation results for the developed algorithms against

existing approaches. Section 6 concludes this paper.

2. Formal models and problem statements

Throughout this paper, the term job refers to an instance of computation, or the transmission

of a data packet, or the retrieval of a file, and so on. A task is a sequence of jobs that have

identical or similar characteristics and timing requirements (Liu and Layland, 1973; Han

and Lin, 1992; B. Sprunt et al., 1989). We focus on jobs regardless of the types of tasks to

which they belong and call jobs J1, J2, and so on.

2.1. Multiple feasible interval jobs

Each multiple feasible interval job is characterized by its execution time and a set of feasible

intervals. The execution time of a job, denoted by e, is the amount of time required to com-

plete the job when it executes alone and has all the resources it requires. Throughout our

discussion, we assume that for the purpose of determining whether each job can complete

by its deadline, knowing its worst case execution time (WCET) is sufficient. By execution

time of a job, we mean its WCET. Associated with each job is a set of disjointed time in-

tervals, called feasible intervals. The job can execute only in its feasible intervals. A job is

ready to execute at time t if it has not completed at time t and time t is in one of its feasible

intervals. Once a job begins to execute in a feasible interval, it must complete by the end

of the interval in order to produce a correct result. The partial work done by the job is lost

if the job remains incomplete at the end of the interval. In that case, the scheduler might

reschedule the job to execute from the start in a later feasible interval of the job if such an

interval exists.

We denote a feasible interval by I = (L , R] where L and R are non-negative rational

numbers which represent the start time and end time of the interval, respectively. Ii, j denotes

the j-th feasible interval of multiple interval job Ji , where Li, j and Ri, j denote the start

time and end time of Ii, j , respectively. The set of feasible intervals of job Ji is denoted

by Ii = {Ii,1, Ii,2, . . . , Ii,n(i)}, where n(i) is the number of feasible intervals for job Ji , and

the feasible intervals in the set are indexed in an ascending order of their start times. We

Springer

158 Real-Time Syst (2006) 34:155–172

represent a multiple feasible interval job Ji by Ji = (ei , Ii). Hereafter, we focus on this kind

of jobs and omit “multiple feasible interval” as long as there is no ambiguity.

According to the traditional definition, a job meets its timing constraint (or the job is

timely) if it completes by its deadline. This definition of timeliness needs to be generalized

when jobs have multiple feasible intervals. We call a failed attempt to complete the execution

of a job in one of its feasible intervals a deadline miss. More precisely, a deadline miss occurs

when a job executing in a feasible interval remains incomplete at the end of the feasible

interval. To meet the timing constraint, the job has to complete its execution within any of

its feasible intervals. When a job misses the deadline for its last feasible interval, the job

fails to meet its timing constraint. The following definition states the timing constraint of a

job.

Definition 1 (In-Time Completion). An execution of a job J completes in time if and only

if there is no deadline miss since it starts and before it completes. A job J meets its timing

constraint, or simply that it completes in time, if and only if one of its execution completes

in time.

A schedule for a job set J, denoted by SJ, is the time sequence of executing jobs in the

job set. For a given schedule, the start time and completion time of job Ji , denoted by si

and ci , are the time instants at which job Ji starts and completes its execution, respectively.

When jobs are preemptible, the scheduler may interrupt the execution of the jobs. Hence, a

preemptible job may execute in several non-consecutive time intervals in a schedule. When

a job is non-preemptible, the job must execute from start to completion in one consecutive

time interval. If there is no interrupt during the execution of a job in a schedule, the job

is non-interrupted in the schedule; otherwise, the job is preempted or interrupted in the

schedule. Since removing the executions of the jobs that do not complete in time does not

affect schedulability of the completed jobs in any schedule, we only focus our discussions on

schedules that complete all the executed jobs in time. A schedule is said feasible when all the

jobs in the job set complete in time as defined in Definition 1. The following theorem stated

in Shih et al. (2003) shows that unless P = NP , there does not exist any polynomial-time

algorithm to determine if there exists a feasible schedule for all the jobs in job set J.

Theorem 1. [NP-Hardness for Multiple Interval Job Scheduling Problem (Shih et al.,
2003)] Finding a schedule to complete all the jobs in a set of interval jobs in time is NP-
complete.

2.2. Problem formulation

This paper is concerned with an optimization problem to derive a schedule such that the

number of multiple feasible interval jobs completed in time is maximized. Both non-

preemptible and preemptible jobs are considered in this paper. We state the optimization

problems in the following.

1. Non-preemptible Interval Job Scheduling (n-IJS) Problem: We are given a job set J =
{J1, J2, . . . , JM } of non-preemptible multiple feasible interval jobs. The objective is to

find a feasible schedule for a subset of job set J such that the size of the subset is maxi-

mized.

Springer

Real-Time Syst (2006) 34:155–172 159

2. Preemptible Interval Job Scheduling (IJS) Problem: We are given a job set J =
{J1, J2, . . . , JM } of preemptible multiple feasible interval jobs. The objective is to find

a feasible schedule for a subset of job set J such that the size of the subset is maximized.

We assume that all the jobs in the job set J are equally important in this paper. When the

jobs have different importance levels, the developed algorithms can be applied for each im-

portance level one at a time. The following corollary is a simple extension from Theorem 1.

Corollary 1. Both of the IJS and n-IJS problems are NP-hard.

Instead of finding an optimal solution for the IJS and n-IJS problems, we focus on de-

veloping polynomial-time algorithms which find approximated solutions with worst-case

guarantees for the two optimization problems. An algorithm for a maximization problem is

with an α-approximation factor (ratio) (Vazirani, 2001, section 1) if its derived solution is

no less than 1
α

times of the optimal solution. Hence, an α-approximation algorithm for the

IJS or n-IJS problem guarantees that the number of jobs completed in time in its derived

schedule is no less than 1
α

times of that in an optimal schedule.

3. Algorithm least earliest completion time first (LECF) for non-preemptible jobs

In this section, an approximation algorithm is proposed for the n-IJS problem. The rationale

of this algorithm is to always schedule the job which is able to complete in time earli-

est among the ready jobs in a greedy manner. We show that such an algorithm has a 2-

approximation factor and that our analysis is tight by providing a set of input instances by

the end of this section.

Before we present the algorithm, we define several terms used in this section. Scheduling
time is the time instant at which the scheduler selects one ready job to execute. For the sake

of simplicity, when defining the following terms for job Ji , we assume that there is only

one job Ji in the system. The earliest completion interval at scheduling time t , denoted as

Ii,k , for job Ji is the first feasible interval in which job Ji completes in time and its start

time is no earlier than t . In other words, Ii,k is the feasible interval whose start time is the

minimum and both Ri,k − ei ≥ t and Ri,k − Li,k ≥ ei hold. The earliest completion time of

job Ji at scheduling time t is the least time instant at which Ji completes in time when it

starts its execution no earlier than t . When scheduling time t is in the earliest completion

interval Ii,k of job Ji , Ji can start its execution at time instant t ; otherwise, job Ji can start at

the start time of feasible interval Ii,k , i.e., Li,k . Thus, the earliest completion time of job Ji

at scheduling time t is the sum of the maximum value of t and the start time of its earliest

completion interval Ii,k at time t , and its execution time, i.e., max{t, Li,k} + ei . A job Ji is

said to be unschedulable at scheduling time t if there is no earliest completion interval at

scheduling time t .

Algorithm 1. Least Earliest Completion Time First (LECF) Algorithm

Input J;
Output A feasible schedule for a subset J′ of J;

1: remove feasible intervals Ii, j from Ii with ei > Ri, j − Li, j for every job Ji ∈ J;

2: t ← 0; J′ ← ∅;

3: set Ii,1 as the earliest completion interval at scheduling time 0 for every job Ji ∈ J;

Springer

160 Real-Time Syst (2006) 34:155–172

4: repeat
5: Ji∗ ← the job with the least earliest completion time at t in J \ J′ ;

6: J′ ← J′ ∪ {Ji∗ };
7: schedule Ji∗ in (max{t, Li∗,k}, max{t, Li∗,k} + ei∗];

8: t ← max{t, Li∗,k} + ei∗ ;

9: update the earliest completion interval at t for every job in J \ J′;
//set Ii,k as the earliest completion interval at t for Ji such that k is the minimum j
with Ri, j − ei ≥ t ;

10: until all the jobs in J\J′ are unschedulable at t or J\J′ = ∅;

11: return the schedule of J′;

The Least Earliest Completion First (LECF) strategy is adopted for the n-IJS problem.

When Algorithm LECF, presented in Algorithm 1, starts, scheduling time t is initialized as

the minimal of the start time of the first feasible interval of all the jobs in job set J. Algorithm

LECF repeats the following steps to select a job and advance scheduling time t . At scheduling

time t , we greedily select job Ji∗ whose earliest completion time is the least among that of

all the unselected jobs. Job Ji∗ starts to execute at the maximum value of t and the start

time of its earliest completion interval Ii∗,k and completes at its earliest completion time at

time t . In other words, job Ji∗ is scheduled in interval (max{t, Li∗,k}, max{t, Li∗,k} + ei∗],

where Li∗,k is the start time of its earliest completion interval at t . Then, scheduling time t
is advanced to the (earliest) completion time of the job Ji∗ at t , i.e., t = max{t, Li∗,k} + ei∗ .

Algorithm LECF terminates when all the unselected jobs are unschedulable, or one interval

is selected for every job in job set J and returns the derived schedule.

The time complexity of this algorithm is O(|J|2 + �J j ∈J|I j |), dominated by updating the

earliest completion intervals at scheduling time t at Line 9 in Algorithm 1 by an incremental

manner. (Note that |X| denotes the cardinality of any set X in this paper.) For the rest of this

section, let JLECF be the set of jobs scheduled by Algorithm LECF. Clearly, all the jobs in

JLECF complete in time. The optimality, i.e., the approximation factor, of Algorithm LECF is

shown as follows.

Theorem 2. Algorithm LECF is a 2-approximation algorithm for the n-IJS problem.

Proof: Let J∗ be a subset of J, including an optimal subset, such that there is a feasible

schedule S∗ for job set J∗. It suffices to prove this theorem by showing that the size of job

set JLECF by Algorithm LECF is at least one half of the size of job set J∗.

Let J∗
1 and J∗

2 be the intersection of JLECF and J∗, i.e., J∗
1 ≡ JLECF ∩ J∗, and the relative

complement of J∗ in J∗
1, i.e., J∗

2 ≡ J∗ \ J∗
1, respectively. In other words, J∗

1 consists of the

jobs both in J∗ and JLECF, while J∗
2 consists of the jobs that are in J∗ but not in JLECF. We

will show that |J∗
1| ≤ |JLECF| and |J∗

2| ≤ |JLECF|. When the above two conditions hold, we

will have

|JLECF| ≥ 0.5
(∣∣J∗

1

∣∣ + ∣∣J∗
2

∣∣) = 0.5|J∗|. (1)

Naturally, condition |J∗
1| ≤ |JLECF| holds. Hence, it remains to show that condition |J∗

2| ≤
|JLECF| holds.

We divide schedule S∗ into |JLECF| time intervals. Let c j be the completion time for j-

th selected job in the derived schedule of Algorithm LECF for 1 ≤ j ≤ |JLECF| and c0 be 0.

That is, in the j-th iteration of Algorithm LECF, scheduling time t is c j−1 before t is updated

(Line 8). For the derived schedule of JLECF, there is only one job executed in each of the time

Springer

Real-Time Syst (2006) 34:155–172 161

intervals (c j−1, c j] for j = 1 to |JLECF|. Let S∗
2 be the schedule by removing the executions

of the jobs in J∗
1 from schedule S∗. Hence, S∗

2 is a feasible schedule of J∗
2. Note that the jobs

in S∗
2 are executed one by one because all the jobs are non-preemptible.

We claim that, in S∗
2 , there is at most one job whose start time is in interval [c j−1, c j)

for j = 1 to |JLECF|. We prove this statement by contradiction. Assume that, in schedule

S∗
2 , there exists an interval [c j−1, c j) for some 1 ≤ j ≤ |JLECF| such that at least two jobs in

job set J∗
2 start their executions in this time interval. Let Ji be the job whose start time si

is the earliest among that for jobs scheduled in this interval. Since, in schedule S∗
2 , there is

another job started before time c j , we know that the completion time for job Ji , i.e., si + ei ,

in S∗
2 must be less than c j . Therefore, we have c j−1 ≤ si and si + ei < c j . That is, the

earliest completion time of job Ji is less than that of the job scheduled in interval [c j−1, c j)

in schedule SLECF. According to Algorithm LECF, job Ji must be selected to execute at

scheduling time c j−1. This contradicts the least earliest completion first strategy. Hence,

there is at most one job whose start time in S∗
2 is in [c j−1, c j) for j = 1 to |JLECF|.

Furthermore, in job set J∗
2, there is no job which starts its execution in [c|JLECF |, ∞] in S∗

2 .

This is because it contradicts the termination condition of Algorithm LECF: all the jobs in

J \ JLECF are unschedulable at scheduling time c|JLECF |. Hence, there are at most |JLECF| jobs
starting their executions in S∗

2 . Therefore, we know |J∗
2| ≤ |JLECF|. By Eq. (1), Algorithm

LECF has a 2-approximation factor. �

We conclude this section by showing that our analysis in Theorem 2 is tight. Consider the

input instance J = {J1, J2} as illustrated in Fig. 1(a), where J1 = (b, {(0, b], (b + ε, 2b +
ε]}) and J2 = (b + ε, {(0, b + ε]}) (b > 0 and ε > 0). The optimal schedule is to execute J1

in its second feasible interval and J2 in its first feasible interval (refer to Fig. 1(b)). Algorithm

LECF schedules only job J1 in its first feasible interval and drops job J2 (refer to Fig. 1(c)).

4. Algorithm least execution time first (LECF) for preemptible jobs

In this section, we are concerned with the preemptible interval job scheduling (IJS) problem.

We develop Least Execution Time First (LEF) Algorithm with a constant approximation

factor based on the well-known earliest-deadline-first (EDF) scheduling strategy (Baptiste,

1999; Liu, 2000). The algorithm will be shown being a 3-approximation algorithm followed

by a set of tight input instances.

Intuitively, Algorithm LECF could also be adopted for the IJS problem because a feasible

schedule produced by non-preemptive scheduling algorithm is also feasible for preemptible

jobs. However, it is not difficult to show that the approximation factor of Algorithm LECF

for the IJS problem is �(|J|). Consider the input instance: J = {J1, J2, . . . , JN }, where

Ji = (2i−1, {(2N−1 − 1 − �i
j=22 j−2, 2N−1 − 1 + 2i−1]}) for i = 1, . . . , N . For such an in-

put instance, Algorithm LECF will choose only one job Ji∗ to execute in (2N−1 − 1 −
�i∗

j=22 j−2, 2N−1], since the earliest completion time of these N jobs is the same, i.e., 2N−1.

Fig. 1 A tight example for Algorithm LECF

Springer

162 Real-Time Syst (2006) 34:155–172

Fig. 2 Feasible schedule for preemptible interval job set J

All the other jobs are unschedulable after time instant 2N−1. However, another algorithm

may schedule job Ji in (2N−1 − 1 − �i
j=22 j−2, 2N−1 − 1 − �i

j=22 j−2 + max{1, 2i−2}] and

(2N−1 − 1 + max{1, 2i−1 − 2i−2}, 2N−1 − 1 + 2i−1]. Such a schedule is feasible for job

set J. For example, when N = 4 in the above input instances, J1 = (1, {(7, 8]}), J2 =
(2, {(6, 9]}), J3 = (4, {(4, 11]}), and J4 = (8, {(0, 15]}). Algorithm LECF only schedules one

of these four jobs to complete at time instant 8. However, another scheduling algorithm may

schedule all four jobs to complete in time. Figure 2 illustrates the schedule.

In this schedule, job J1 executes to completion in its feasinle interval (7, 8]. Job J2,

J3, and J4 are diveded into two parts to execute in their feasible intervals. Therefore, the

approximation factor of Algorithm LECF for the IJS problem is �(|J|).
Before we present the algorithm, we again define the terms used in this section. Similar to

the algorithms proposed by Shih et al. (2003), a solution for the IJS problem has two parts:

feasible interval selection and job scheduling. The first part selects one feasible interval Ii, j

for job Ji if a feasible schedule exists. Job Ji with selected feasible interval Ii, j is denoted by

Ĵi . Naturally, job Ĵi can be treated as a traditional real-time job: the arrival time and dead-

line for job Ĵi are the start time and end time of its selected feasible interval, respectively.

Suppose that J† is the set of the jobs selected to execute and Ĵ† is the job set consisting of

jobs with selected feasible intervals in job set J†. The schedulability of job set Ĵ† can be con-

ducted by applying the traditional earliest-deadline-first (EDF) strategy: whenever no job is

executed, and one job in job set Ĵ† is ready and not completed yet, schedule the ready job

with the earliest deadline. The optimality of the EDF strategy guarantees that there exists a

feasible schedule for job set Ĵ† if and only if the schedule derived by the EDF strategy is

feasible (Carlier, 1982). For the rest of this paper, we denote the EDF schedule for a job set

J as SEDF
J . A schedulable subset of job set J, including the optimal subset, is denoted by J∗.

The set of jobs selected by Algorithm LEF is denoted by JLEF. The intersection of JLEF and

J∗ is denoted by J∗
1, i.e., J∗

1 ≡ JLEF ∩ J∗, and the relative complement of J∗ in J∗
1 is denoted

by J∗
2, i.e., J∗

2 ≡ J∗ \ J∗
1. In other words, job set J∗

1 consists of the jobs both in J∗ and JLEF,

while job set J∗
2 consists of the jobs that are in J∗ but not in JLEF.

The challenge of the IJS problem is two-fold: which job in job set J should be scheduled

at scheduling time t and which feasible interval for each selected job should be selected.

Algorithm Least Execution Time First (LEF) selects the job in a non-descending order of

execution time of jobs of the input job set J. Initially, JLEF and ĴLEF are both empty sets.

The working copy T is equal to J when the algorithm starts. In each iteration, the algorithm

selects one job whose execution time is the least among that for all the jobs in job set T,

denoted by Ji∗ . If there exists a feasible interval Ii∗, j of job Ji∗ such that the job set consisting

of jobs in ĴLEF and job Ji∗ are schedulable, then job Ji∗ is inserted into job set JLEF and job

Springer

Real-Time Syst (2006) 34:155–172 163

Ĵi∗ is inserted into job set ĴLEF; otherwise, job Ji∗ is not selected. (We break ties arbitrarily.)

After removing job Ji∗ from job set T, the algorithm repeats the iteration until job set T
becomes an empty set. The pseudo codes for Algorithm LEF are shown in Algorithm ??.

The schedule derived from Algorithm LEF completes all the jobs in JLEF in time. Because

the EDF schedulability test could be done in O(|J|) if the jobs are sorted according to their

deadlines a priori, the time complexity of this algorithm is O(|J|�Ji ∈J|Ii |).
In the following, we show the approximation factor of Algorithm LEF. We will use the

following properties for EDF schedules to prove the approximation factor of Algorithm

LEF, where (P2) comes directly from (P1) and (P3) is due to the greedy strategy of EDF

schedules:

(P1). A set Ĵ of jobs, each of which has one selected feasible interval, is schedulable by the

EDF strategy if and only if there exists a schedule to complete all the jobs in Ĵ in time

(Carlier, 1982).

(P2). If a set Ĵ of jobs, each of which has one selected feasible interval, is schedulable by

the EDF strategy, any subset of Ĵ is also schedulable by the EDF strategy.

(P3). During the time interval from the start time to the completion time of a job in the EDF

schedule, there is at least one non-interrupted job.

The 3-approximation factor can be proved by showing that the cardinality of job set Ĵ∗
2 is

at most twice of that of job set ĴLEF. This is because the cardinality of job set J∗
1 is no greater

than that of JLEF. The following lemmas state two important properties for job sets ĴLEF and

Ĵ∗
2.

Lemma 1. The job set consisting of one job Ĵh in job set Ĵ∗
2, and all the jobs in job

set ĴLEF each of whose execution time is no greater than that of Ĵh , i.e., { Ĵh} ∪ { Ĵ j |
Ĵ j ∈ ĴLEF and e j ≤ eh}, is not schedulable.

Proof: This lemma can be proved by contradiction.

Suppose that job set Ĵh ≡ { Ĵh} ∪ { Ĵ j | Ĵ j ∈ ĴLEF and e j ≤ eh} is schedulable for job Ĵh in

Ĵ∗
2. The job set ĴLEFh is defined to be the job set that consists of all the jobs in job set ĴLEF

before Algorithm LEF selects job Jh . Because job set Ĵh is schedulable and ĴLEFh ∪ { Ĵh} is

a subset of Ĵh , we know that job set ĴLEF
h ∪ { Ĵh} is schedulable based on the EDF properties

Springer

164 Real-Time Syst (2006) 34:155–172

(P1) and (P2). In other words, Algorithm LEF would insert job Jh into job set JLEF. However,

it contradicts with the assumption that job Jh is in job set J∗
2 and not in job set JLEF. We reach

the contradiction. �

Lemma 2. Suppose that Ĵ j is a non-interrupted job which is scheduled in SEDF

ĴLEF and whose
execution time is the least. If job set Ĵ∗

2 is not empty, the execution time of any job in Ĵ∗
2 is

no less than that of Ĵ j .

Proof: By the EDF property (P3), we know that such a job Ĵ j exists. We prove this lemma

by contradiction. Assume that Ĵh is a job in job set Ĵ∗
2 and its execution time is less than that

of Ĵ j . We will show that job Jh should be selected by Algorithm LEF. Let Lh be the start

time of the selected feasible interval of Ĵh in SEDF

Ĵ∗
2

. By Lemma 1, there must be at least one

job executed in the time interval (Lh, Lh + eh] in schedule SEDF

ĴLEF .

In the following, we consider two cases: (1) there is only one non-interrupted job in

schedule SEDF

ĴLEF and (2) there are more than one non-interrupted job in schedule SEDF

ĴLEF .

Case (1): By the EDF property (P3), all of the jobs executed after Lh must be preempted by

the non-interrupted job Ĵ j in schedule SEDF

ĴLEF . In other words, all of the jobs in job set ĴLEF,

excluding job Ĵ j , start their executions before the start time s j of Ĵ j , and complete their

executions after the completion time of Ĵ j , i.e., s j + e j . If s j ≥ Lh , we could postpone all

of the execution pieces of the preempted jobs executed in time interval (Lh, Lh + eh] in

schedule SEDF

ĴLEF to time interval (s j , s j + e j]. Figure 3(a) illustrates such a schedule before

the transformation and Fig. 3(b) illustrates the feasible schedule after the transformation.

Similarly, If s j < Lh , we could advance all of the execution pieces of the pre-

empted jobs executed in time interval (Lh, Lh + eh] in schedule SEDF

ĴLEF to time interval

(s j , s j + e j]. Figure 3(c) illustrates such a schedule before the transformation and Fig.

3(d) illustrates the corresponding feasible schedule after the transformation.

Since e j > eh , we know that job set ĴLEF \ { Ĵ j } is schedulable even when no job is exe-

cuted in time interval (Lh, Lh + eh]. Therefore, we could know that job set ĴLEF \ { Ĵ j } ∪
{ Ĵh} is schedulable by scheduling job Ĵh in time interval (Lh, Lh + eh]. By the EDF

properties (P1) and (P2), we know that job set { Ĵi | Ĵi ∈ ĴLEF and ei ≤ eh} ∪ { Ĵh} is also

schedulable. Algorithm LEF should insert Ĵh into ĴLEF, which contradicts our assumption

that Ĵh is not in ĴLEF.

Fig. 3 An illustrative example for the proof in case (1) in Lemma 2

Springer

Real-Time Syst (2006) 34:155–172 165

Fig. 4 An illustrative example for the second case of the proof for Lemma 2

Case (2): We consider the case that there are more than one non-interrupted job in schedule

SEDF

ĴLEF . The proof for the case when no non-interrupted job starts executions before Lh or

completes executions after Lh in schedule SEDF

ĴLEF is similar to that for Case (1). Hence, we

only prove the other two sub-cases for this lemma:

Case (2.1): No non-interrupted job is executed in time interval (Lh, Lh + eh] in schedule

SEDF

ĴLEF :

Figures 4(a) and 4(b) illustrate an example for this subcase. Let Ĵu be the last non-

interrupted job starting before Lh and job Ĵv be the first non-interrupted job starting

after Lh + eh , where su and sv denote the start times of Ĵu and Ĵv , respectively.

We know that all of the jobs executed in time interval (Lh, Lh + eh] if there is any

are preempted either by job Ĵu or job Ĵv in schedule SEDF

ĴLEF . For the jobs which are
preempted by job Ĵu , we can advance all of their execution pieces in time interval

(Lh, Lh + eh] in schedule SEDF

ĴLEF to time interval (su, su + eu]. On the other hand,

for those jobs preempted by job Ĵv , we can postpone all of their execution pieces

in time interval (Lh, Lh + eh] in schedule SEDF

ĴLEF to time interval (sv, sv + ev]. After

that, we could schedule job Ĵh in time interval (Lh, Lh + eh]. Since both eu and

ev are greater than eh , the revised schedule could complete all the jobs in job set

ĴLEF \ { Ĵu, Ĵv} ∪ { Ĵh} in time. Similar to the proof for Case (1), job Jh would be

selected for execution in Algorithm LEF.

Case (2.2): More than one non-interrupted job are executed in time interval (Lh, Lh +
eh] in schedule SEDF

ĴLEF :

For the second sub-case, the proof is very similar. Since eh < eu and eh < ev , we

know that there are at most two non-interrupted jobs executed in time interval

(Lh, Lh + eh] in schedule SEDF

ĴLEF . If (Lh, Lh + eh] is entirely in the execution of a
non-interrupted job in schedule SEDF

ĴLEF , it is clear that we reach the contradiction;

otherwise, let job Ĵu be the first non-interrupted job whose execution time interval

intersects (Lh, Lh + eh]. If there is a non-interrupted job Ĵv executed later than Ĵu ,

we can reach contradiction by the same arguments in the previous paragraph; other-

wise, we can reach the contradiction by the same arguments in the first case when

there is only one non-interrupted job in schedule SEDF

ĴLEF . �

In the following, we prove that the cardinality of job set Ĵ∗
2 is at most twice of that of job

set ĴLEF. The proof process is an iterative process. In each iteration, the process conducts a

time domain revision which removes one selected time interval from current time domain.

In the mean time, we show that only one job in job set ĴLEF is scheduled in the removed time

interval and at most two jobs in job set in Ĵ∗
2 are scheduled in the removed time interval.

When the process terminates, we show that only one job in job set ĴLEF is scheduled in the

remaining time domain and at most two jobs in job set Ĵ∗
2 are scheduled in the remaining

time domain.

Springer

166 Real-Time Syst (2006) 34:155–172

In i-th iteration, the proof process selects one job, denoted by K̂ i , in job set ĴLEF, updates

the set of jobs scheduled by Algorithm LEF, denoted by K̂LEF,i where K̂LEF,0 ≡ ĴLEF, and

updates the set of jobs scheduled by an arbitrary algorithm, denoted by K̂∗,i = K̂∗,i
1 ∪ K̂∗,i

2

where K̂∗,0
1 ≡ Ĵ∗ ∩ ĴLEF and K̂∗,0

2 ≡ Ĵ∗ \ ĴLEF. The selected job K̂ i is the job which is in job

set K̂LEF,i−1 and whose execution time is the least among all the other un-interrupted jobs

in job set K̂LEF,i−1. By definitions, we know that job K̂ i executes from start to completion in

the time interval (sKi , cKi]. In the EDF schedule for job set K̂∗
2, the jobs executed at the time

instants sKi and cKi are denoted by K̂ �i and K̂ ri , respectively. (K̂ �i and K̂ ri may or may not

exist.)

We revise the time domain by treating sKi and cKi as the same time instant. The start time

Lq and end time Rq of the selected feasible interval for any job K̂q in job sets K̂LEF,i \{K̂ i }
and K̂∗,i

2 \{K̂ �i , K̂ ri } are revised according to the following rules:

Rule (1): if Rq ≤ sKi , Lq and Rq remain unchanged;

Rule (2): if Lq ≤ sKi ≤ Rq ≤ cK1
, Lq remains unchanged and Rq is revised as sKi ;

Rule (3): if Lq ≤ sKi ≤ cKi ≤ Rq , Lq remains unchanged and Rq is revised as Rq minus

(cKi − sKi);

Rule (4): if sKi ≤ Lq ≤ cKi ≤ Rq , Lq is revised as sKi and Rq is revised as Rq minus

(cKi − sKi);

Rule (5): if cKi ≤ Lq , Lq is revised as Lq minus (cKi − sKi) and Rq is revised as Rq minus

(cKi − sKi).

Note that sKi < Lq ≤ Rq ≤ cKi and sKi ≤ Lq ≤ Rq < cKi are not listed above. This is be-

cause these two cases hold only if the execution time of job K̂q is less than that of job K̂ i ,

which contradicts Lemma 2. After revising the time domain, the process updates job sets

K̂LEF,i , which is K̂LEF,i−1 \ K̂i , and K̂∗,i
2 , which is K̂∗,i−1

2 \ {K̂ �i , K̂ ri }. The process termi-

nates when i is |K̂LEF|.
We show that the following properties hold for any i = 0, 1, . . . , |ĴLEF|−1:

(P4). Job sets K̂∗,i
2 and ĴLEF,i are both schedulable.

(P5). For any job K̂h in job set K̂∗,i
2 , the job set {K̂ j | K̂ j ∈ K̂LEF,i and e j ≤ eh} ∪ {K̂h} is

not schedulable. (This property is similar to Lemma 1.)

(P6). The execution time of any job in job set K̂∗,i
2 is no less than the execution time of job

K̂ i+1 if K̂∗,i
2 is not an empty set. (This property is similar to Lemma 2.)

By definitions, we know that both job sets K̂∗,0
2 and K̂LEF,0 are schedulable. Therefore,

with Lemmas 1 and 2, we know that the properties (P4), (P5), and (P6) hold when i = 0.

We prove these properties by induction.

Lemma 3. Suppose that properties (P4), (P5), and (P6) hold when i = 0, . . . , m − 1. Then,
properties (P4), (P5), and (P6) also hold when i = m.

Proof: Properties (P5) and (P6) are proved by the same arguments in the proofs of Lemmas

1 and 2 when job sets K̂∗,m−1
2 and K̂LEF,m−1 are schedulable, and the properties (P5) and (P6)

hold for i = 0, . . . , m − 1.

We focus on proving Property (P4). The schedulability is trivial for job set K̂LEF,m , be-

cause we revise the time domain according to the non-interrupted job K̂ m in job set K̂LEF,m .

Hence, it is sufficient to only show the schedulability of job set K̂∗,m
2 .

Let sm and cm be the start time and completion time of job K̂ m in the EDF schedule of job

set K̂LEF,m−1, respectively. By definitions, the EDF schedule of job set K̂LEF,m−1 completes

Springer

Real-Time Syst (2006) 34:155–172 167

Fig. 5 Illustrative examples for seven different schedules in schedule SEDF

K̂∗,m−1
2

all the jobs in job set K̂LEF,m−1 in time. There are seven different possible schedules for time

interval (sm, cm] in schedule SEDF

K̂∗,m−1
2

. In the following, we discuss the schedulability for each

case.

Case (a): Figure 5(a) illustrates the case that no job is scheduled at time instants sm and

cm . In this case, we know that no job is executed in time interval (sm, cm] in the EDF

schedule for job set K̂∗,m−1
2 because of the property (P6) for i = m − 1. In other words,

job set K̂∗,m−1
2 and K̂∗,m

2 are equal. Hence, job set K̂∗,m
2 is schedulable in this case.

Case (b): Figure 5(b) illustrates the case that one job is scheduled at both time instant sm and

cm . In other words, K̂ �m and K̂ rm refer to the same job. Because no job would preempt job

K̂ �m in time interval (sm, cm] according to the property (P6) when i = m − 1, removing

job K̂ �m does not postpone the schedule for any other job. Job set K̂∗,m
2 is still schedulable.

Case (c): Figure 5(c) illustrates the case that job K̂ �m executes at time instant sm but no job

executes at time instant cm . (In other words, job K̂ rm does not exist.)

We know that all of the jobs executed in time interval (sm, cm] in schedule SEDF

K̂∗,m−1
2

, except

for job K̂ �m , are preempted by job K̂ �m according to the EDF property (P3) and start

their executions before the start time of job K̂ �m . Suppose that job K̂ �m completes at the

time instant c∗, which is no greater than cm . Hence, job K̂ �m executes for e�m − (c∗ − sm)

units of time before time sm , where e�m is the execution time for job K̂ �m . Let the amount

of non-idle time in time interval (c∗, cm] in schedule SEDF

K̂∗,m−1
2

be x . We know that x +
(c∗ − sm) ≤ cm − sm ≤ e�m = (c∗ − sm) + e�m − (c∗ − sm), where the second inequality

comes from Property (P6). Therefore, x ≤ e�m − (c∗ − sm).

Springer

168 Real-Time Syst (2006) 34:155–172

By swapping the schedule in time interval (c∗, cm] and that in time interval executing job

K̂ �m before sm in schedule SEDF

K̂∗,m−1
2

, we can derive a schedule to complete all of the jobs in

job set K̂∗,m−1
2 \{K̂ �m } in time before time sm . This is because schedule SEDF

K̂∗,m−1
2

is feasible

and no job starts its execution earlier than its original start time or completes later than

its original completion time. Therefore, job set K̂∗,m
2 = K̂∗,m−1

2 \ {K̂ �m } is schedulable for

Case (c).

Case (d): Figure 5(d) illustrates the case that no job is scheduled at time sm and job K̂ rm

executes at time cm . (In other words, job K̂ �m does not exist.) Case (d) can be proved by

the same argument for Case (c).

Case (e): Figure 5(e) illustrates the case that jobs K̂ �m and K̂ rm exist and are not equal, and

job K̂ �m completes before job K̂ rm starts in schedule SEDF

K̂∗,m−1
2

. The schedulability can be

proved by combining the analysis for Case (c) and (d).

Case (f): Figure 5(f) illustrates the case that jobs K̂ �m and K̂ rm exist and are not equal, and

job K̂ rm starts before job K̂ �m starts in schedule SEDF

K̂∗,m−1
2

. (In other words, job K̂ �m preempts

job K̂ rm .)

For this case, the completion time c∗ for job K̂ �m is earlier than that of job K̂ rm , where

c∗ < cm . It is not difficult to show that all the jobs executed in time interval (c∗, cm] in

schedule SEDF

K̂∗,m−1
2

are preempted by job K̂ �m . Advancing the job executions in time interval

(c∗, cm], except for that for job K̂ rm , to the time interval for executing job K̂ �m before

time sm and removing the job executions for jobs K̂ �m and K̂ rm would derive a schedule

to complete all of the jobs in job set K̂∗,m−1
2 \{K̂ �m , K̂ rm } in time without executing any

job in time interval (sm, cm].

Case (g): Figure 5(g) illustrates the case that jobs K̂ �m and K̂ rm exist and are not equal, and

job K̂ �m completes after job K̂ rm completes in schedule SEDF

K̂∗,m−1
2

. (In other words, job K̂ rm

preempts job K̂ �m .) Similar arguments for Case (f) could also be made for the case.

Hence, properties (P4), (P5), and (P6) hold when i = m. �

Now, we show the approximation factor for Algorithm LEF.

Theorem 3. Algorithm LEF is a 3-approximation algorithm for the IJS problem.

Proof: It suffices to prove |JLEF| ≥ 2|J∗
2| by showing that there are at most two jobs in job

set K̂∗,|JLEF |−1
2 after we have removed at most two jobs to construct job set K̂∗,i

2 from job

set K̂∗,i−1
2 for i = 1, 2, . . . , |JLEF|−1. By properties (P5) and (P6), we know that the EDF

schedule of job set K̂∗,|JLEF |−1
2 could only schedule at most two jobs: one starts before the

start time of the selected feasible interval of job K̂ |JLEF | in K̂∗,|JLEF |−1, and another one starts

before the start time of the feasible interval of job K̂ |JLEF | plus the execution time of K̂ |JLEF |.
With Lemmas 1, 2, and 3, we know that Algorithm LEF is a 3-approximation algorithm for

the IJS problem. �

The tightness of Algorithm LEF is demonstrated by the following example: Con-

sider J = {J1, J2, J3}, where J1 = (b, {(b, 2b], (3b, 4b]}), J2 = (b + ε, {(0, b + ε], (2b −
ε, 3b]}), and J3 = (b + ε, {(0, b + ε], (2b − ε, 3b]}) (b > 0 and 0.5b ≥ ε > 0), as illus-

trated in Fig. 6(a). The optimal schedule, referred to Fig. 6(b), is to execute J1, J2, and

J3 in their second, first, and second feasible intervals, respectively, whereas Algorithm LEF

only schedules job J1 in its first feasible interval, shown as Fig. 6(c).

Springer

Real-Time Syst (2006) 34:155–172 169

Fig. 6 A tight example for Algorithm LEF

5. Performance evaluation

The experiments described in this section are meant to evaluate the performance of the

proposed algorithms. For non-preemptible jobs, the performance of our proposed Algorithm

LECF is compared with Algorithm First-Come-First (FCF), which selects the jobs in a non-

decreasing order of their start times of the first feasible interval and then schedules jobs as

early as possible after the completion time of those scheduled jobs. For preemptible jobs, we

compare the performance of Algorithm LEF against those algorithms in Shih et al. (2003),

including Fewer Feasible Interval First-based (FFIF-First Fit, FFIF-Last Fit, FFIF-Worst Fit,

FFIF-Best Fit) and First Come First Serve-based algorithms (FCFS-First Fit, FCFS-Last Fit,

FCFS-Worst Fit, and FCFS-Best Fit).

5.1. Workload generation and performance metrics

The job sets in our simulations are generated based on two parameters: the number of jobs

and average arrival rate. The former is the number of jobs in the job set; the latter is the

average number of jobs arrived within each second in Possion distribution. Each job is char-

acterized by four parameters: execution time, number of feasible intervals, length of each

feasible interval, and temporal distance between two consecutive feasible intervals. By tem-

poral distance, we mean the difference between the start time of feasible interval Ii, j of job

Ji and the end time of feasible interval Ii, j−1 of job Ji for j > 1.

Two types of workloads are generated in the evaluations. For Type I workload, we simu-

late the job sets which have small number of jobs and in which each job has small number of

feasible intervals. For Type II workload, we simulate the job sets which have large number

of jobs and each job has large number of feasible intervals. The workload parameters for two

types of workload are listed in Table 1. For Type I workload, performing exhaustive search

on the generated job sets for optimal solutions could be done efficiently, i.e., within several

minutes for an input instance. Experimental results are conducted from 512 independent

experiments for each parameter configuration.

We use two metrics to measure the performance of the algorithms: completion rate and

normalized completion rate. Completion rate for an input instance is defined as the ratio of

the number of jobs completed in time in the derived schedule to that in the optimal solu-

tion. When the optimal solution for an input instance could be derived efficiently, the mea-

surements on completion rates of the evaluated algorithms provide performance indexes.

Springer

170 Real-Time Syst (2006) 34:155–172

Table 1 Simulation parameters for type I and type II

Parameters Type I Workload Type II Workload

Number of jobs 8, 10, 12, 14, 16, 18 20 to 80 stepped by 5

Average arrival rate (Poisson) 4 2

Execution time uniform(200, 400) ms uniform(100, 500) ms

Number of feasible intervals uniform(1, 3) uniform(1, 5)

Interval length∗ uniform(max{200, e}, 500) ms uniform(max{200, e}, 600) ms

Temporal distance uniform(100, 300) ms uniform(100, 300) ms

∗ e denotes the execution time of the job determined.

Normalized completion rate for an input instance is the ratio of the number of jobs com-

pleted in time in the derived schedule to the number of jobs in the input job set. When the

optimal solution for an input instance could not be derived efficiently, normalized comple-

tion rate is used to compare the performance for different algorithms.

5.2. Experimental results

For preemptible jobs, Figs. 7(a) and 7(b) show the evaluation results for Type I and Type II

workloads. In Fig. 7(a), the average completion rates of Algorithm LEF range from 86% to

89%, while the average completion rates of the FFIF-based algorithms and the FCFS-based

algorithms range from 69% to 77% and 65% to 73%, respectively. Algorithm LEF outper-

forms the FFIF-based algorithms and the FCFS-based algorithms. It is because schedules

generated from Algorithm LEF are based on a highly related factor, i.e., the execution time,

with optimized solutions, whereas the schedules generated from FFIF-based and FCFS-

based algorithms are based on the number of feasible intervals and the arrival time of jobs

which are not highly related factors. For Type I workloads, the last fit strategy and best

fit strategy for FFIF-based algorithms perform better than the other strategies do, while the

first fit strategy and best fit strategy for FCFS-based algorithms perform better than the other

 1

 0.9

 0.8

 0.7

 0.6

 8 10 12 14 16 18

A
v

e
ra

g
e
 c

o
m

p
le

ti
o

n
 r

a
te

Number of jobs

0∼∼

LEF
FFIF-First Fit
FFIF-Last Fit
FFIF-Best Fit

FFIF-Worst Fit
FCFS-First Fit
FCFS-Last Fit

FCFS-Best Fit
FCFS-Worst Fit

(a) Average completion rate for Type I workload

 1

 0.9

 0.8

 0.7

 0.6

 20 25 30 35 40 45 50 55 60 65 70 75 80

A
v

e
ra

g
e
 n

o
rm

a
li

z
e
d

 c
o

m
p

le
ti

o
n

 r
a
te

Number of jobs

0 ∼∼

LEF
FFIF-First Fit
FFIF-Last Fit
FFIF-Best Fit

FFIF-Worst Fit
FCFS-First Fit
FCFS-Last Fit
FCFS-Best Fit

FCFS-Worst Fit

(b) Average normalized completion rate for Type II work-
load

Fig. 7 Evaluation results for preemptible jobs.

Springer

Real-Time Syst (2006) 34:155–172 171

 1

 0.9

 0.8

 0.7

 0.6

 8 10 12 14 16 18

A
v

e
ra

g
e
 c

o
m

p
le

ti
o

n
 r

a
te

Number of jobs

0∼∼

LECF
FCF

(a) Average completion rate for Type I workload

 1

 0.9

 0.8

 0.7

 0.6

 20 25 30 35 40 45 50 55 60 65 70 75 80

A
v

e
ra

g
e
 n

o
rm

a
li

z
e
d

 c
o

m
p

le
ti

o
n

 r
a
te

Number of jobs

0∼∼

LECF
FCF

(b) Average normalized completion rate for Type II work-
load

Fig. 8 Evaluation results for non-preemptible jobs

strategies do. Furthermore, the performance of Algorithm LEF is more steady in Fig. 7(a), in

which the average completion rates of FFIF-based algorithms and FCFS-based algorithms

decrease when the number of jobs increases. In Fig. 7(b), the average normalized completion

rates of Algorithm LEF, the FFIF-based algorithms, and the FCFS-based algorithms range

from 84% to 86%, 73% to 78%, and 66% to 75%, respectively. The trends of the simulation

results in Fig. 7(a) are similar to those in Fig. 7(b).

For non-preemptible jobs, the simulation results are presented in Figs. 8(a) and 8(b) for

Type I and Type II workloads by measuring the average completion rate and the average

normalized completion rate, respectively. The average completion rates for Algorithm LECF

and Algorithm FCF range from 87% to 90% and 77% to 80%, respectively. The average

normalized completion rates for Algorithm LECF and Algorithm FCF range from 81% to

83% and 75% to 78%, respectively. The results indicate that Algorithms LECF and LEF not

only guarantee the approximation factors but also outperform other multiple feasible interval

scheduling algorithms.

6. Conclusion

In this paper, we present two approximation algorithms for the multiple feasible interval

jobs. For preemptible jobs, Algorithm LECF is shown being a 2-approximation algorithm

by executing the job which is able to complete in time earliest among the unselected jobs

in a greedy manner. By adopting the heuristic to choose the preemptible job with the least

execution time, Algorithm LEF is proved being a 3-approximation algorithm for scheduling

preemptible jobs. Both of the two proposed algorithms are also shown with tight approxi-

mation factors by presenting tight input instances. The proposed algorithms are evaluated

by extensive simulations with performance comparisons against the proposed algorithms in

previous study. The results show that Algorithm LECF and Algorithm LEF could complete

more jobs in time than the previous heuristic algorithms could.

For future research, we would further explore algorithms with less runtime overhead. We

would also explore the scheduling problem to maximize the sum of the rewards of completed

jobs in the multiple feasible interval job model when every job is associated with a reward

value for its completion.

Springer

172 Real-Time Syst (2006) 34:155–172

Acknowledgments We would like to thank Prof. Tei-Wei Kuo at National Taiwan University for his valuable
inputs and the reviewers for their valuable feedbacks. This work is supported in part by a grant from the NSC
program 93-2752-E-002-008-PAE and in part by a grant from the NSC program 93-2213-E-002-090.

References

Aydin H, Melhem R, Mosse D, Alvarez P (1999) Optimal reward-based scheduling for periodic real-time
tasks. In: Proceedings of the 20th IEEE Real-Time Systems Symposium pp 79–89

Sprunt B, Sha L, Lehoczky J (1989) Aperiodic task scheduling for hard-real-time systems. Real-time Systems
Journal pp 27–60

Baptiste P (1999) An O(n4) algorithm for preemptive scheduling of a single machine to minimize the number
of late jobs. Operations Research Letters 24:175–180

Han C-C, Lin K-J (1992) Scheduling distance-constrained real-time tasks. In: Proceedings of the 13th IEEE
Real-Time Systems Symposium pp 300–308

Carlier J (1982) The one machine sequencing problem. European Journal of Operational Research 11:42–47
Cheong IK (1992) Scheduling Imprecise Hard Real-Time Jobs with Cumulative Error. PhD thesis, University

of Illinois at Urbana-Champaign
Hamdaoui M Ramanathan P (1995) A dynamic priority assignment technique for streams with (m, k)-RM

deadlines. IEEE Transaction on Computers 44(12):1443–1451
Koren G, Shasha D (1995) Skip-over: Algorithms and complexity for overloaded systems that allow skips.

In: Proceedings of the 16th IEEE Real-Time Systems Symposium pp 110–117
Lawler EL (1990) A dynamic programming algorithm for preemptive scheduling of a single machine to

minimize the number of late jobs. Operations Research 26(1):125–133
Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.

Journal of the ACM 20(1):46–61
Liu JW-S (2000) Real-time systems. Prentice Hall, Englewood, Cliffs, NJ
Liu JW-S, Lin K-J, Shih WK, Yu AC-S, Chung J-Y, Zhao W (1991) Algorithms for scheduling imprecise

computations. IEEE Computer 24(5):58–68
Quan G, Hu, X (2000) Enhanced fixed-priority scheduling with (m, k)- firm guarantee. In: Proceedings of the

21th IEEE Real-Time Systems Symposium pp 79–88
Shih C-S, Liu JW-S, Cheong IK (2003) Scheduling jobs with multiple feasible intervals. In: Proceedings of

the Real-Time and Embedded Computing Systems and Applications pp 53–71
Shih WK, Liu JW-S (1995) Algorithms for scheduling imprecise computations with timing constraints to

minimize maximum error. IEEE Transaction on Computers 44(3):466–471
Shih WK, Liu JW-S, Chung JY (1991) Algorithms for scheduling imprecise computations with timing con-

straints. SIAM Journal on Computing 20(3):537–552
Vazirani VV (2001) Approximation algorithms. Springer

Springer

